
214 Biometrical Journal 54 (2012) 2, 214–229 DOI: 10.1002/bimj.201100056

Competing regression models for longitudinal data

Airlane P. Alencar∗,1, Julio M. Singer1, and Francisco Marcelo M. Rocha2

1 Departamento de Estatı́stica, Instituto de Matemática e Estatı́stica, Universidade of São Paulo,
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The choice of an appropriate family of linear models for the analysis of longitudinal data is often a
matter of concern for practitioners. To attenuate such difficulties, we discuss some issues that emerge
when analyzing this type of data via a practical example involving pretest–posttest longitudinal data. In
particular, we consider log-normal linear mixed models (LNLMM), generalized linear mixed models
(GLMM), and models based on generalized estimating equations (GEE). We show how some special
features of the data, like a nonconstant coefficient of variation, may be handled in the three approaches
and evaluate their performance with respect to the magnitude of standard errors of interpretable and
comparable parameters. We also show how different diagnostic tools may be employed to identify
outliers and comment on available software. We conclude by noting that the results are similar, but that
GEE-based models may be preferable when the goal is to compare the marginal expected responses.
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1 Introduction

Mixed models are very useful to analyze data with a hierarchical structure, where measures from
distinct units are independent and those from within units are correlated. In particular, they are
appropriate to analyze repeated measures in longitudinal studies. The classical linear mixed model
considered by Laird and Ware (1982) is expressed as

yi = Xiβ + Zibi + ei, i = 1, . . . , N, (1)

where yi is the (ni × 1) vector of responses for the i-th unit, Xi is the (ni × p) fixed effects specification
matrix, β is the corresponding (p × 1) vector of parameters, bi is a (q × 1) vector of random effects
with E(bi) = 0 and Var(bi) = G, Zi is a (ni × q) specification matrix for the random effects, and ei is
a (ni × 1) vector of random errors independent of bi, with E(ei) = 0, Var(ei) = Ri, and G (q × q) and
Ri (ni × ni) are symmetric positive definite matrices. The marginal expected response is E(yi) = Xiβ and
the conditional (on the individual effect bi) expected response is E(yi|bi) = Xiβ + Zibi. The inclusion
of random effects may account for heterogeneity of regression coefficients across sample units, possibly
due to several unmeasured factors that affect the response variable (Fitzmaurice et al., 2004).
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It follows that

� = Var(yi) = ZiGZ�
i + Ri, (2)

where the first and second summands correspond, respectively, to the inter- and intraindividual co-
variance structures. When Ri = σ 2I, the model is termed homoskedastic conditionally independent
model, and correlation among observations on the same unit i arises from their sharing the unobserv-
able (latent) variable, bi (Diggle et al., 2002, p. 128).

In the original formulation, Laird and Ware (1982) assumed that bi and ei in (1) follow normal
distributions. Unbiased and consistent estimators of the variance components may be obtained by
maximizing the restricted likelihood function, and estimators of the fixed effects may be obtained via
maximum likelihood (ML) (Jiang, 2007). In practice, however, it is often not plausible to assume that
the response is normally distributed. To bypass this problem, a possible strategy is to consider a log-
normal linear mixed model (LNLMM), where the response is assumed to follow a multiplicative model
with log-normal errors; the corresponding linearized model is additive and may be expressed as (1).
For a broader choice of response distributions, two alternatives are generalized linear mixed models
(GLMM) and models in which the parameters are estimated via generalized estimating equations
(GEE).

In the GLMM approach, a distribution of the exponential family is considered for the response. In
the usual formulation, individual observations are assumed to be independent conditionally on the
random effects. In a more general setting, it is possible to consider different covariance structures.
Estimation may be based on ML, penalized quasi-likelihood (PQL), or pseudo-likelihood methods
(see Fitzmaurice et al. [2008, pp. 90–94] for details).

In the GEE-based approach, the form of the distribution of the vectors of responses (yi) is not
specified; the only assumption is that the marginal model depends only on the mean vector and on
the covariance matrix of yi. Estimators are obtained as solutions to GEE and are consistent even
when the covariance structure is misspecified. In this case, the standard errors may not be correct, but
valid standard errors can be obtained via the sandwich estimator (Liang and Zeger, 1986). Because
GEE-based models do not belong to the class of mixed models, they do not allow the evaluation of
individual effects.

Excellent surveys on linear and GLMM are presented in Demidenko (2004) and Jiang (2007).
Marginal models analyzed via GEE are carefully addressed in Hardin and Hilbe (2002). Song (2007)
and Fitzmaurice et al. (2008) present recent reviews on the all these models. Good references on
longitudinal data analysis using mixed and marginal models are Diggle et al. (2002), Fitzmaurice et al.
(2004) and Molenberghs and Verbeke (2005).

We compare some features of the three approaches by fitting LNLMM-, GLMM-, and GEE-based
models to data obtained from a pretest–posttest longitudinal study. We show how some important
characteristics of the data may be incorporated in the three models, discuss the robustness of parameter
estimators in the presence of outliers, and comment on their computational implementation. In Section
2, we introduce the data along with a preliminary exploratory analysis with the objective of identifying
models for the analysis. In Sections 3, 4, and 5, we present the results of fitting, respectively, LNLMM-,
GLMM-, and GEE-based models, detailing their specification, the estimation method, and discussing
diagnostic tools. All codes are available in the supplemental material. In Section 6, we discuss some
advantages, disadvantages, and properties of each family of models and present some concluding
remarks.

2 Preliminary analysis of the longitudinal pretest–posttest data

We present a pretest–posttest longitudinal data set, highlighting its distinctive characteristics and
conduct a preliminary descriptive analysis. In particular, we evaluate coefficients of variation and fit a
naive model using least squares in order to identify possible competing models.
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Figure 1 Scatter plots of pretest versus posttest bacterial plaque indices.

A study conducted at the School of Dentistry of the University of São Paulo, Brazil, was designed
to compare the efficiency in the removal of bacterial plaque under daily use of a low cost experimental
(monoblock) toothbrush to that of a conventional toothbrush. In the study, 32 children, four to six
years old, were randomly divided into two groups. Sixteen children received the monoblock toothbrush
and the remaining children received the conventional toothbrush at the beginning of the study and
used it for 45 days. During this period, data on a bacterial plaque index were collected before (pretest)
and after (posttest) toothbrushing in sessions spaced by 15 days. The data is available in Nobre and
Singer (2007).

Scatter plots of the pretest and posttest bacterial plaque indices for each session and type of
toothbrush are presented in Fig. 1.

The bacterial plaque indices measured before (x) and after (y) toothbrushing are supposed to have
the following characteristics, suggested in Singer and Andrade (1997) which we include for the sake of
self-containment:

(a) A pretest plaque index equal to zero implies an expected posttest plaque index also equal to
zero.

(b) Pretest and posttest plaque indices are non-negative.
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(c) The data are possibly heteroskedastic (because the response is non-negative and follows the
relation E(y) ≤ x); i.e., the expected posttest bacterial plaque index (y) must be smaller than
the pretest index (x).

(d) The relation between pretest and posttest plaque indices may be non-linear.
(e) The observations carried out on the same child are possibly correlated.

For simplicity, we analyze the data conditionally on the values of the pretest observations. For an
error-in-variables approach to a similar problem, the reader is referred to Aoki et al. (2003).

Following the suggestions of Singer and Andrade (1997) and Singer et al. (2002), a model that
satisfies (a)–(e) is a multiplicative model of the form

yi jd = β jd x
γ jd

i jdεi jd , (3)

where yi jd is the posttest bacterial plaque index for the i-th individual using the j-th toothbrush in the d-
th session, xi jd is the corresponding pretest index, i = 1, . . . , 16, j = 0 (conventional), 1 (monoblock),
d = 1, 2, 3, 4, β jd and γ jd are parameters to be estimated and εi jd are non-negative random
errors.

The efficiency of a toothbrush may be measured by the relative residual bacterial plaque index,
defined as the expected ratio between the posttest and pretest bacterial plaque indices, say E(yi jd |xi jd ) =
β jd x

γ jd −1

i jd E(εi jd ). With this definition, the smaller the relative residual bacterial plaque index, the more
efficient is the toothbrush. Note that the measure of efficiency is proportional to β jd and it is equal
to β jd when γ jd = 1 and E(εi jd ) = 1. In this multiplicative model, if γ jd = 1, the efficiency does not
depend on the pretest index, but when γ jd > 1 (γ jd < 1), the efficiency decreases (increases) according
to the pretest index.

The characteristics (a)–(d) are clearly satisfied by model (3); in particular the heteroskedasticity
for the response stems from Var(yi jd ) = (β jd x

γ jd

i jd )2Var(εi jd ), even for homoskedastic errors (εi jd ).
Requirement (e) may be incorporated in the specification of the error distribution. Model (3) may be
linearized by taking logarithms, i.e.,

log(yi jd ) = λ jd + γ jd log(xi jd ) + ei jd, (4)

where λ jd = log(β jd ) and ei jd = log(εi jd ).
To identify whether random intercepts should be included, we started by fitting model (4) assuming

uncorrelated errors. In Fig. 2A, we plot the residuals versus the rank of the mean residual (mean of
the four residuals for each child); some children have all four residuals larger than others, suggesting

Figure 2 (A) Residuals versus ranks of subject mean residuals. (B) Individual profiles of log(y) versus
log(x). (C) Residuals versus fitted values.
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Figure 3 Sample coefficients of variation of ratios between the posttest and pretest indices for each
toothbrush and session for the complete and reduced (excluding three outliers) data sets.

that there are subject-specific components affecting the response. This variability may be modeled by
random intercepts. The individual profiles of log(y) versus log(x) plotted in Fig. 2B do not suggest
that individual slopes are different so that random slopes may not be necessary. Standardized residuals
are plotted versus fitted values in Fig. 2C. Three outliers may be identified; they correspond to the
second evaluation for the 12-th child in the conventional toothbrush group and for the third and fourth
evaluation sessions of the 13-th child in the monoblock toothbrush group.

The analysis of the parameter estimates of model (4) also suggests that γ jd = 1. Under this restriction,
the efficiency of a toothbrush in each session can be measured by the expected posttest/pretest
bacterial plaque index ratio, E(yi jd/xi jd ) = β jd E(εi jd ). Since the corresponding standard deviation is
SD(yi jd/xi jd ) = β jd SD(εi jd ), the coefficient of variation CV(yi jd/xi jd ) = SD(εi jd )/E(εi jd ) should be
constant for all sessions and toothbrush groups if the errors εi jd were identically distributed. Figure 3
suggests that the coefficients of variation of the ratios yi jd/xi jd are different, and consequently that the
standard deviations of the errors εi jd in (3) may be larger for the conventional toothbrush in sessions
1 and 2 and for the monoblock toothbrush in sessions 3 and 4. Even after removing the three outliers
suggested in Fig. 2C, the coefficients of variation still exhibit a similar behavior.

The preliminary analysis suggests that the candidate models should include random intercepts,
heteroskedasticity, and a larger coefficient of variation for the ratio posttest/pretest bacterial plaque
indices for the conventional toothbrush in sessions 1 and 2 and for the monoblock toothbrush in
sessions 3 and 4.

3 Analysis via LNLMM

Here we consider a LNLMM model of the form (4) that includes random effects to account for possible
positive within-subjects correlations and also considers an error covariance matrix that incorporates
the nonconstant coefficients of variation identified in Section 2. Such models may be fitted via well
established linear mixed model methodology, where the location and the covariance structure may be
modeled separately.

The LNLMM may be expressed as

y∗
i j = Xi jβ + 14bi j + ei j, i = 1, . . . , 16, j = 0, 1, (5)

C© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com
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Table 1 Expressions for the estimators of β∗
jd = E(yi jd |xi jd = 1) and corresponding asymptotic

variances.

Model β̂∗
jd Var(β̂∗

jd )

LNLMM β̂ jd exp[0.5(σ̂ 2
b + r̂2

jd )] (β∗
jd )2[Var(̂λ jd ) + 0.25(σ 2

b + r2
jd )]

GLMM β̂ jd exp(0.5σ̂ 2
b ) (β∗

jd )2[Var(̂λ jd ) + 0.25(σ 2
b )]

GEE β̂ jd (β∗
jd )2[Var(̂λ jd )]

where y∗
i j = (log(yi j1), log(yi j2), log(yi j3), log(yi j4))

�, the specification matrices for the conventional
and monoblock toothbrush groups (j = 0, 1) are respectively,

Xi0 =
(

I4, 04,

4⊕
d=1

log(xi jd ), 04

)
, Xi1 =

(
04, I4, 04,

4⊕
d=1

log(xi jd )

)
,

where
⊕4

i=1 ai denotes a diagonal matrix with the elements ai along the main diag-
onal, β = [λ�γ�]� is a (16 × 1) vector with λ� = [λ01, λ02, λ03, λ04, λ11, λ12, λ13, λ14], γ� =
[γ01, γ02, γ03, γ04, γ11, γ12, γ13, γ14], 14 = (1, 1, 1, 1)�, I4 denotes the identity matrix of order 4, and
04 denotes a 4 × 4 matrix with all elements equal to zero. The error vectors ei j are independent and
follow N(0, R j ) distributions, where, as suggested by the preliminary analysis,

R j =
4⊕

d=1

r2
jd =

{
diag{τ 2

1 , τ 2
1 , τ 2

2 , τ 2
2 }, if j = 0

diag{τ 2
2 , τ 2

2 , τ 2
1 , τ 2

1 }, if j = 1
. (6)

Also, we assume that the random effects, bi j , are independent and follow N(0, σ 2
b ) distributions.

We present estimates of β∗
jd = E(yi jd |xi jd = 1) instead of the estimates of β jd = exp(λ jd ) in (3) as

suggested in Singer et al. (2002). To compute these estimates, note that exp(bi j + ei jd ) has a log-normal
distribution, so that E[exp(bi j + e) + ei jd ] = exp[(σ 2

b + r2
jd )/2]. This approach is more convenient for

interpretation and comparison with other models. Expressions for estimators β̂∗
jd and their correspond-

ing asymptotic variances (obtained by the delta method) are presented in Table 1. Model (5) and (6)
was fitted to the data using restricted ML methods, available in SAS PROC MIXED (Littell et al., 2006).
The codes and the data to fit the proposed models may be provided online in the link of Supporting
Information. The estimates are presented in Table 2.

Results obtained under this model were compared to those based on two other models of
the form (5): the first with R j = diag(τ 2

j1, . . . , τ
2
j4), j = 0, 1, and the second with R j = τ 2I4. This

latter was the model adopted in Nobre and Singer (2007) in their analysis and implies a con-
stant coefficient of variation. The Akaike Information Criterion (AIC) and Bayesian Informa-
tion Criterion (BIC) obtained via restricted ML for the three models were respectively (AIC =
−96.8 and BIC = −92.4), (AIC = −91.8, BIC = −78.6), and (AIC = −74.9 and BIC = −72.0),
suggesting that (5)–(6) is acceptable. The reader is referred to Jiang and Rao (2003) for a detailed
analysis of generalized information criteria and to Guerin and Stroup (2000) or Gurka (2006) for a
discussion on AIC and BIC for model comparison.

In order to evaluate the robustness of the estimators, the model was refitted to the reduced data
obtained by omitting the three outliers suggested in Fig. 2C. The results are also presented in
Table 2. The major discrepancies between the estimates for the complete and reduced data occur
for the parameters β∗

jd and γ jd for ( j, d ) = (0, 2), (1, 3), (1, 4), which correspond to the treatments
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Figure 4 Studentized conditional residuals versus subject indices for LNMM. (A) Complete data.
(B) Reduced data.

Figure 5 QQ plot of studentized conditional residuals for LNMM. (A) Complete data. (B) Reduced
data.

with identified outliers. As expected, the estimated error variance (σ̂ 2
b ) is smaller for the reduced data

set.
Following the suggestions of Nobre and Singer (2007), studentized conditional residual plots are

presented in Fig. 4 for both the complete and reduced data; the two outlying observations in Fig. 4A
correspond to large decreases in the posttest index relatively to the pretest index in the second session
for the 12-th child in the conventional toothbrush group and in the fourth session for the 13-th child
in the monoblock toothbrush group. It is worth noting that fitting the model with R j = τ 2I4, as in
Nobre and Singer (2007), these two outliers are more apparent in the residual analysis; furthermore,
an extra outlier is detected in the third session for a child in the monoblock group (as in Fig. 2C).
The model that includes (6) accommodates this observation and seems to be more suitable. The QQ
plots in Fig. 5A (complete data) and 5b (omitting possible outliers) suggest mild deviations from the
normality assumption, but we do not believe that this could jeopardize the results.

We did not identify evidence against the hypothesis that γ jd = 1, j = 0, 1, d = 1, 2, 3, 4, under model
(5) and (6) (p = 0.310). The estimates of the parameters for this model are displayed in Table 3. Note
that Nobre and Singer (2007) did not verify whether γ jd = 1.

The conventional toothbrush seems more efficient than the monoblock toothbrush as suggested
in Fig. 6. p values for interaction and main effects tests are presented in Table 4. The difference in
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Figure 6 Estimated relative residual bacterial plaque index and corresponding 95% confidence inter-
vals based on the LNLMM (complete data set).

Table 4 p values for interaction and main effects tests for LNLMM, GLMM, and GEE.

Model Interaction Session effect Toothbrush effect

effect Conventional Monoblock Session 1 Session 2 Session 3 Session 4

LNLMM 0.010 0.006 0.387 0.021 <0.001 0.266 0.840
GLMM 0.011 0.004 0.432 0.013 <0.001 0.173 0.597
GEE 0.009 0.004 0.544 0.004 <0.001 0.127 0.545

the expected efficiencies of the two types of toothbrush is not the same for all sessions (p = 0.010):
for the monoblock toothbrush it is constant along the sessions (p = 0.387) but this is not so for the
conventional toothbrush (p = 0.006). The expected efficiencies are different for the monoblock and
conventional toothbrushes in sessions 1 and 2 (p = 0.021 and p < 0.001, respectively) and are similar
in sessions 3 and 4 (p = 0.266 and p = 0.840). This suggests that the monoblock toothbrush is less
efficient only in sessions 1 and 2 and is as efficient as the conventional toothbrush in sessions 3 and
4. In Nobre and Singer (2007), under the constant coefficient of variation assumption, the interaction
effects were not significant.

4 Analysis via GLMM

In this section, we consider a GLMM based on a gamma distribution. As the LNLMM, this model
is appropriate for a non-negative variable like the posttest bacterial plaque index and meets all the
requirements set forth in Section 2. A positive correlation among the repeated measures is induced by
the inclusion of random effects.

The typical gamma GLMM with a logarithmic link function for the posttest bacterial plaque indices,
yi j = (yi j1, . . . , yi j4)

�, may be specified as

yi jd |bi j ∼ Gamma(μi jd , φ), (7)

μi j = E(yi j |bi j ), log(μi j ) = Xi jβ + 14bi j, bi j ∼ N(0, σ 2
b ), (8)
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Figure 7 Studentized conditional residuals for the GLMM model versus subject indices. (A) Complete
data. (B) Reduced data.

with μi j = (μi j1, . . . , μi j4)
� and Var(yi j ) = φAμi j

, where Aμi j
= diag(μ2

i j1, μ
2
i j2, μ

2
i j3, μ

2
i j4), φ is a dis-

persion parameter and β and Xi j are defined in (5). In this context, the coefficient of variation of the
ratio of the posttest bacterial plaque index to the pretest bacterial plaque index is constant for all
treatments. Since this disagrees with our previous conclusions, we consider an alternative GLMM,
maintaining (8) and replacing (7) with

Var(yi j |bi j ) = A1/2
μi j

Wi jA
1/2
μi j

, (9)

where, by taking Wi j = R j as in (6), we include the heteroskedastic pattern identified in Fig. 3. If we
let Wi j = φI, it follows that (9) is less restrictive than (7) since it does not require yi jd |bi j to follow a
gamma distribution as pointed out by Jiang (2007).

We estimated the parameters in (8)–(9) using the restricted pseudo-likelihood method presented
in Wolfinger and O’Connell (1993) and implemented in the PROC GLIMMIX of SAS (Littell et al.,
2006). This method is based on a first-order Taylor approximation to log(yi j ) around μi j . In order to
maximize the restricted pseudo-likelihood function, a Newton-Raphson ridge optimization technique
is considered.

Estimates of β∗
jd = E(yi jd |xi jd = 1) = E[E(yi jd |bi, xi jd = 1)] as well as of the other parameters in the

GLMM are presented in Table 2. Also, there is no evidence against the hypothesis γ jd = 1 (p = 0.441)
and estimates of the parameters of model (8) and (9) with γ jd = 1 are presented in Table 3.

The studentized conditional residuals in Fig. 7 present the same pattern as the corresponding
residuals obtained for the LNLMM displayed in Fig. 4.

5 Analysis via GEE-based models

Here we analyze the pretest–posttest data via models where the marginal distribution is not completely
specified; such models depend only on a dispersion parameter and on a vector of parameters (θ) that
indexes the mean μi(θ) and the variance Vi(θ). Estimates of the parameters are obtained as solutions
to the GEE

S(β) =
K∑

i=1

∂μ�
i

∂β
�−1

i (yi − μi(β)) = 0, (10)
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where �i = φdiag(Vi)
1/2W(α)diag(Vi)

1/2 and W is a working covariance matrix that incorporates the
within subject correlation. If we set Vi(μi) = μ2

i and W = I, the solution is equivalent to a GLM with
a gamma distribution and a log-link function.

For the sake of comparison, we consider a GEE-based model for which

μi j = E(yi j ), log(μi j ) = Xi jβ, Corr(yi jd , yi jd ′ ) = α, d �= d ′, (11)

where X and β are defined in (5) and φ jd are dispersion parameters. To capture the behavior of the
coefficients of variation identified in Fig. 3, the dispersion parameter may depend on the type of
toothbrush ( j) and session (d), that is,

φ jd =
{

φ, if ( j = 0 and d = 3 or 4) or ( j = 1 and d = 1 or 2)

φ + φ1, otherwise.
(12)

This model was fitted via the R package geepack (Halekoh et al., 2006) using GEE that allows for
different covariates and even different link functions and estimating equations for the mean, scale, and
correlations as considered in Yan and Fine (2004). The estimates of β∗

jd and of the other parameters
of model (11) and (12) are presented in Table 2. Again, no evidence against the hypothesis γ jd = 1
(p = 0.481) was detected and the estimates under this restriction are presented in Table 3.

Plots of the studentized residuals are discussed in Venezuela et al. (2007, 2011) as well as Vens
and Ziegler (2011). These residuals are presented in Fig. 8 and their patterns are similar to those
in Fig. 4. These authors also show how to compute Cook’s distance and a leverage measure in this
setting. These quantities are also presented in Fig. 8. The outlying observations are the same identified
previously. Although, these observations do not present high leverage (Fig. 8B), the corresponding
Cook’s distances are large for these outliers. Moreover, excluding them, no other observation is
identified as an outlier.

6 Discussion

We considered three families of linear models that are sufficiently flexible to accommodate different
characteristics of longitudinal data. In particular, they may account for nonconstant coefficients of
variation, a feature that may justify differences generated by underlying log-normal and gamma
distributions, as discussed in Wiens (1999).

Differences between estimates obtained under marginal and conditional models may occur due to
noncomparable parameters, as indicated by Lee and Nelder (2004) and Fitzmaurice et al. (2008). In
our example, the main goal was to evaluate the efficiency of two types of toothbrushes along 45 days.
This may not be carried out by a direct comparison of the estimates of β jd in models (5) and (6), (8) and
(9), and (11) and (12), because such parameters have different interpretations. Assuming the correct
specification of all models, the estimates of the original parameters β jd were smaller for LNLMM than
for GLMM- or GEE-based models. To bypass this problem, we compared the population averaged
effects that correspond to the relative residual bacterial plaque indices, β∗

jd = E(y jd |xjd = 1). For
both LNLMM and GLMM, computation of this marginal expectation requires integration of the
random effects in E[Yi|bi], while GEE-based models allow a direct estimation, an advantage reported
by Serroyen et al. (2009), especially for nonlinear mixed models.

In general, the estimates of the fixed parameters and their corresponding standard errors obtained
under LNLMM-, GLMM-, or GEE-based models are very close to each other, both with or without
the exclusion of the outliers. The estimates of the variance components are also similar for LNLMM
and GLMM. The estimate of τ 2

1 is the most affected by the outliers because it is related to the
extra-variance for the treatments where the outliers occurred. For the marginal model (GEE-based),
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Figure 8 Residual analysis for the GEE-based model with complete data. (A) Studentized conditional
residuals. (B) Cook’s distance. (C) Leverage measure for each observation. (D) Leverage measure for
each subject.

the estimated correlation of repeated measures is smaller for the data without outliers and so is its
standard error. The conclusions of all tests are the same for the three approaches, although the p values
are in general smaller for GEE-based models (see Table 4).

For random-effects models, like LNLMM and GLMM, another important issue is the robustness
of estimation of fixed effects with respect to misspecification of the distribution of the random effects
as discussed in Fitzmaurice et al. (2008). Verbeke and Lesaffre (1997) showed that ML estimators
of fixed effects obtained for a linear mixed model under Gaussian distributed random effects are
consistent even when the random effects are non-Gaussian. Also, restricted ML estimators of the
variance components are consistent; this is important because they are used to obtain estimates of
both β∗

jd and of its variance. Moreover, Verbeke and Lesaffre (1996) also comment that it is not possible

to assess the distribution of the random effects by analyzing the predicted b̂i, which makes estimation
robustness even more important. For GLMM, Litière et al. (2008) conclude that misspecification of
the distribution of random effects may produce biased ML estimators of fixed effects but that this bias
is small when the variability of random effects is small; however, as the estimators of this variability are
severely biased, it is not possible to evaluate whether the biases of fixed effect estimators are negligible
or not. An additional advantage of GEE-based models is that GEE provide consistent estimators
of fixed effects if the corresponding model is correctly specified regardless of the correlation and
scale structures (Liang and Zeger, 1986). Also, when the scale parameter depends on covariates, the
corresponding estimators are consistent if the fixed effects and scale structures are correctly specified
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Table 5 Diagnostic tools and references.

Model Diagnostic tools Reference

LNLMM Conditional and marginal residuals and Nobre and Singer (2007)
empirical best linear unbiased estimator (EBLUP)

Generalized leverage matrix Nobre and Singer (2011)
Cook’s distance Tan et al. (2001)

GLMM Goodness-of-fit tests Vonesh et al. (1996)
Cook’s distance Xiang et al. (2002)
Influence Zhu and Lee (2003)
Goodness-of-fit for random effect Waagepetersen (2006)

GEE Standardized residuals, projection matrices, Cook’s distance Venezuela et al. (2007)
Local influence Venezuela et al. (2011)
Standardized residuals, projection matrices, Cook’s distance Vens and Ziegler (2011)

(Yan and Fine, 2004). Therefore, estimates of the fixed effects are more robust under GEE-based
models and LNLMM than under GLMM if the covariance structure is misspecified.

Diagnostic tools are well developed for LNMM (see Nobre and Singer [2007], e.g.). For GLMM,
Vonesh et al. (1996) propose a goodness-of-fit statistic to evaluate the adequacy of an assumed mean
and covariance structure and an approximate pseudo-likelihood test for the adequacy of the covariance
structure; Xiang et al. (2002) use Cook’s distance for clustered data to identify influential clusters and
Zhu and Lee (2003) propose a different method to measure influence for GLMM. Also, Waagepetersen
(2006) assesses the goodness-of-fit of the random effects distribution using simulation. Nevertheless,
more research is needed for residual analysis for GLMM as already indicated in Dean and Nielsen
(2007). Diagnostic tools for the GEE are presented, for example, in Venezuela et al. (2007), Venezuela
et al. (2011), and Vens and Ziegler (2011) to detect influential and outlying observations using the
projection (hat) matrix, Cook’s distance, standardized residuals, and half-normal plots of absolute
residuals with simulated envelopes, the latter only for constant scale parameter as proposed in Park
and Shin (1998). Some diagnostic tools and references are presented in Table 5.

Other estimation issues involving the GEE method are related to missing data problems and the
estimation of the correlation matrix. For example, Lu et al. (2009) show that fixed-effect estimators of
LMM are biased under departures from normality in the presence of missing data. Also, based on sim-
ulation, they conclude that other (weighted and augmented weighted) robust estimators based on GEE
provide valid inference for skewed non-Gaussian data when missing data follows a missing at random
pattern. Sun et al. (2009) compare estimation methods for the correlation in the GEE framework and
conclude that the degree of imbalance and variability in the temporal spacing of measurements, the
value of the correlation, and the type of outcome affect the choice of the best method.

A practical issue to be addressed is the availability of computational software to fit the families of
models under consideration. Although we used R only to fit GEE-based models, there are libraries to fit
GLMM (package MASS with the command glmmPQL using penalized quasi-likelihood) and LNMM
(lme4 and nlme). Table 6 presents procedures of SAS and R packages to estimate the studied models.

If on the one hand estimates obtained under LNMM are robust to misspecification of random
effects distributions, then on the other hand GEE-based models may be preferable for computational
reasons, when the main goal is only to estimate and compare marginal expected responses. LNMM
may be preferable to estimate subject-specific expected responses since a variety of diagnostic analyses
are available for this family. To help users with respect to the choice of appropriate families of models,
estimation procedures, software, and diagnostic tools, we summarize different characteristics for the
three approaches in Table 5. Other estimation methods are available, for example, in Fitzmaurice et al.
(2008).
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Table 6 Available statistical packages using SAS and R and estimation methods used in this study.

Model SAS PROC R packages Estimation method

LNLMM MIXED lme4 and nlme REML (Littell et al., 2006)

GLMM GLIMMIX MASS (glmmPQL) Pseudo likelihood (Wolfinger and O’Connell, 1993)

GEE GENMOD geepack GEE (Halekoh et al., 2006)

Finally, we mention that because of the relatively small (but not uncommon in studies of this type)
sample size (32 children with four observations/child), the conclusions based on asymptotic results
should be viewed with caution. A good practice in such cases is to fit different models to the data,
use different diagnostic tools to detect possible outliers, and verify whether the results are coherent.
In our case, the three models generated similar results even when the possible outliers were included,
suggesting that the conclusion seems pertinent.
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Brazil. The authors also acknowledge the constructive comments and suggestions of the anonymous referees and
the associate editor.

Conflict of interest
The authors have declared no conflict of interest.

References

Aoki, R., Achcar, J. A., Bolfarine, H. and Singer, J. M. (2003). Bayesian analysis of null intercept errors-in-
variables regression for pretest/posttest data. Journal of Applied Statistics 30, 3–12.

Dean, C. B. and Nielsen, J. D. (2007). Generalized linear mixed models: a review and some extensions. Lifetime
Data Analysis 13, 497–512.

Demidenko, E. (2004). Mixed Models Theory and Applications. Wiley, New York.
Diggle, P., Liang, K. and Zeger, S. (2002). Analysis of Longitudinal Data. Oxford University Press, Oxford.
Fitzmaurice, G. M., Davidian, M., Verbeke, G. and Molenberghs, G. (2008). Longitudinal Data Analysis: A

Handbook of Modern Statistical Methods. Chapman & Hall/CRC, Boca Raton, FL.
Fitzmaurice, G. M., Laird, N. and Ware, J. (2004). Applied Longitudinal Analysis. Wiley, New York.
Guerin, L. and Stroup, W. W. (2000). A simulatio’n study to evaluate PROC MIXED analysis of repeated measures

data. Proceedings of the 12th Annual Conference on Applied Statistics in Agriculture, 170–203. Manhattan:
Kansas State University.

Gurka, M. J. (2006). Selecting the best linear mixed model under REML. The American Statistician 60, 19–26.
Halekoh, U., Hojsgaard, S. and Yan, J. (2006). The R Package geepack for generalized estimating equations.

Journal of Statistical Software 15, 1–11.
Hardin, J. W. and Hilbe, J. M. (2002). Generalized Estimating Equations. Chapman and Hall/CRC, Boca Raton,

FL.
Jiang, J. (2007). Linear and Generalized Linear Mixed Models and Their Applications. Springer, New York.
Jiang, J. and Rao, J. S. (2003). Consistent procedures for mixed linear model selection. Sankhyā 65, 23–42.
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