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Abstract. In this work we prove that the global attractors for the flow of the

equation

∂m(r, t)

∂t
= −m(r, t) + g(βJ ∗m(r, t) + βh), h, β ≥ 0,

are continuous with respect to the parameters h and β if one assumes a property

implying normal hyperbolicity for its (families of) equilibria.

1. Introduction. We consider here the non local evolution equation
∂m(r, t)
∂t

= −m(r, t) + g (βJ ∗m(r, t) + βh) , (1)

where m(r, t) is a real function on R × R+, h, β are non negative constants and
J ∈ C1(R) is a non negative even function supported in the interval [−1, 1] and
integral equal to 1. The ∗ above denotes convolution product, namely:

(J ∗m)(x) =
∫

R
J(x− y)m(y)dy.

There are several works in the literature dedicated to the analysis of the particular
case of (1) where g ≡ tanh. (See, for example, [2], [15], [16], [17], [18] and [19]).

In particular (when g ≡ tanh) the existence of a global compact attractor was
proved in [2], for the case of bounded domain and h = 0 and in [21], for an un-
bounded domain.

If g is globally Lipschitz, the Cauchy problem for (1) is well posed, for instance,
in the space of continuous bounded functions, Cb(R), with the sup norm, since the
function given by the right hand side of (1) is uniformly Lipschitz in this space, (see
[5] and [7]).

It is an easy consequence of the uniquennes theorem that the subspace P2τ of
2τ periodic functions is invariant. We considerer here the equation (1) restricted
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to P2τ , τ > 1. As shown in a previous work ([22]), this leads naturally to the
consideration of the flow generated by (1) in L2(S1) where S1 is the unit sphere
and ∗ the convolution product in it. We now describe the assumptions and results
of [22]. For the sake of clarity and future reference, it is convenient to start with a
list of the hypotheses on g that were used there.
(H1) The function g : R → R, is globally Lipschitz, that is, there exists a positive
constant k1 such that

|g(x)− g(y)| ≤ k1|x− y|, ∀x, y ∈ R.

In particular, there exist non negative constants k2 and k3 such that

|g(x)| ≤ k2|x|+ k3, ∀x ∈ R. (2)

(H2) The function g ∈ C1(R) and g′ is locally Lipschitz.
(H3) There exist non negative constants k4 and k5, such that

|g′(x)| ≤ k4|x|+ k5, ∀x ∈ R.

(Observe that if (H1) and (H2) hold then (H3) also holds with k4 = 0 and k5 = k1.
(H4) The function g has positive derivative. In particular it is strictly increasing.
(H5) There exists a > 0 such that, for all x ∈ R, |g(x)| < a. In particular, when
a <∞ (2) holds with k2 = 0 and k3 = a.
(H6) The function g−1 is continuous in (−a, a) and the function

f(m) = −1
2
m2 − hm− β−1i(m), m ∈ [−a, a],

where i is defined by

i(m) = −
∫ m

0

g−1(s)ds, m ∈ [−a, a],

has a global minimum m in (−a, a).
Under hypothesis (H1), we proved in [22] that the problem (1) is well posed in
L2(S1), and the flow thus generated is of class C1 if one also assumes ( H2). As-
suming (H1) and (H3), we proved the existence of a global compact attractor in
the sense of [10]. We also proved a comparison result under the hypotheses (H1)
and (H4). Assuming (H1), (H3), (H4) and (H5), we showed an L∞ estimate for the
attractors. Finally, assuming (H6), we exhibited a continuous Lyapunov functional
for the flow of (1) and used it to prove that, under hypotheses (H1), (H3), (H4),
(H5) and (H6), the flow is gradient in the sense of [10].

This paper is organised as follows. In Section 2, we prove the upper semiconti-
nuity property of the attractors with respect to the parameter λ = (h, β) under the
hypotheses (H1) and (H3) above.

The much more delicate property of lower semicontinuity is proved in Section 3.
To the extent of our knowledge, the proofs of this property available in the literature
assume that the equilibrium points are all hyperbolic and therefore isolated (see for
example [1], [6], [12], [20] and [23]). However, this property cannot hold true in our
case, due to the symmetries present in the equation. In fact, it is a consequence of
these symmetries that the non constant equilibria arise in families and, therefore,
cannot be hyperbolic. To overcome this difficulty we have had to replace the hy-
pothesis of hyperbolicity by normal hyperbolicity of curves of equilibria. We then
used results of [4] on the permanence of normally hyperbolic invariant manifolds
and proved (in the appendix) continuity properties of the local unstable manifolds



CONTINUITY OF GLOBAL ATTRACTORS FOR FOR NON LOCAL 3

of the (non necessarily isolated) equilibria with respect to parameter λ = (h, β),
together with results of [11] on the limiting behaviour of trajectories.

In Section 4 we illustrated the results in the important particular case g ≡ tanh.

2. Upper semicontinuity of the attractor with respect to the parameter
λ = (h, β). As proved in [22], under hypotheses, (H1) and (H2) the map

F (u, λ) = −u+ g(β(J ∗ u) + βh) (3)

is continuously Frechet differentiable in L2(S1) (with ∗ being now the convolution
product in L2(S1)) and, therefore, the problem

∂u

∂t
= F (u, λ) = −u+ g(β(J ∗ u) + βh) (P)λ

generates a C1 flow in L2(S1) which depends on the parameter λ. From now on we
denote this flow by Tλ(t) or T (λ, t). It is also proved there that (in a certain range
of these parameters) Tλ(t) admits a global compact attractor. A natural question
to examine is the dependence of this attractor on the parameter λ. We denote by
Aλ the global attractor whose existence was proved in [22].

Let us recall that a family of subsets {Aλ}, is upper semicontinuous at λ0 if

dist(Aλ, Aλ0) −→ 0, as λ→ λ0,

where

dist(Aλ, Aλ0) = sup
x∈Aλ

dist(x,Aλ0) = sup
x∈Aλ

inf
y∈Aλ0

‖x− y‖L2 . (4)

Analogously, {Aλ} is lower semicontinuous at λ0 if

dist(Aλ0 , Aλ) −→ 0, as λ→ λ0.

In this section, we prove that the family of attractors is upper semicontinuous
with respect to parameter λ at λ0 ∈ R, where R is the semi-bounded strip 0 ≤ h ≤
∞, 0 ≤ β ≤ β∗, with β∗ < 1

k2
and k2 is the constant given in (2). We denote by

‖λ‖ the norm of the sum in R2
+.

Lemma 2.1. Under the assumptions (H1) and (H3), the flow Tλ(t) is continuous
with respect to λ, uniformly for u in bounded sets and t ∈ [0, b] with b <∞.

Proof As shown in [22] the solutions of (P)λ satisfy the ‘variations of constants
formula’,

Tλ(t)u = e−tu+
∫ t

0

e−(t−s)g(β(J ∗ Tλ(s)u+ βh)ds.

Let λ0 ∈ R, b > 0 and C a bounded set in L2(S1). Given ε > 0, we want to find
δ > 0 such that ‖λ− λ0‖ < δ implies

‖Tλ(t)u− Tλ0(t)u‖L2 < ε,
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for t ∈ [0, b] and u in C. Since g is globally Lipschitz, for any t > 0 and u ∈ C, it
follows that

‖Tλ(t)u− Tλ0(t)u‖L2 ≤
∫ t

0

e−(t−s)‖g(β(J ∗ Tλ(s)u+ βh)

− g(β0(J ∗ Tλ0(s)u+ β0h0)‖L2ds

≤
∫ t

0

e−(t−s)k1[‖βJ ∗ (Tλ(s)u)− β0(J ∗ Tλ0(s)u)‖L2

+ ‖βh− β0h0‖L2 ]ds.

Subtracting and summing the term β0J ∗ Tλ(s)u and using Young’s inequality, we
obtain

‖Tλ(t)u− Tλ0(t)u‖L2 ≤
∫ t

0

e−(t−s)k1‖β − β0‖‖J‖L1‖Tλ(s)u‖L2ds

+
∫ t

0

e−(t−s)k1β0‖J‖L1‖Tλ(s)u− Tλ0(s)u‖L2ds

+
∫ t

0

e−(t−s)k1‖βh− β0h0‖L2ds.

From Theorem 3.3 of [22], it follows that, for all λ ∈ R and t ∈ [a, b], ‖Tλ(t)u‖L2 is
bounded by a positive constant L depending only of C. Thus, since ‖J‖L1 = 1, we
obtain

‖Tλ(t)u− Tλ0(t)u‖L2 ≤ {Lk1‖β − β0‖+ k1‖βh− β0h0‖L2}

+
∫ t

0

e−(t−s)k1β0‖Tλ(s)u− Tλ0(s)u‖L2ds

≤ C(λ) +
∫ t

0

k1β0‖Tλ(s)u− Tλ0(s)u‖L2ds,

where C(λ) = {Lk1|β − β0|+ k1‖βh− β0h0‖}. Therefore, by Gronwall’s Lemma, it
follows that

‖Tλ(t)u− Tλ0(t)u‖L2 ≤ C(λ)ek1β0t.

From this, the results follows immediately.

Theorem 2.2. Assume the hypotheses (H1) and (H3) hold. Then the family of
attractors Aλ is upper semicontinuous with respect to λ at λ0 ∈ R.

Proof From hypotheses (H1) and (H3), it follows that, for every λ ∈ R, the
attractor Aλ, given by Theorem 3.3 of [22], is in the ball B

(
0, 2

√
2τ(k2βh+k3)

1−k2β

)
in

L2(S1). Therefore ⋃
λ∈R

Aλ ⊂ B

(
0,

2
√

2τ(k2β
∗h∗ + k3)

1− k2β∗

)
.

Since Aλ0 is a global attractor and B = B
(
0, 2

√
2τ(k2β∗h∗+k3)

1−k2β∗

)
is a bounded set

then, for every ε > 0, there exists t∗ > 0 such that Tλ0(t)B ⊂ A
ε
2
λ0

, for all t ≥ t∗,

where A
ε
2
λ0

is the ε
2 -neighbourhood of Aλ0 .
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From Lemma 2.1, it follows that Tλ(t) is continuous at λ0, uniformly for u in
a bounded set and t in compacts. Thus, there exists δ > 0 such that for every
u ∈ B

(
0, 2

√
2τ(k2β∗h∗+k3)

1−k2β∗

)
,

‖λ− λ0‖ < δ ⇒ ‖Tλ(t∗)u− Tλ0(t
∗)u‖L2 <

ε

2
.

We will show that if ‖λ− λ0‖ < δ then Aλ ⊂ Aε
λ0

. In fact, let u ∈ Aλ. Since Aλ is

invariant, v = Tλ(−t∗)u ∈ Aλ ⊂ B
(
0, 2

√
2τ(k2β∗h∗+k3)

1−k2β∗

)
. Therefore, we have

Tλ0(t
∗)v ∈ A

ε
2
λ0
, (5)

and
‖Tλ(t∗)v − Tλ0(t

∗)v‖L2 <
ε

2
. (6)

From (5) and (6), it follows that

u = Tλ(t∗)Tλ(−t∗)u = Tλ(t∗)v ∈ Aε
λ0

and the upper semicontinuity of Aλ follows .

3. Lower semicontinuity of the attractors. As mentioned in the introduction,
a difficulty we encounter in the proof of lower semicontinuity is that, due to the
symmetries present in our model, the non constant equilibria are not isolated. In
fact, as we will see shortly, the equivariance property of the map F defined in
(3) implies that the nonconstant equilibria appear in curves. (see Lemma 3.1) and,
therefore, cannot be hyperbolic preventing the use of tools like the Implicit Function
Theorem to obtain their continuity with respect to parameters.

In order to obtain the lower semicontinuity we will need the following additional
hypotheses:
(H7) For each λ0 ∈ R, the set Eλ0 , of the equilibria of Tλ0(t), is such that Eλ0 =
E1 ∪ E2, where
(a) The equilibria in E1 are (constant) hyperbolic equilibria;
(b) The equilibria in E2 are non constant and, for each u0 ∈ E2, zero is simple
eigenvalue of the derivative with respect to u DFu(u0, λ0) : L2(S1) → L2(S1),
given by

DFu(u0, λ0)v = −v + g′(β0J ∗ u0 + β0h0)β0(J ∗ v);
(H8) The function g ∈ C2(R). (Observe that (H8) implies (H2)).

We start with some observations on the spectrum of the linearization around
equilibria.

Remark 1. A simple computation shows that, if u0 is a non constant equilibria of
Tλ0(t) then zero is always an eigenvalue of the operator

DFu(u0, λ0)v = −v + g′(β0J ∗ u0 + β0h0)β0(J ∗ v)
with eigenfunction u′0. Therefore, the hypothesis (H7)-b says that we are in the
‘simplest’ possible situation for the linearization around non constant equilibria.

Remark 2. Let u0 ∈ E2. It is easy to show that DFu(u0, λ0) is a self-adjoint
operator with respect to the inner product

(u, v) =
∫

S1
u(w)v(w)dν(w),

where dν(w) = dw
g′(β(J∗u0)(w)+βh) is equivalent to the Lebesgue measure.
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Since
v → g′(β0J ∗ u0 + β0h0)β0(J ∗ v)

is a compact operator in L2(S1), it follows from (H7) that

σ(DFu(u0, λ0))\{0}

contains only real eigenvalues of finite multiplicity with −1 as the unique possible
accumulation point.

We now prove a result on the structure of the sets of non constant equilibria.

Lemma 3.1. Suppose that, for some λ0 ∈ R, (H1), (H7) and (H8) hold. Given
u ∈ E2 and α ∈ S1, define γ(α;u) ∈ L2(S1) by

γ(α;u)(w) = u(αw), w ∈ S1.

Then Γ = γ(S1;u) is a closed, simple C2 curve of equilibria of Tλ0(t) which is
isolated in the set of equilibria, that is, no point of Γ is an accumulation point of
Eλ0 \ Γ.

Proof Let u ∈ E2, α,w ∈ S1. Then, since (J ∗ u)(αw) = (J ∗ γ(α;u))(w), we
obtain

γ(α;u)(w)− g(β(J ∗ γ(α;u))(w) + βh) = u(αw)− g(β(J ∗ u)(αw) + βh) = 0,

and, therefore, γ(α;u) is an equilibrium. It is clear that Γ is a closed curve.
Now, let u0 ∈ Γ. From hypothesis (H7), it follows that zero is a simple eigenvalue

of the operator DFu(u0, λ0). Since DFu(u0, λ0) is a self-adjoint Fredholm operator
of index zero, we have the decomposition

L2(S1) = span{v} ⊕ Y.

where v ∈ Ker(DFu(u0, λ0)) and Y is the range of R(DFu(u0, λ0)).
Define F̃ : R× Y → L2(S1) by

F̃ (t, y) = F (u0 + tv + y, λ0).

Note that F̃ (0, 0) = F (u0, λ0) = 0. From hypotheses (H1) and (H8) it follows
that F̃ (t, ·) is of class C2. Now ∂

∂y F̃ (0, 0) = DFu(u0, λ0)π, where π : L2(S1) → Y

is the orthogonal projection (with respect to the new inner product) in Y . As
DFu(u0, λ0)|Y is injective and Y = R(DFu(u0, λ0)) it follows, from the Open Map-
ping Theorem that DFu(u0, λ0)|Y is isomorphism onto Y . Therefore ∂

∂y F̃ (0, 0) :
Y → Y is an isomorphism. Hence, by the Implicit Function Theorem, there
exist open sets (−ε0, ε0) ⊂ R, U ⊂ Y with 0 ∈ U and a unique C2 function
ξ : (−ε0, ε0) → U such that F̃ (t, y) = 0 if only if y = ξ(t). As F̃ (t, y) = 0 whenever
u0 + tv + y ∈ Γ, it follows that in a neighbourhood of u0, the curve Γ is given by
u0 + tv + ξ(t) with t ∈ (−ε0, ε0). In particular, Γ is C2 and in a neighbourhood of
u0, there are no zeroes of F̃ except the zeroes on Γ. Thus Γ is isolated.

Finally, suppose that Γ is not simple curve and let u1 ∈ Γ a point of self inter-
section. Then there exist α1, α2 ∈ S1 such that u1 = γ(α1;u) and u1 = γ(α2;u)
and, therefore d

dαγ(α1;u) and d
dαγ(α2;u) are linearly independent eigenvectors as-

sociated to the eigenvalue zero; contradicting (H7).

Corollary 1. Let M be a closed connected curve of equilibria in E2 and u0 ∈ M .
Then M = Γ, where Γ = γ(S1, u0).
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Proof Suppose that Γ 6⊂M . Then there exist equilibria in M \ Γ accumulating
at u0 contradicting Lemma 3.1. Therefore Γ ⊆M . Since Γ is a simple closed curve,
it follows that M = Γ.

In order to prove our main result, we need some preliminary results , which we
present in the next three subsections.

3.1. Lower semicontinuity of the equilibria. The lower semicontinuity of the
hyperbolic equilibria is usually obtained via the Implicit Function Theorem. How-
ever, this approach fails here since the equilibria may appear in families as we have
shown in Lemma 3.1. To overcome this difficulty, we need the concept of normal
hyperbolicity, (see [4]). Recall that, if T (t) : X → X is a semigroup a set M ⊂ X
is invariant under T (t) if T (t)M = M , for any t > 0.

Definition 3.2. Suppose that T (t) is a C1 semigroup in a Banach space X and
M ⊂ X is an invariant manifold for T (t). We say that M is normally hyperbolic
under T (t) if
(i) for each m ∈M there is a decomposition

X = Xc
m ⊕Xu

m ⊕Xs
m

by closed subspaces with Xc
m being the tangent space to M at m.

(ii) for each m ∈M and t ≥ 0, if m1 = T (t)(m)

DT (t)(m)|Xα
m

: Xα
m → Xα

m1
, α = c, u, s

and DT (t)(m)|Xu
m

is an isomorphism from Xu
m onto Xu

m1
.

(iii) there is t0 ≥ 0 and µ < 1 such that for all t ≥ t0

µ inf
{
‖DT (t)(m)xu‖ : xu ∈ Xu

m, ‖xu‖ = 1} > max{1, ‖DT (t)(m)|Xc
m
‖
}
, (7)

µmin {1, inf{‖DT (t)(m)xc‖ : xc ∈ Xc
m, ‖xc‖ = 1}} > ‖DT (t)(m)|Xs

m
‖. (8)

The condition (7) suggests that near m ∈ M , T (t) is expansive in the direction
of Xu

m and at rate greater than on M , while (8) suggests that T (t) is contractive in
the direction of Xs

m, and at a rate greater than that on M .
The following result has been proved in [4].

Theorem 3.3. (Normal Hyperbolicity) Suppose that T (t) is a C1 semigroup
on a Banach space X and M is a C2 compact connected invariant manifold which
is normally hyperbolic under T (t), ( that is (i) and (ii) hold and there exists 0 ≤
t0 <∞ such that (iii) holds for all t ≥ t0). Let T̃ (t) be a C1 semigroup on X and
t1 > t0. Consider N(ε), the ε-neighbourhood of M , given by

N(ε) = {m+ xu + xs, xu ∈ Xu
m, x

s ∈ Xs
m, ‖xu‖, ‖xs‖ < ε}.

Then, there exists ε∗ > 0 such that for each ε < ε∗, there exists σ > 0 such that if

sup
u∈N(ε)

{
‖T̃ (t1)u− T (t1)u‖+ ‖DT̃ (t1)(u)−DT (t1)(u)‖

}
< σ

and
sup

u∈N(ε)

‖T̃ (t)u− T (t)u‖ < σ, for 0 ≤ t ≤ t1,
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there is an unique compact connected invariant manifold of class C1, M̃ , in N(ε).
Furthermore, M̃ is normally hyperbolic under T̃ (t) and, for each t ≥ 0, T̃ (t) is a
C1-diffeomorphism from M̃ to M̃ .

Proposition 1. Assume that the hypotheses (H1), (H2) and (H7) hold. Then, for
each λ ∈ R, any curve of equilibria of Tλ(t) is a normally hyperbolic manifold under
Tλ(t).

Proof Let M be a curve of equilibria of Tλ(t) and m ∈M . From (H7) it follows
that

Ker(DFu(m,λ)) = span{m′}.
Let Y = R(DFu(m,λ)); the range of DFu(m,λ). Since DFu(m,λ) is self-adjoint
and Fredholm of index zero, it follows from (H7) that

σ(DFu(u0, λ)|Y ) = σu ∪ σs,

where σu, σs correspond to the positive and negative eigenvalues respectively.
From (H1) and (H2), it follows that Tλ(t) is a C1 semigroup. Consider the linear

autonomous equation
v̇ = (DFu(m,λ)|Y )v. (9)

ThenDTλ(t)v0 is the solution of (9) with initial condition v0, that isDTλ(t)(m)v0 =
e(DFu(m,λ))tv0. In particular DTλ(t)(m)|Y ≡ D(Tλ(t)|Y )(m) = e(DFu(m,λ)|Y )t.

Let Pu and Ps be the spectral projections corresponding to σu and σs. The
subspacesXu

m = PuY , Xs
m = PsY are then invariant underDTλ(t) and the following

estimates hold (see [7], p. 73, 81 or [13], p. 37).

‖DTλ(t)|Y v‖ ≤ Ne−νt‖v‖, for v ∈ Xs
m and t ≥ 0, (10)

‖DTλ(t)|Y v‖ ≤ Neνt‖v‖, for v ∈ Xu
m and t ≤ 0, (11)

for some positive constant ν and some constant N > 1.
Its clear that that DTλ(t) ≡ 0 when restricted to Xc

m = span{m′}. Therefore,
we have the decomposition

L2(S1) = Xc
m ⊕Xu

m ⊕Xs
m.

Since DFu(m,λ)|Y is an isomorphism

DFu(m,λ)|Xα
m

: Xα
m → Xα

m, α = u, s,

is an isomorphism. Consequently, the linear flow

DTλ(t)(m)|Xu
m

: Xu
m → Xu

m

is also an isomorphism.
Finally, the estimates (7) and (8) follow from estimates (10) and (11) above.

Proposition 2. Suppose that the hypotheses (H1)-(H3) hold. Let DTλ(t)(u) be the
linear flow generated by the equation

∂v

∂t
= −v + g′(βJ ∗ u+ βh)β(J ∗ v).

Then, for a fixed λ0 ∈ R, we have

‖Tλ(t)u− Tλ0(t)u‖L2(S1) + ‖DTλ(t)(u)−DTλ0(t)(u)‖L(L2(S1), L2(S1)) → 0, λ→ λ0,

uniformly for u in bounded sets of L2(S1) and t ∈ [0, b], b <∞.
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Proof From Lemma 2.1 it follows that

‖Tλ(t)u− Tλ0(t)u‖L2(S1) → 0, λ→ λ0,

for u in bounded sets of L2(S1) and t ∈ [0, b].
By the variation of constants formula, we have

DTλ(t)(u)v = e−tv +
∫ t

0

e−(t−s)g′(βJ ∗ u+ βh)(βJ ∗ v)ds.

Thus

‖DTλ(t)(u)v −DTλ0(t)(u)v‖L2 ≤
∫ t

0

e−(t−s)
∥∥[g′(βJ ∗ u+ βh)β

− g′(β0J ∗ u+ β0h0)β0]J ∗ v
∥∥

L2ds

≤
∫ t

0

e−(t−s)
∥∥[g′(βJ ∗ u+ βh)β

− g′(β0J ∗ u+ β0h0)β]J ∗ v
∥∥

L2ds

+
∫ t

0

e−(t−s)‖g′(β0J ∗ u+ β0h0)(J ∗ v)(β − β0)‖L2ds.

Given η > 0 there exists δ > 0 such that ‖λ − λ0‖ < δ implies that (βJ ∗ u + βh)
belongs to a ball centred at (β0J ∗ u+ β0h0) and radius η in L∞(S1). In fact,

|(J ∗ u)(w)| ≤
∫

S1
|J(wz−1)||u(z)|dz

≤
∫

S1
‖J‖∞|u(z)|dz

≤
√

2τ‖J‖∞‖u‖L2 , (12)

where we have used Hölder’s inequality in the last estimate. Therefore

|β0(J ∗ u)(w) + β0h0 − β(J ∗ u)(w)− βh| ≤ |β − β0||(J ∗ u)(w)|+ |β0h0 − βh|
≤

√
2τ
(
‖J‖∞‖u‖L2 |β − β0|

+ |β0h0 − βh|
)
→ 0, λ→ λ0.

Thus, from (H2), there exists a positive constant L, which depends only on u, such
that

|g′(β(J ∗u)(w)+βh)−g′(β0(J ∗u)(w)+β0h0)| ≤ L(|β−β0||(J ∗u)(w)|+|βh−β0h0|).
Then∥∥ [g′(βJ ∗ u+ βh)β − g′(β0J ∗ u+ β0h0)β](J ∗ v)

∥∥2

L2

=
∫

S1
|g′(β(J ∗ u)(w) + βh)− g′(β0(J ∗ u)(w) + β0h0)|2β2|(J ∗ v)(w)|2dw

≤
∫

S1
L2(|β − β0||(J ∗ u)(w)|+ |βh− β0h0|)2β2|(J ∗ v)(w)|2dw.

Using (12), we obtain

‖[g′(βJ ∗ u+ βh)β − g′(β0J ∗ u+ β0h0)β](J ∗ v)‖ ≤ 2τL
(
‖u‖L2

√
2τ‖J‖∞|β − β0|

+ |βh− β0h0|
)
β‖J‖∞‖v‖L2 .
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Therefore

sup
‖v‖L2=1

∫ t

0
e−(t−s)‖[g′(βJ ∗ u+ βh)β − g′(β0J ∗ u+ β0h0)β](J ∗ v)‖L2ds

≤ sup
‖v‖L2=1

{
2τL

(
‖u‖L2

√
2τ‖J‖∞|β − β0|

+ |βh− β0h0|
)
β‖J‖∞‖v‖L2

∫ t

0

e−(t−s)ds
}

≤ sup
‖v‖L2=1

{
2τL

(
‖u‖L2

√
2τ‖J‖∞|β − β0|+ |βh− β0h0|

)
β‖J‖∞‖v‖L2

}
= 2τL

(
‖u‖L2

√
2τ‖J‖∞|β − β0|+ |βh− β0h0|

)
β‖J‖∞.

Now

‖g′(β0J∗u+β0h0)(J∗v)(β−β0)‖2L2 =
∫

S1
|g′(β0(J∗u)(w)+β0h0)(J∗v)(w)(β−β0)|2dw.

But, using (H3) and (12), we have

|g′(β0(J ∗ u)(w) + β0h0)(J ∗ v)(w)| ≤
(
k4β0

√
2τ‖J‖∞‖u‖L2

+ k4β0h0 + k5

)√
2τ‖J‖∞‖v‖L2 .

Then

‖ g′(β0J ∗ u+ β0h0)(J ∗ v)(β − β0)‖2L2

≤
∫

S1

(
k4β0

√
2τ‖J‖∞‖u‖L2 + k4β0h0 + k5

)2

2τ‖J‖2∞‖v‖2L2 |β − β0|2dw.

Thus

‖ g′(β0J ∗ u+ β0h0)(J ∗ v)(β − β0)‖L2

≤
(
k4β0

√
2τ‖J‖∞‖u‖L2 + k4β0h0 + k5

)
2τ‖J‖∞‖v‖L2 |β − β0|.

Hence

sup
‖v‖L2=1

∫ t

0
e−(t−s)‖g′(β0J ∗ u+ β0h0)(J ∗ v)(β − β0)‖L2ds

≤ sup
‖v‖L2=1

{(
k4β0

√
2τ‖J‖∞‖u‖L2

+ k4β0h0 + k5

)
2τ‖J‖∞‖v‖L2 |β − β0|

∫ t

0

e−(t−s)ds
}

≤ sup
‖v‖L2=1

{(
k4β0

√
2τ‖J‖∞‖u‖L2 + k4β0h0 + k5

)
2τ‖J‖∞‖v‖L2 |β − β0|

}
=

(
k4β0

√
2τ‖J‖∞‖u‖L2 + k4β0h0 + k5

)
2τ‖J‖∞|β − β0|.

Therefore
‖DTλ(t)(u)−DTλ0(t)(u)‖L(L2(S1), L2(S1)) = sup‖v‖=1 ‖DTλ(t)(u)v −DTλ0(t)(u)v‖L2(S1)

≤ 2τL
(
‖u‖L2

√
2τ‖J‖∞|β − β0|+ |βh− β0h0|

)
β‖J‖∞

+
(
k4β0

√
2τ‖J‖∞‖u‖L2 + k4β0h0 + k5

)
2τ‖J‖∞|β − β0|

= C(λ),
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with C(λ) → 0, as λ→ 0. This completes the proof.

Theorem 3.4. Suppose that the hypotheses (H1)-(H2), (H5)-(H6), with a < ∞,
and (H7)-(H8) hold. Then the set Eλ of the equilibria of Tλ(t) is lower semi-
continuous with respect to λ at λ0.

Proof The continuity of the constant equilibria follows from the Implicit Func-
tion Theorem and the hypothesis of hyperbolicity.

Suppose now that m is a non constant equilibrium and let Γ = γ(α;m) be the
isolated curve of equilibria containing m given by Lemma 3.1. We want to show
that, for every ε > 0, there exists δ > 0 so that, if λ is such that ‖λ−λ0‖ < δ, there
exists Γλ ∈ Eλ such that Γ ⊂ Γε

λ, where Γε
λ is the ε-neighbourhood of Γλ.

From Lemma 3.1 and Propositions 1 and 2, the assumptions of the Normal Hy-
perbolicity Theorem are met. Thus, by Theorem 3.3, given ε > 0, there is δ > 0 such
that, if ‖λ − λ0‖ < δ there is an unique C1 compact connected invariant manifold
Γλ normally hyperbolic under Tλ(t), such that Γλ is ε-close and C1-diffeomorphic
to Γ.

Since Tλ(t) is gradient and Γλ is compact, there exists at least one equilibrium
mλ ∈ Γλ. In fact, the ω limit of any u ∈ Γλ is nonempty and belongs to Γλ by
invariance. From Lemma 3.8.2 of [10], it must contain an equilibrium. Since Γλ is
ε-close to Γ, there exists m ∈ Γ such that ‖m−mλ‖L2(S1) < ε.

Let Γ̃λ be the curve of equilibria given by Γ̃λ ≡ {γ(α;mλ), α ∈ S1} which is
a normally hyperbolic invariant manifold under Tλ(t) by Proposition 1. Then, for
each α ∈ S1, we have

‖γ(α;mλ)− γ(α;m)‖2L2 =
∫

S1
|γ(α;mλ)(w)− γ(α;m)(w)|2dw

=
∫

S1
|mλ(αw)−m(αw)|2dw

= ‖mλ −m‖L2 .

Thus

‖γ(α;mλ)− γ(α;m)‖L2 = ‖mλ −m‖L2

< ε.

and Γ is ε-close to Γ̃λ. Since there are only a finite number of curves of equilibria
the result follows immediately.

The example below shows that the curves of equilibria of

ẋ = F (x),

generated by the action of a group may disappear even when the symmetry is
preserved. In other words, we cannot expect a result of the type of the Implicit
Function Theorem without additional hypotheses, (see [8]).

Example 1. (An example with symmetry )
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Consider the planar system

ẋ = x(1− x2 − y2),

ẏ = y(1− x2 − y2). (13)

Note that (13) has, besides the origin, the curve of equilibria given by

x2 + y2 = 1

which is generated by the rotation of a fixed equilibrium.
However, for any ε 6= 0, the perturbed system

ẋ = −εy + x(1− x2 − y2),

ẏ = εx+ y(1− x2 − y2) (14)

has no non trivial equilibrium, although the system is still invariant under the action
of S1. We observe that the perturbed system is not gradient as is the case for the
class of pertubations we are considering.

3.2. Existence and continuity of the local unstable manifolds. Let us return
to equation (P)λ. Recall that the unstable set Wu

λ = Wu
λ (uλ) of an equilibrium uλ

is the set of initial conditions ϕ of (P)λ, such that Tλ(t)ϕ is defined for all t ≤ 0
and Tλ(t)ϕ→ uλ as t→ −∞. For a given neighbourhood V of uλ, the set Wu

λ ∩ V
is called a local unstable set of uλ.

Using results of appendix we now show that the local unstable sets are actually
Lipschitz manifolds in a sufficiently small neighbourhood and vary continuously
with λ. More precisely, we have

Lemma 3.5. If u0 is a fixed equilibrium of (P)λ for λ = λ0 then there is a δ > 0
such that, if |λ− λ0|+ ‖u0 − uλ‖L2 < δ and

Uδ
λ := {u ∈Wu

λ (uλ) : ||u− uλ||L2 < δ}
then Uδ

λ is a Lipschitz manifold and

dist(Uδ
λ, U

δ
λ0

) + dist(Uδ
λ0
, U δ

λ) → 0 as |λ− λ0|+ ‖u0 − uλ‖L2 → 0,

with dist defined as in (4).

Proof As already mentioned, assuming (H1) and (H2), the map F : L2(S1)×R→
L2(S1),

F (u, λ) = −u+ g(β(J ∗ u) + βh),
defined by the right-hand side of (P)λ is continuously Frechet differentiable. Let
uλ be an equilibrium of (P)λ. Writing u = uλ + v, it follows that u is a solution of
(P)λ if and only if v satisfies

∂v

∂t
= L(λ)v + r(uλ, v, λ), (15)

where L(λ)v = ∂
∂uF (uλ, λ) = −v + g′(β(J ∗ uλ) + βh)β(J ∗ v) and r(uλ, v, λ) =

F (uλ + v, λ)− F (uλ, λ)− L(λ)v. We rewrite equation (15) in the form
∂v

∂t
= L(λ0)v + f(v, λ), (16)
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where f(v, λ) = [L(λ)−L(λ0)]v+r(uλ, v, λ) is the “non linear part” of (16). Observe
that now the “linear part” of (16) does not depend on the parameter λ, as required
by theorems Theorems .2 and .3.

To obtain the needed estimates we first observe that, by Hölder inequality

|(J ∗ v)(z)| ≤
√

2τ‖J‖∞‖v‖L2 , ∀z ∈ S1 (17)

for any v ∈ L2(S1). Therefore, since g is of class C2, g′(βJ ∗uλ(z)+βJ ∗ v(z)+βh)
and g′′(βJ ∗ uλ(z) + βJ ∗ v(z) + βh) are bounded by a constant M , for any λ in a
neighbourhood of λ0 and ||v||L2(S1) ≤ 1. We then obtain

‖ g′(βJ ∗ uλ + βh)β(J ∗ v)− g′(β0J ∗ uλ0 + β0h0)β(J ∗ v)‖2L2

=
∫

S1
|g′(βJ ∗ uλ(z) + βh)β − g′(β0J ∗ uλ0(z) + β0h0)|2β2|(J ∗ v)(z)|2dz

≤
∫

S1
M2|[|βJ ∗ uλ(z)− β0J ∗ uλ0(z)|+ |βh− β0h0|]2β2|(J ∗ v)(z)|2dz

≤
∫

S1
M2[|βJ ∗ uλ(z)− β0J ∗ uλ0(z)|+ |βh− β0h0|]2β22τ‖J‖2∞‖v‖2L2dz

≤
∫

S1
M2[|βJ ∗ uλ(z)− βJ ∗ uλ0(z)|+ |βJ ∗ uλ0(z)− β0J ∗ uλ0(z)|

+ |βh− β0h0|]2β22τ‖J‖2∞‖v‖2L2dz

≤
∫

S1
M2[β

√
2τ‖J‖∞‖uλ − uλ0‖L2

+ |β − β0|
√

2τ‖J‖∞‖uλ0‖L2 + |βh− β0h0|]2β22τ‖J‖2∞‖v‖2L2

= d1(λ)‖v‖2L2 ,

with d1(λ) → 0, as λ→ λ0. Analogously

‖ g′(β0J ∗ uλ0 + β0h0)(β − β0)(J ∗ v)‖2L2

≤
∫

S1
‖g′(β0J ∗ uλ0 + β0h0)‖2∞|β − β0|2|J ∗ v(z)|2dz

≤
∫

S1
‖g′(β0J ∗ uλ0 + β0h0)‖2∞|β − β0|22τ‖J‖2∞‖v‖2L2dz

= d2(λ)‖v‖2L2 .

with d2(λ) → 0, as λ→ λ0. It follows that

‖ (L(λ)− L(λ0)) v‖L2 ≤ ‖g′(βJ ∗ uλ + βh)β(J ∗ v)− g(β0J ∗ uλ0 + β0h0)β(J ∗ v)‖L2

+ ‖g′(β0J ∗ uλ0 + β0h0)(β − β0)(J ∗ v)‖L2

≤ C1(λ)‖v‖L2 , (18)

with C1(λ) → 0, as λ→ 0.
Observe now that, for any z ∈ S1

F (uλ(z) + v(z), λ)− F (uλ0(z) + v(z), λ0)
= [g(β0J ∗ uλ0(z) + β0h0)− g(β0J ∗ uλ0(z) + β0J ∗ v(z) + β0h0)]
−[g(βJ ∗ uλ(z) + βh)− g(βJ ∗ uλ(z) + βJ ∗ v(z) + βh)]
= g′(β0J ∗ uλ0(z) + β0J ∗ v̄(z) + β0h0)β0(J ∗ v)(z)]
−g′(βJ ∗ uλ(z) + βJ ∗ ¯̄v(z) + βh)β(J ∗ v)(z),
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for some v̄ in the segment defined by J ∗ uλ0 and J ∗ (uλ0 + v) and some ¯̄v in the
segment defined by J ∗ uλ and J ∗ (uλ + v). Then

|F (uλ(z) + v(z), λ)− F (uλ0(z) + v(z), λ0)|
≤ [|g′(β0J ∗ uλ0(z) + β0J ∗ v̄(z) + β0h0)β0 − g′(β0J ∗ uλ0(z) + β0J ∗ v̄(z) + β0h0)β|
+β|g′(β0J ∗ uλ0(z) + β0J ∗ v̄(z) + β0h0)− g′(βJ ∗ uλ(z) + βJ ∗ ¯̄v(z) + βh)|]|J ∗ v(z)|
≤ [M |β − β0|+ βM |β0J ∗ uλ0(z)− βJ ∗ uλ(z)|
+βM |β0J ∗ v̄(z)− βJ ∗ ¯̄v(z)|+ βM |β0h0 − βh|]

√
2τ‖J‖∞‖v‖L2

≤ [M |β − β0|+ βM |β − β0||J ∗ (uλ0(z)− uλ(z))|+ βM(|β − β0||J ∗ v̄(z)|
+β|J ∗ (v̄ − ¯̄v)(z)|) + βM |βh− β0h0|]

√
2τ‖J‖∞‖v‖L2

≤ [M |β − β0|+ βM |β − β0|
√

2τ‖J‖∞‖uλ − uλ0‖L2 + βM |β − β0|
√

2τ‖J‖∞‖v̄‖L2

+β2M
√

2τ‖J‖∞‖v̄ − ¯̄v‖L2 + βM |βh− β0h0|]
√

2τ‖J‖∞‖v‖L2 .

Therefore, since ‖v̄ − ¯̄v‖L2 → 0, as λ→ λ0,

‖F (uλ + v, λ)− F (uλ0 + v, λ0)‖L2 ≤ C2(λ)‖v‖L2 , (19)
with C2(λ) → 0, as λ→ 0.

Since r(uλ, v, λ) = F (uλ + v, λ)− L(λ)v, we obtain from (18) and (19) that

‖r(uλ, v, λ)− r(uλ0 , v, λ)‖ ≤ C3(λ)‖v‖L2 . (20)

From (18) and (20), it follows that

‖f(v, λ)− f(v, λ0)‖ ≤ C4(λ)‖v‖L2 ,

where C4(λ) → 0 as λ→ λ0.
In a similar way, we obtain for any v, w with ||v||L2(S1) and ||w||L2(S1) smaller

than 1

|r(uλ(z), v(z), λ)− r(uλ(z), w(z), λ)|
≤ ‖g′′(βJ ∗ uλ(z) + βJ ∗ ¯̄v(z) + βh)βJ ∗ v̄(z)‖∞β2

√
4τ2‖J‖2∞‖v̄‖L2‖v − w‖L2 .

for some v̄ in the segment defined by βJ ∗ v + βh and βJ ∗ w + βh and some ¯̄v in
the segment defined by 0 and β(J ∗ v̄) + βh. As ‖v‖L2 , ‖w‖L2 → 0, it follows that

‖r(uλ(z), v(z), λ)− r(uλ(z), w(z), λ)‖L2 ≤ ν1(ρ)‖v − w‖L2 ,

with ν(ρ) → 0, as ρ→ 0 and ‖v‖L2 , ‖w‖L2 < ρ. Furthermore

‖[L(λ)− L(λ0)]v − [L(λ)− L(λ0)]w‖L2 ≤ C1(λ)‖‖(v − w)‖L2

Thus

‖f(v, λ)− f(w, λ)‖L2 ≤ (ν(ρ) + C1(λ))‖v − w‖L2 , (21)
where ν(ρ) → 0, as ρ→ 0 and ‖v‖L2 , ‖w‖L2 ≤ ρ, and C1(λ) → 0, as λ→ λ0.

Therefore, the conditions of Theorems .2, .3 are satisfied and we obtain the
existence of locally invariant sets for (16) near the origin, given as graphs of Lipschitz
functions which depend continuously on the parameter λ near λ0. Using uniquennes
of solutions, we can easily prove that these sets coincide with the local unstable
manifolds of (16).

Observing now that the translation

u→ (u− uλ)
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sends an equilibrium uλ of (P)λ into the origin (which is an equilibrium of (16)),
the results claimed follow immediately.

Using the compacity of the set of equilibria, one can obtain an ‘uniform version’
of Lemma 3.5 that will be needed later.

Lemma 3.6. Let λ = λ0 be fixed. Then, there is a δ > 0 such that, for any
equilibrium u0 of (P)λ0 , if |λ− λ0|+ ‖u0 − uλ‖L2 < δ and

Uδ
λ := {u ∈ Uλ(uλ) : ||u− uλ||L2(S1) < δ}

then Uδ
λ is a Lipschitz manifold and

sup
u0∈Eλ0

dist(Uδ
λ, U

δ
λ0

) + dist(Uδ
λ0
, U δ

λ) → 0 as |λ− λ0|+ ‖u0 − uλ‖L2 → 0,

with dist defined as in (4)

Proof From Lemma 3.5, we know that, for any u0 ∈ Eλ0 , there is a δ = δ(u0)
such that Uδ

λ is a Lipschitz manifold, if |λ − λ0| + ‖u0 − uλ‖L2 < 2δ. Thus, in
particular, Uδ

λ is a Lipschitz manifold, if |λ − λ0| + ‖ũ0 − uλ‖L2 < δ. for any
ũ0 ∈ Eλ0 with ‖ũ0 − u0‖L2 < δ. Taking a finite subcovering of the covering of Eλ0

by balls B(u0, δ(u0)), with u0 varying in Eλ0 , the first part of the result follows
with δ chosen as the minimum of those δ(u0).

Now, if ε > 0 and u0 ∈ Eλ0 , there exists, by Lemma 3.5, δ = δ(u0) such that, if
|λ− λ0|+ ‖u0 − uλ‖L2 < 2δ, then

dist(Uδ
λ, U

δ
λ0

) + dist(Uδ
λ0, U

δ
λ) < ε/2.

If ũ0 ∈ Eλ0 is such that ‖ũ0−u0‖L2 < δ and |λ−λ0|+ ‖ũ0−uλ‖L2 < δ then, since
|λ− λ0|+ ‖u0 − uλ‖L2 < 2δ

dist(Uδ
λ(uλ), U δ

λ0
(ũ0)) + dist(Uδ

λ0
(ũ0), U δ

λ(uλ))
< dist(Uδ

λ(uλ), U δ
λ0

(u0)) + dist(Uδ
λ0

(u0), U δ
λ(uλ)) + dist(Uδ

λ0
(ũ0), U δ

λ0
(u0))

+dist(Uδ
λ0

(u0), U δ
λ0

(ũ0)) < ε

By the same procedure above of taking a finite subcovering of the covering of
Eλ0 by balls B(u0, δ(u0)), and δ the minimum of those δ(u0), we conclude that

dist(Uδ
λ(uλ), U δ

λ0
(ũ0)) + dist(Uδ

λ0
(ũ0), U δ

λ(uλ)) < ε

if |λ− λ0|+ ‖ũ0− uλ‖L2 < δ, for any ũ0 ∈ Eλ0 . This proves the result claimed.

3.3. Decomposition of the attractor. As a consequence of its gradient struc-
ture, proved in [22], the attractor of the flow generated by (P)λ is given by the
union of the unstable set of the set of equilibria (see [10]). Using results of [11], we
prove below a more precise result on this direction.

Consider an equation of the form

ẋ+Bx = g(x), (22)

where B is a bounded linear operator on a Banach space X and g : X → X is a C2

function. We may write (22) in the form

ẋ+Ax = f(x), (23)

where A = B − g′(x0) and f(x) = g(x0) + r(x), with r differentiable and r(0) = 0.
The following result has been proven in [11]
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Theorem 3.7. Suppose the spectrum σ(A) contains 0 as a simple eigenvalue, while
the remainder of the spectrum has real part outside some neighbourhood of zero. Let
γ be a curve of equilibria of the flow generated by (23), of class C2. Then there
exists a neighbourhood U of γ such that, for any x0 ∈ U whose positive orbit is
precompact and whose ω-limit set ω(x0) belongs to γ, there exists a unique point
y(x0) ∈ γ with ω(x0) = y(x0). Similarly, for any x0 ∈ U with bounded negative
orbit and α-limit set α(x0) in γ, there exists a unique point y(x0) ∈ γ such that
α(x0) = y(x0).

Proposition 3. Assume the hypotheses (H1), (H2), (H5)-(H6), with a < ∞ and
(H7) hold. Let Eλ be the set of the equilibria of Tλ(t). For u ∈ Eλ, let Wu

λ (u) be
the unstable set of u. Then

Aλ =
⋃

u∈Eλ

Wu
λ (u).

Proof From Theorem 5.6 of [22], we have

Aλ =
⋃

u∈Eλ

Wu
λ (Eλ).

There exists only a finite number, {u1, · · · , uk} of constant equilibria since they
are all hyperbolic. For each non constant equilibrium u ∈ Eλ, there is a curve
Mu ⊂ Eλ ⊂ Aλ. From Lemma 3.1 these curves Mu are all isolated and, since Aλ

is compact, it follows that there exists only a finite number of them; M1, . . . ,Mn.
Thus

Aλ =
( n⋃

i=1

Wu
λ (Mi)

)⋃( k⋃
j=1

Wu
λ (uj)

)
.

By Theorem 3.7, it follows that

Wu
λ (Mi) =

⋃
v∈Mi

Wu
λ (v), i = 1, · · · , n.

Therefore
Aλ =

⋃
v∈Eλ

Wu
λ (v)

as claimed.

3.4. Proof of the lower semicontinuity. We now turn to the proof of our main
result, starting with some auxiliary results.

Lemma 3.8. Assume the same hypotheses of Lemma 3. Then, given ε > 0, there
exists T > 0 such that, for all u ∈ Aλ0\Eε

λ0

Tλ0(−t)u ∈ Eε
λ0
,

for some t ∈ [0, T ], where Eε
λ0

is the ε-neighbourhood of Eλ0 . Furthermore, when ε
is sufficiently small,

Tλ0(−t)u ∈ Uλ0(u0),
for some u0 ∈ Eλ0 , where Uλ0(u0) is the local unstable manifold of u0 ∈ Eλ0 .

Proof Let ε > 0 be given and u ∈ Aλ0\Eε
λ0

. From Lemma 3, it follows that

u ∈Wu
λ0

(ū)\Eε
λ0
.

for some ū ∈ Eλ0 . Thus, there exists tu = tu(ε) <∞ such that Tλ0(−tu)u ∈ Eε
λ0
. By

continuity of the operator Tλ0(−tu), there exists ηu > 0 such that Tλ0(−tu)B(u, ηu) ⊂
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Eε
λ0
, where B(u, ηu) is the ball of centre u and radius ηu. By compactness, there

are u1, · · · , un ∈ Aλ0\Eε
λ0

such that

Aλ0\Eε
λ0
⊂

n⋃
j=1

B(uj , ηuj
),

with Tλ0(−tuj )B(uj , ηuj ) ⊂ Eε
λ0

, for j = 1, . . . , n. Let T = max{tu1 , · · · , tun}.
Then, for any u ∈ Aλ0\Eε

λ0
, Tλ0(−t)u ∈ Eε

λ0
, for some t ∈ [0, T ]. Since u ∈

Wu
λ0

(u)\Eε
λ0

, for some u ∈ Eλ0 and Tλ0(−t)u ∈ Eε
λ0

, to conclude that Tλ0(−t)u ∈
Uλ0(ū), when ε is sufficiently small, it is enough to show that there exists δ > 0
such that Wu

λ0
(v) ∩ B(v, δ) ⊂ Uλ0(v), for all v ∈ Eλ0 . Therefore, the conclusion

follows immediately from Lemma 3.5.

Theorem 3.9. Assume the hypotheses (H1)-(H2),(H5)-(H6), with a < ∞, and
(H7) and (H8). Then the family of attractors Aλ is lower semicontinuous with
respect to the parameter λ at λ0 ∈ R.

Proof Let ε > 0 be given. From Lemma 3.8, there is T > 0 such that, for all
u ∈ Aλ0\Eε

λ0
, there exists tu ∈ [0, T ] such that

ū := Tλ0(−tu)u ∈ Uλ0(u0), (24)

for some u0 ∈ Eλ0 . Since Tλ0(t) is a continuous family of bounded operators, there
exists η > 0 such that, for all t ∈ [0, T ]

‖z − w‖L2 < η ⇒ ‖Tλ0(t)z − Tλ0(t)w‖L2 <
ε

2
. (25)

Now, by the (uniform) continuity of the equilibria and local unstable manifolds
with respect to the parameter λ asserted by Theorem 3.4 and Lemma 3.6 , there
exists δ∗ > 0 independent of u such that ‖λ − λ0‖ < δ∗ implies the existence of
uλ ∈ Eλ and some ¯̄uλ ∈ Uλ(uλ) with

‖¯̄uλ − ū‖L2 < η, (26)

where Uλ(uλ) denotes the local unstable manifold of the equilibrium uλ of Tλ(t).
Hence, when ‖λ− λ0‖ < δ∗ we obtain, from (25) and (26)

‖Tλ0(t)¯̄uλ − Tλ0(t)ū‖L2 <
ε

2
for any t ∈ [0, T ]. (27)

On the other hand, from continuity of the flow with respect to parameter λ, there
exists δ > 0 such that ‖λ− λ0‖ < δ implies

‖Tλ(t)(u)− Tλ0(t)(u)‖L2 <
ε

2
, (28)

for any u ∈ B(0, 2a
√

2λ)) and t ∈ [0, T ], and thus in particular for u = ¯̄uλ and
t = tu.

Choose δ = min{δ∗, δ} and let vλ := Tλ(tu)¯̄uλ. It is clear that vλ ∈ Aλ, since
¯̄uλ ∈ Uλ(uλ).

Using (27) and (28) we obtain, when ‖λ− λ0‖ < δ

‖vλ − u‖L2 = ‖Tλ(tu)¯̄uλ − Tλ0(tu)ū‖L2

≤ ‖Tλ(tu)¯̄uλ − Tλ0(tu)¯̄uλ‖L2 + ‖Tλ0(tu)¯̄uλ − Tλ0(tu)ū‖L2

< ε.

When u ∈ Eε
λ0
⊂ Aλ0 this conclusion follows straightforwardly from the conti-

nuity of equilibria. Thus the lower semicontinuity of attractors follows.
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4. A special case. We consider now the particular case of (1) where g ≡ tanh and
β > 1, that is, the equation

∂m(w, t)
∂t

= −m(w, t) + tanh(βJ ∗m(w, t) + βh), (29)

Equation (29) arises as a continuum limit of one-dimensional spin systems with
Glauber dynamics and Kac potentials, (see [2], [15], [16], [17], [18], [19] and [21]);
m represents then a magnetisation density and β−1 the product of the absolute
temperature by the Boltzmann constant.

The Lyapunov functional is now given by

F(u) =
∫

S1
[f(u(w))− f(m+

β )]dw +
1
4

∫
S1

∫
S1
J(w · z−1)[u(w)− u(z)]2dwdz (30)

where f (the free energy density) is given by

f(x) = −1
2
x2 − hx− β−1i(x), x ∈ [−1, 1], (see Figure 4.2) ,
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where i is the entropy density, given by

i(x) = −1 + x

2
ln
(

1 + x

2

)
− 1− x

2
ln
(

1− x

2

)
, x ∈ [−1, 1], (see figure 4.1),
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Here −x2

2 represent the inner energy density and −hx energy density of external
field h, (see [18]).

Note that the functional given in (30) is defined in the whole phase space. Fur-
thermore m+

β is the global minimum of f in (−1, 1), (see [18]). Thus the integrand
in (30) are non negative. It is easy to show that maxx∈[−1,1][i(x)] = ln(2) and
limx→±1 i(x) = 0, (see Figure 4.1).

The function g(x) = tanh(x) satisfies the hypotheses (H1)-(H6) and (H8) with
k1 = k3 = k5 = a = 1 and k2 = k4 = 0. Thus the upper semicontinuity of the
family of attractors with respect to λ = (h, β) follows from Theorem 2.2. If (H7)
holds the lower semicontinuity also follows from Theorem 3.9.

Appendix A. Continuity of unstable manifolds for an abstract problem.
In this section we prove a result of continuity for unstable manifolds near a (non-
hyperbolic) equilibrium adapting the ideas of [3]. The result is well known either in
the case of hyperbolic equilibrium (see for example [1]) or discrete finite dimensional
systems (see [14]), but we have not been able to find a suitable result under our
hypotheses.

Let X be a Banach space, A : D(A) ⊂ X → X the generator of a strongly
continuous semigroup of linear operators {T (t)}t≥0 on X and consider the problem

ẋ = Ax+ f(x)
x(0) = x0. (31)

It is well known (see for example [13]) that, if f : X → X is a continuous and locally
Lipschitz continuous function then (31), has a unique local ‘mild solution’, that is,
a solution of the integral equation

x(t) = T (t)x0 +
∫ t

0

T (t− s)f(x(s))ds, (32)

defined for small positive 0 < t < t1, with x(t) → x0 as t → 0+. If x0 ∈ D(A)
and f is continuously differentiable then the solution is also a strict solution (i.e
x : (0, t1) → X is C1, x(t) ∈ D(A), for 0 < t < t1 and the differential equation (31)
is satisfied). If A is bounded, the solution is defined in a open interval around 0
(see [7]).

We assume the following hypotheses for the semigroup T (t) generated by A:
(1) (BU - Backwards Uniqueness). For each t ≥ 0 T (t) is injective;
(2) X has a decomposition such that:
(2a) X = π−X ⊕ π0X ⊕ π+X, where π−, π0, π+ are continuous linear projections
on X.
(2b) For each t ≥ 0, T (t) commutes with the operators π−, π0, π+ so that each
subspace π−X, π0X, π+X is invariant under T (t). Furthermore, T (t) may be
extended to a continuous group of linear operators on π0X ⊕ π+X;
(2c) There exist constants

a−, a0, a+, min{a−, a+} > a0 ≥ 0 and K > 1, (33)

such that
(2c.i) ‖T (t)ϕ−‖ ≤ Ke−a−t‖ϕ−‖, ∀ ϕ ∈ X, t ≥ 0;
(2c.ii) ‖T (t)ϕ0‖ ≤ Kea0|t|‖ϕ0‖, ∀ ϕ ∈ X, t ∈ R;
(2c.iii) ‖T (t)ϕ+‖ ≤ Kea+t‖ϕ+‖, ∀ ϕ ∈ X, t ≤ 0.

(Without loss of generality we may assume a0 > 0).
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The following theorem on the existence of a unstable manifold near the origin
for (31) has been proven in [3].

Theorem A.1. Suppose the semigroup T (t) satisfies the hypotheses (1) and (2)
above and f : X → X is a continuous function satisfying
(i) f(0) = 0;
(ii) ‖f(ϕ)− f(ψ))‖ ≤ η(r)‖ϕ− ψ‖, ‖ϕ‖, ‖ψ‖ < r,
where η is non decreasing continuous real function in [0,∞) with η(0) = 0. Suppose
also that ε > 0 is such that a+ > ε. Then, for δ > 0 sufficiently small there exists
a locally invariant set

U = {ϕ ∈ B(0, δ) : ‖ϕ+‖ <
δ

2K
, ϕ− + ϕ0 = q(ϕ+)},

for (31), where q is a Lipschitz function defined for ‖ϕ+‖ < δ
2K . If ϕ ∈ U then a

unique solution w(t) of (32) with w(0) = ϕ exists for t ≤ 0 and

‖w(t)‖ ≤ 2Ke(a+−ε)t‖w+(0)‖, t ≤ 0. (34)

Furthermore, U is tangent at zero to π+X and (q, wq
+) is the unique solution of the

system

q(ϕ+) =
∫ 0

−∞ T (−s)(π− + π0)f(w+(s, ε) + q(w+(s, ε)))ds,

w+(t, ε) = T (t)ϕ+ +
∫ t

0
T (t− s)π+f(w+(s, ε) + q(w+(s, ε)))ds, t ≤ 0.

(35)

The function q has Lipschitz constant smaller or equal to 1, q(0) = 0 and K is the
constant given in the hypothesis (2.c).

In the proof of the result above, the hypothesis (ii) on f is used to show that,
after the usual trick of ‘cutting-off’ near the origin, one may assume that f satisfies
a Lipschitz condition with an arbitrarily small constant. A careful analysis of the
proof in [3] reveals, however, that this hypothesis is not necessary in its full force.
During the proof, it is only used that the Lipschitz constant of f is smaller than
a constant given in terms of the bound K of the semigroup and the exponential
rates a−, a0, a+. The only part of the result that cannot then be obtained is the
tangency to the linear unstable space. More precisely, we have

Theorem A.2. Suppose the semigroup T (t) satisfies the hypotheses (1) and (2)
above and f : X → X is a continuous function satisfying
(i) f(0) = 0;
(ii) ‖f(ϕ)− f(ψ))‖ ≤ L‖ϕ−ψ‖, ‖ϕ‖, ‖ψ‖ < r, with 0 < 4K2L

a+−a0−4KL < 1 Then, for
δ > 0 sufficiently small there exists a locally invariant set

U = {ϕ ∈ B(0, δ) : ‖ϕ+‖ <
δ

2K
, ϕ− + ϕ0 = q(ϕ+)},

for (31), where q is a Lipschitz function defined for ‖ϕ+‖ < δ
2K . If ϕ ∈ U then a

unique solution w(t) of (32) with w(0) = ϕ exists for t ≤ 0 and

‖w(t)‖ ≤ 2Ke(a+−2KL)t‖w+(0)‖, t ≤ 0. (36)
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Furthermore (q, wq
+) is the unique solution of the system

q(ϕ+) =
∫ 0

−∞ T (−s)(π− + π0)f(w+(s, ε) + q(w+(s, ε)))ds,

w+(t, ε) = T (t)ϕ+ +
∫ t

0
T (t− s)π+f(w+(s, ε) + q(w+(s, ε)))ds, t ≤ 0.

(37)

The function q has Lipschitz constant smaller or equal to 1, q(0) = 0 and K is the
constant given in the hypothesis (2.c).

The advantage of Theorem .2 for us is that it allows a ‘small linearity’ in the
function f , which will be needed in our applications. We now state the main result
of this section.

Theorem A.3. (Continuity of the unstable manifolds). Suppose that the function
f = fλ depends on a parameter λ ∈ Λ, where Λ is an open set of a Banach space
and, satisfies

‖fλ(u)− fλ0(u)‖ ≤ C1(λ)‖u‖, with C1(λ) → 0, as λ→ λ0 for ||u|| ≤ r; (38)

and the conditions (i) and (ii) of Theorem .2 above with 0 < 4K2L
a+−a0−4KL < 1

2 for
λ in a neighbourhood of λ0.

Then the unstable manifold Uλ given by Theorem .2 is continuous with respect
to the parameter λ at λ0. More precisely, if δ is sufficiently small, the Lipschitz
functions q = qλ given by (37) are defined for ‖ϕ+‖ < δ and qλ(ϕ+) → qλ0(ϕ+), as
λ→ λ0 uniformly for ||ϕ+|| < δ.

Proof After cutting-off near the origin, if necessary, we may suppose that the
hypotheses on fλ hold in the whole space. By Theorem .2, in a neighbourhood of
the origin (which can be chosen as the same for all λ sufficiently small), Uλ is the
graph of a Lipschitz function q = qλ, where (q, wq

+) is the unique solution of (37).
Therefore, we have

‖w+(t, λ)‖ ≤ Kea+t‖ϕ+‖+
∫ 0

t

Kea+(t−s)L‖w+(s, λ) + qλ(w+(s, λ))‖ds

≤ Kea+t‖ϕ+‖+
∫ 0

t

Kea+(t−s)L[‖w+(s, λ)‖+ ‖qλ(w+(s, λ))‖]ds

≤ Kea+t‖ϕ+‖+
∫ 0

t

2KLea+(t−s)‖w+(s, λ)‖ds.

By Gronwall’s Lemma, we obtain

‖w+(t, λ)‖ ≤ K‖ϕ+‖e(a+−2KL)t, t ≤ 0. (39)

We will use the metric ρ given by

ρ(h1, h2) = sup
ϕ∈X, ϕ+ 6=0

‖h1(ϕ+)− h2(ϕ+)‖
‖ϕ+‖

,

equipped with which, the set

G = {h : π+X → π−X⊕π0X, ‖h(ϕ+)−h(ψ+)‖ ≤ ‖ϕ+−ψ+‖, ∀ϕ, ψ ∈ X, h(0) = 0}
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becomes a complete metric space. Let θ(t) = ‖w+(t, λ)− w+(t, λ0)‖, t ≤ 0. Then

θ(t) ≤
∫ 0

t

‖T (t− s)π+{fλ[w+(s, λ) + qλ(w+(s, λ))]− fλ0 [w+(s, λ0) + qλ0(w+(s, λ0))]}‖ds

≤
∫ 0

t

Ke(t−s)a+‖fλ[w+(s, λ) + qλ(w+(s, λ))]− fλ0 [w+(s, λ0) + qλ0(w+(s, λ0))]‖ds

≤
∫ 0

t

Ke(t−s)a+‖fλ[w+(s, λ) + qλ(w+(s, λ))]− fλ[w+(s, λ0) + qλ0(w+(s, λ0))]‖ds

+
∫ 0

t

Ke(t−s)a+‖fλ[w+(s, λ0) + qλ0(w+(s, λ0))]− fλ0 [w+(s, λ0) + qλ0(w+(s, λ0))]‖ds.

From (38) and hypothesis (ii), it follows that

θ(t) ≤
∫ 0

t

KLe(t−s)a+

[
‖w+(s, λ)− w+(s, λ0)‖+ ‖qλ(w+(s, λ))− qλ0(w+(s, λ0))‖

]
ds

+
∫ 0

t

Ke(t−s)a+C1(λ)‖w+(s, λ0) + qλ0(w+(s, λ0))‖ds

=
∫ 0

t

KLe(t−s)a+

[
θ(s) + ‖qλ(w+(s, λ))− qλ0(w+(s, λ0))‖

]
ds

+
∫ 0

t

Ke(t−s)a+C1(λ)‖w+(s, λ0) + qλ0(w+(s, λ0))‖ds.

Using that qλ0 is Lipschitz with Lipschitz constant ≤ 1 and qλ0(0) = 0, we obtain

θ(t) ≤
∫ 0

t

KLe(t−s)a+

[
θ(s) + ‖qλ(w+(s, λ))− qλ0(w+(s, λ0))‖

]
ds

+
∫ 0

t

2Ke(t−s)a+C1(λ)‖w+(s, λ0)‖ds.

Now, using the same argument for qλ

‖qλ(w+(s, λ))− qλ0(w+(s, λ0))‖ ≤ ‖qλ(w+(s, λ))− qλ(w+(s, λ0))‖
+ ‖qλ(w+(s, λ0))− qλ0(w+(s, λ0))‖
≤ ‖w+(s, λ)− w+(s, λ0)‖
+ ‖qλ(w+(s, λ0))− qλ0(w+(s, λ0))‖
= θ(s) + ‖qλ(w+(s, λ0))− qλ0(w+(s, λ0))‖

= θ(s) + ‖w+(s, λ0)‖
‖qλ(w+(s, λ0))− qλ0(w+(s, λ0))‖

‖w+(s, λ0)‖
≤ θ(s) + ‖w+(s, λ0)‖ρ (qλ, qλ0) .
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Therefore

θ(t) ≤
∫ 0

t

KLe(t−s)a+ [θ(s) + θ(s) + ‖w+(s, λ0)‖ρ (qλ, qλ0)]ds

+
∫ 0

t

2KC1(λ)e(t−s)a+‖w+(s, λ0)‖ds

=
∫ 0

t

2KLe(t−s)a+θ(s)ds

+
∫ 0

t

KLe(t−s)a+‖w+(s, λ0)‖ρ (qλ, qλ0) ds

+
∫ 0

t

2KC1(λ)e(t−s)a+‖w+(s, λ0)‖ds.

Using (39), we obtain

θ(t) ≤
∫ 0

t

2KLe(t−s)a+θ(s)ds+
∫ 0

t

KLe(t−s)a+ρ(qλ, qλ0)K‖ϕ+‖e(a+−2KL)sds

+
∫ 0

t

2KC1(λ)e(t−s)a+K‖ϕ+‖e(a+−2KL)sds

=
∫ 0

t

2KLe(t−s)a+θ(s)ds+K2‖ϕ+‖Lρ(qλ, qλ0)e
a+t

∫ 0

t

e−2KLsds

+ 2K2‖ϕ+‖C1(λ)ea+t

∫ 0

t

e−2KLsds.

Thus

e−a+tθ(t) ≤
∫ 0

t

2KLe−a+sθ(s)ds+K2‖ϕ+‖Lρ(qλ, qλ0)
∫ 0

t

e−2KLsds

+ 2K2‖ϕ+‖C1(λ)
∫ 0

t

e−2KLsds

≤
∫ 0

t

2KLe−a+sθ(s)ds+
K‖ϕ+‖L

2L
ρ(qλ, qλ0)e

−2KLt

+
K‖ϕ+‖
L

C1(λ)e−2KLt.

From General Gronwall‘s Lemma, (see [9]), it follows that

e−a+tθ(t) ≤ e−2KLt

[
K‖ϕ+‖

2
ρ(qλ, qλ0)e

−2KLt +
K‖ϕ+‖C1(λ)

L
e−2KLt

]
.

Hence

θ(t) ≤ K‖ϕ+‖
2

ρ(qλ, qλ0)e
(a+−4KL)t +

K‖ϕ+‖C1(λ)
L

e(a+−4KL)t. (40)
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Now

‖qλ(ϕ+)− qλ0(ϕ+)‖ ≤
∫ 0

−∞
‖T (−s)π−[fλ(w+(s, λ) + qλ(w+(s, λ)))

− fλ0(w+(s, λ0) + qλ0(w+(s, λ0)))]‖ds

+
∫ 0

−∞
‖T (−s)π0[fλ(w+(s, λ) + qλ(w+(s, λ)))

− fλ0(w+(s, λ0) + qλ0(w+(s, λ0)))]‖ds

≤
∫ 0

−∞
Kea−s‖fλ[w+(s, λ) + qλ(w+(s, λ))]

− fλ0 [w+(s, λ0) + qλ0(w+(s, λ0))]‖ds

+
∫ 0

−∞
Ke−a0s‖fλ[w+(s, λ) + qλ(w+(s, λ))]

− fλ0 [w+(s, λ0) + qλ0(w+(s, λ0))]‖ds

≤
∫ 0

−∞
2Ke−a0s‖fλ[w+(s, λ) + qλ(w+(s, λ))]

− fλ0 [w+(s, λ0) + qλ0(w+(s, λ0))]‖ds

≤
∫ 0

−∞
2Ke−a0s‖fλ[w+(s, λ) + qλ(w+(s, λ))]

− fλ[w+(s, λ0) + qλ0(w+(s, λ0))]‖ds

+
∫ 0

−∞
2Ke−a0s‖fλ[w+(s, λ0) + qλ0(w+(s, λ0))]

− fλ0 [w+(s, λ0) + qλ0(w+(s, λ0))]‖ds.

Using (38) and (ii), it follows that

‖qλ(ϕ+)− qλ0(ϕ+)‖ ≤
∫ 0

−∞
2KLe−a0s

{
‖w+(s, λ)− w+(s, λ0)‖

+ ‖qλ(w+(s, λ))− qλ0(w+(s, λ0))‖
}
ds

+
∫ 0

−∞
2Ke−a0sC1(λ)‖w+(s, λ0) + qλ0(w+(s, λ0))‖ds

=
∫ 0

−∞
2KLe−a0s

{
θ(s) + ‖qλ(w+(s, λ))− qλ0(w+(s, λ0))‖

}
ds

+
∫ 0

−∞
2Ke−a0sC1(λ)‖w+(s, λ0) + qλ0(w+(s, λ0))‖ds

≤
∫ 0

−∞
2KLe−a0s

{
θ(s) + ‖qλ(w+(s, λ))− qλ0(w+(s, λ0))‖

}
ds

+
∫ 0

−∞
4Ke−a0sC1(λ)‖w+(s, λ0)‖ds.

Using once again that

‖qλ(w+(s, λ))− qλ0(w+(s, λ0))‖ ≤ θ(s) + ‖w+(s, λ0)‖ρ(qλ, qλ0),
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we obtain

‖qλ(ϕ+)− qλ0(ϕ+)‖ ≤
∫ 0

−∞
2KLe−a0s

[
2θ(s) + ‖w+(s, λ0)‖ρ(qλ, qλ0)

]
ds

+
∫ 0

−∞
4KC1(λ)e−a0s‖w+(s, λ0)‖ds.

Now, using (39), it follows that

‖qλ(ϕ+)− qλ0(ϕ+)‖ ≤
∫ 0

−∞
4KLe−a0sθ(s)ds

+
∫ 0

−∞
2K2L‖ϕ+‖ρ(qλ, qλ0)e

(a+−a0−2KL)sds

+
∫ 0

−∞
4K2‖ϕ+‖C1(λ)e(a+−a0−2KL)sds.

Thus,

‖qλ(ϕ+)− qλ0(ϕ+)‖ ≤ I1 + I2 + I3,

where

I1 =
∫ 0

−∞
4KLe−a0sθ(s)ds,

I2 =
∫ 0

−∞
2K2L‖ϕ+‖ρ(qλ, qλ0)e

(a+−a0−2KL)sds

and

I3 =
∫ 0

−∞
4K2‖ϕ+‖C1(λ)e(a+−a0−2KL)sds.

Using the estimate obtained for θ(t) in (40), we obtain

I1 ≤
∫ 0

−∞
4KLe−a0s

[
K

2
‖ϕ+‖ρ(qλ, qλ0)e

(a+−4KL)s +
K‖ϕ+‖
L

C1(λ)e(a+−4KL)s

]
ds

=
∫ 0

−∞
2K2‖ϕ+‖Lρ(qλ, qλ0)e

(a+−a0−4KL)sds

+
∫ 0

−∞
4K2‖ϕ+‖C1(λ)e(a+−a0−4KL)sds

=
2K2L‖ϕ+‖

a+ − a0 − 4KL
ρ(qλ, qλ0) +

4K2‖ϕ+‖
a+ − a0 − 4KL

C1(λ).

Furthermore,

I2 =
∫ 0

−∞
2K2L‖ϕ+‖ρ(qλ, qλ0)e

(a+−a0−2KL)sds

=
2K2L‖ϕ+‖

a+ − a0 − 2KL
ρ(qλ, qλ0)
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and

I3 =
∫ 0

−∞
4K2‖ϕ+‖C1(λ)e(a+−a0−2KL)sds

=
4K2‖ϕ+‖

a+ − a0 − 2KL
C1(λ).

Therefore

‖qλ(ϕ+)− qλ0(ϕ+)‖ ≤ 2K2L‖ϕ+‖
a+ − a0 − 4KL

ρ(qλ, qλ0) +
4K2‖ϕ+‖

a+ − a0 − 4KL
C1(λ)

+
2K2L‖ϕ+‖

a+ − a0 − 2KL
ρ(qλ, qλ0) +

4K2‖ϕ+‖
a+ − a0 − 2KL

C1(λ)

=
[

2K2L‖ϕ+‖
a+ − a0 − 4KL

+
2K2L‖ϕ+‖

a+ − a0 − 2KL

]
ρ(qλ, qλ0)

+
[

4K2‖ϕ+‖
a+ − a0 − 4KL

+
4K2‖ϕ+‖

a+ − a0 − 2KL

]
C1(λ).

Hence
‖qλ(ϕ+)− qλ0(ϕ+)‖

‖ϕ+‖
≤

[
2K2L

a+ − a0 − 4KL
+

2K2L

a+ − a0 − 2KL

]
ρ(qλ, qλ0)

+
[

4K2

a+ − a0 − 4KL
+

4K2

a+ − a0 − 2KL

]
C1(λ),

which implies

sup
ϕ∈X, ϕ+ 6=0

‖qλ(ϕ+)− qλ0(ϕ+)‖
‖ϕ+‖

≤
[

2K2L

a+ − a0 − 4KL
+

2K2L

a+ − a0 − 2KL

]
ρ(qλ, qλ0)

+
[

4K2

a+ − a0 − 4KL
+

4K2

a+ − a0 − 2KL

]
C1(λ).

Therefore

ρ(qλ, qλ0) ≤
[

2K2L

a+ − a0 − 4KL
+

2K2L

a+ − a0 − 2KL

]
ρ(qλ, qλ0)

+
[

4K2

a+ − a0 − 4KL
+

4K2

a+ − a0 − 2KL

]
C1(λ)

<
1
2
ρ(qλ, qλ0) + C2(λ),

where C2(λ) =
[

4K2

a+−a0−4KL + 4K2

a+−a0−2KL

]
C1(λ).

Therefore
ρ(qλ, qλ0) < 2C2(λ),

where C2(λ) → 0, as λ→ λ0, concluding the proof.
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