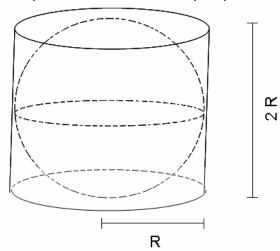
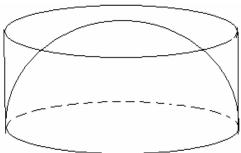
Gabarito - TG6

1. (2,0)

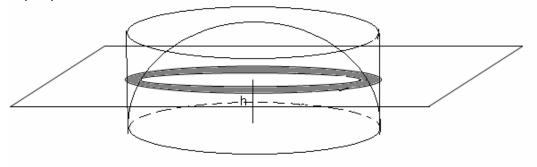
O desenho abaixo representa o sólido descrito pelo problema.



Para resolver o problema, podemos calcular o volume de uma das metades do sólido:

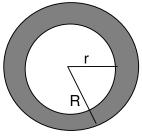


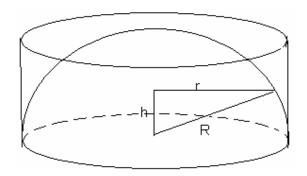
Considere um plano paralelo à base do cilindro, cortando o sólido a uma altura h qualquer:



Este corte gera uma coroa circular.

Considere r o raio da circunferência formada pelo corte do plano na esfera.





Pelo teorema de Pitágoras, temos que $r^2 = R^2 - h^2$. Então, a área desta circunferência é $\pi r^2 = \pi (R^2 - h^2)$

A área da circunferência maior é πR^2 , já que o raio desta circunferência é R.

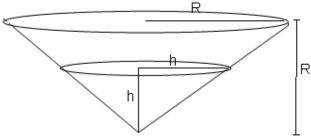
Logo, no sólido, a área da secção gerada por um plano a uma altura h é (área da coroa circular):

$$\pi R^2 - \pi (R^2 - h^2) = \pi h^2$$
.

Para determinar o volume do sólido, podemos encontrar um outro sólido, de mesma altura que o estudado, cuja secção gerada por um plano a uma altura h, tenha área πh^2 .

Este outro sólido deve ter altura R (já que estamos olhando apenas metade do sólido original). Como a secção deve ter área πh^2 , podemos procurar um sólido cujas secções sejam circunferências de raio h, ou seja, o raio de circunferência é igual à altura em que o plano está.

Este sólido pode ser um cone ("virado para cima") que tem raio da base = altura = R.



Sabemos que o volume deste cone é (1/3)x(área da base)x(altura), ou seja, π .R².R/3 = π R³/3.

Pelo Princípio de Cavalieri, "se as áreas das secções por qualquer plano perpendicular a uma direção fixa de dois sólidos forem iguais, então, os sólidos têm volumes iguais" (p.49 – TG8), então, o volume de uma das metades do sólido original é igual ao volume deste cilindro.

Portanto, o volume do sólido original é $2\pi R^3/3$.

2. (2,0)

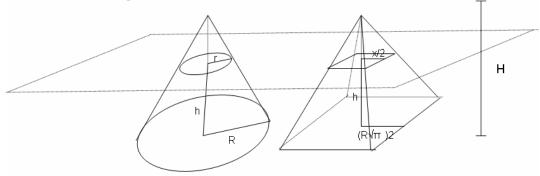
Considere H a altura dos sólidos e R o raio da base o cone.

Temos que a área da base do cone é πR^2 .

Para ter área πR^2 , o quadrado deve ter lado X tal que $X^2 = \pi R^2$, ou seja, $X=R\sqrt{\pi}$.

Considere um plano paralelo à base dos sólidos que os corta a uma altura h.

Observe a figura:



Observando o cone, por semelhança de triângulos temos:

$$H/(H-h) = R/r \rightarrow r = R(H-h)/H$$

Então, a área da secção circular é $\pi(R(H-h)/H)^2$.

Observando a pirâmide, por semelhança de triângulos temos:

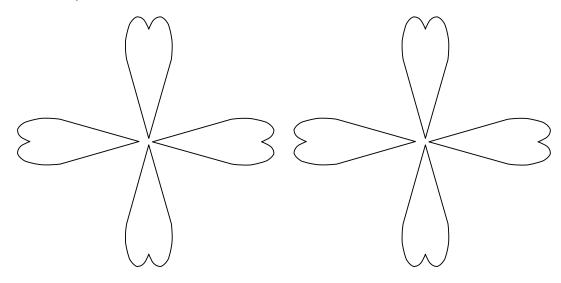
$$H/(H-h) = R\sqrt{\pi/2}(x/2) \rightarrow x = R(H-h)\sqrt{\pi/H}$$

Então, a área da secção quadrada é $(R(H-h)\sqrt{\pi/H})^2 = \pi(R(H-h)/H)^2$.

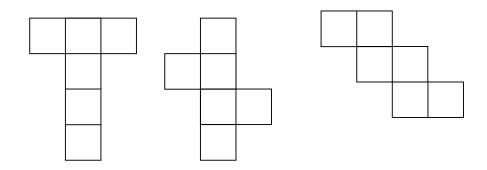
Como as áreas das secções, geradas pelo plano a uma altura h, no cone e na pirâmide são iguais, pelo <u>princípio de Cavalieri</u> temos que os volumes dos dois sólidos são iguais.

3. (1,5)

Um exemplo:



4. (1,5) Todas as planificações são possíveis e estão faltando mais três:



Considere o cubo de aresta 1.Abaixo está a planificação de da pirâmide.

