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Introduction

Continuous univariate distributions

Let X be a continuous random variable with distribution F(x) = P(X < x).
@ F(x) is non-decreasing;
@ Inverse function is given by F~'(u) = XIQ;{F(X) > u}, u € [0,1], which
is non-decreasing as well;

F(r)

Density function: f(x) = <L F(x).
Q f(x) > 0such that [* f(u)du=1;
Q F(x)=["_ f(u)du;
© P(a< X <b)=[Cf(u)du= F(b) - F(a).
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Introduction

Continuous uniform distribution in [0, 1]

@ The distribution function of U(0,1) is given by

0, if x<0,
F(x)=4x, if xe][0,1],

1, elsewhere;

@ The density function of U(0,1) is

“ﬂ:{Lifxemu

0, elsewhere;

@ If U~ U(0,1) then E[U] =1/2 and Var[U] = 1/12.
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Introduction

Probability integral transform 1

@ Let X be a continuous random variable with distribution
function F(x). The relation U = F(X) is denominated
probability integral transform.

@ The distribution function of random variable U = F(X) is
P(F(X) < u)=P(X < F Y (u)) = F(F}(u)) = u

o Thus, UZ F(X) ~ U(0,1) < F~1(U) £ X.
@ Therefore, random variables F~1(U) and X share the same
distribution.
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Introduction

Probability integral transform 2

Probability integral transform

Given a continuouis random variable X with distribution function
F(x), the random variable U = F(X) ~ U(0, 1). Moreover,

X £ F1(U) ~ F(x).

This result is useful for simulating continuous random variables
with known distribution function F(x) using the standard
uniform random numbers generator.
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Introduction

"Discrete” probability integral transform

@ Let X be a discrete random variable defined by p; = P(X = x;) >0, > p; =1,
then F(X) is not U(0, 1)-distributed.

In fact, if X is given by

X x1 | x2 | x3
Prob. | p1 | p2 | P3

with distribution function F(x) = P(X < x) =7, pj, for x; < x < xiy1. Then
Y = F(X) is discrete random variable

Y=FX) | pr | pp+p | prtpr+ps
Prob. p1 p2 P3

which is not U(0, 1), but

k
E[F(X)]=1/2+ 1/2Zpi2 oo, 1/2 which is the mean of U(0, 1),
i=1

k
Var[F(X)] = 1/12+ f <Z p,-2> £2%9, 1/12 which is the variance of U(0,1)
i=1
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Introduction

Graphical interpretation

cdf F

grade
U=F, (¥) - U([o1])

X random variable with arbitrary distribution

@ Note that the graph of F(x) is steeper in the interval (in red) where
there are more potential outcomes of the random variable X. This
interval spreads out over a wider interval within [0, 1];

@ On the other hand, we observe an inverse effect in the interval where

F(x) is flatter (in blue), i.e., where there are less potential outcomes of
the random variable X;

@ Nevertheless, the probability integral transform defects the density
(heavy tails and kurthosis disappear).
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Introduction

Simulating a logistic distribution

e If X follows a logistic distribution with parameters 8 > 0
and p € R = (—o0, 00), its distribution function is given by
1

F(x) = m x € R = (—o0,00);

@ The inverse F71() of F can be found as a solution of

u= F(x) = x = FH(u) = = Bin(u™ — 1)

e Simulating logistic distribution with parameters 5 and p:

@ Using a standard uniform random numbers generator, generate
u € [0,1];
@ Calculate x = F~}(u) = u — BlIn(u~! — 1), which is the

. . . d ~_
required observation (since X = F~1(U)).



Introduction

Commands in R

o We will simulate a sample with size N = 10000 of a logistic
distribution with parameters y = § = 2.

@ The commands in R are:

# Simulation of a logistic distribution

N 10000

U runif (N)

mi = 2

beta = 2

X = mi—betaxlog ((1/U)—1)

hist (X,30, freq=FALSE, main="")

Nikolai Kolev, Leandro Ferreira and Rafael Aguilera Dependence Analysis via Copulas



Introduction

Histogram of logistic distribution (1

Density
0.06
1

0.02
I
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Copula basics

Continuous bivariate distributions

e Joint distribution of (X, Y): H(x,y) = P(X <x,Y <y);
e Marginal distributions:

F(x) = yll—)n;o H(x,y) and G(y) = XIi_)mOO H(x,y);

e Density function: h(x,y) = a)‘?—;yH(x,y) > 0, satisfying
[ [ h(u,v)dudv = 1;

u=—o0 Jv=—00
o Marginal density functions: f(x) = [ h(x,u)du = & F(x)

o0

and g(y) = J°5, h(u,y)du = 5 G(y).
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Copula basics

Copula: definition and Sklar's Theorem

Definition (Bivariate copula)

A bivariate copula is a bivariate distribution function C : [0,1]* — [0, 1], with
standard uniform marginal distributions, i.e., C(u,v) = P(U < u,V <v),
where U and V ~ U(0, 1).Therefore, C(u, v) is non-decreasing in its
arguments; C(0,0) =0; C(1,1) =1.

Sklar's Theorem (Sklar, 1959)

Let H(x,y) be a bivariate distribution function with marginal distributions
F(x) and G(y). Then there exists a copula C : [0,1]*> — [0, 1] such that

H(x,y) = C(F(x), G(y)),

for all (x,y) € [~o0, ). If F(x) and G(y) are continuous, then C is unique;
otherwise, C is uniquely determined on RanX x RanY.
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Copula basics

Obtaining the copula C(u, v) from H(x,y)

e From relations F(x) = v and G(y) = v, where u,v € [0, 1],
we obtain x = F~1(u) and y = G71(v).

o Substituting x = F~1(u) and y = G71(v) in
H(x,y) = C(F(x),G(y)), we get the copula C(u,v).

Obtaining copula C(u, v) from joint distribution H(x, y)

Given a bivariate distribution function H(x, y), the corresponding

copula is
C(u,v)=H (Fﬁl(u)7 Gfl(v)) ,

for all (u, v) € [0,1]%.
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Copula basics

Graphical interpretation 1

H(x,y) = P(X < x, Y <)
F(x) = P(X <x), G(y) = P(Y <y)

U< F(X)~ U(0,1),

; i
: /\ 0.1)
—‘ﬁ ‘e
Hixy) ‘ Cruv)
- |
.9 'Y‘—;‘_____(o_ﬂ)_ u="F) 22

H(x,y) = C(F(x), G(y))
C(u,v) = H(F~*(u), G }(v))
V2 G(Y)~ U(0,1)

U
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Copula basics

Graphical interpretation 1

@ Starting from the joint density h(x,y) we can obtain the marginal
densities by f(x) = [*_ h(x,u)du and g(y) = [ h(u,y)du.

3 -2 -1 0
joint X=(X,X,)
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Copula basics

Graphical interpretation 1

@ The marginal distribution functions are given by F(x) = [*_ f (u) du and
Gly)=J" g(v)dv.

marginal X;

-2 -1 o
joint X=(X,,X,)
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Copula basics

Graphical interpretation 1

@ From the marginal distributions we have U = F(X) and V = G(Y),
which are uniformly distributed in [0, 1].

marginal X; grade U,

2 A 0o 1 zXx,
joint X=(X,X;) marginal X,
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Copula basics

Graphical interpretation 1

@ The joint distribution of (U, V) is copula C(u,v) = P(U < u,V <v).

marginal Xy

grade U, copula U=(U,,U,)
1 “l

marginal X,
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Copula basics

Graphical interpretation 1

marginal X, grade U, u copula U=(U,,U,)
1

4 3 2 4 0 1 2X
joint X=(X,X;) marginal X,
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Copula basics

Several reliable R Packages for Copulas

Package Title

copula Multivariate dependence with copula

copulaedas Estimation of distribution, Algorithms based on copulas
CDVine Statistical inference of C- and D-vine copulas

qcmr Gaussian copula marginal regression

nacopula Nested Archimedean copulas

grm Quantitative risk managment
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Copula basics

Graphical interpretation 2: Commands in R

Generating a sample of size 10000 of:

@ a bivariate normal distribution H(x, y) with standard normal N(0,1)
marginals and correlation coefficient p has density

_ 1 _ 1 5 2 .
¢2,P(X7.y)_ 2T(mexp( 2(1_p2)[x +y 2pr]>’

@ corresponding copula C(u, v) via Sklar's theorem with p = 0.7.

1| library (mvtnorm)

2| #Step 1: Generating a sample from H

3| cl<—c(1,.7);c2<—c(.7,1) ;R=cbind(cl,c2)

4| sample <— rmvnorm(n=10000, mean=c(0,0), sigma=R)

5| plot(sample[,1],sample[,2],xlab="x",ylab="y" ,pch="." ,cex=1.5,main="Sample from H
6

7| #Step 2: Generating a sample from C via Sklar’'s Theorem

8| sample. copula=pnorm(sample)

9| plot(sample.copula,xlab="u" ,ylab="v"  pch="." ,cex=1.5,main="Sample from C")
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Copula basics

Standard bivariate Normal distribution and its copula

Sample from H Sample from C

Scatterplot of a sample of size 10000
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Copula basics

Comments

@ Copula contains all the information about the dependence
structure independent of marginal influence since

C(F(x), G(y)) = H(x,y);

@ Copulas enable us to model marginal distributions and the
dependence structure separately;

@ Copulas provide modelling flexibility: given a copula we can
obtain many multivariate distributions by selecting different
marginal distributions;

@ Any bivariate distribution can be used to construct a copula:
C(u,v) =H (FHu), G (v)).
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Copula basics

Example 1 - symmetric bivariate Gumbel distribution

e Symmetric (H(x,y) = H(y, x)) bivariate Gumbel distribution

H(x,y) = [1+exp(—x) +exp (—y)] ",

for all x,y € [—o0, +00];
@ The marginal distribution of X is
F(x) = lim H(x,y) = [1 +exp(—x)]"%
_y—)OO
e The inverse F~1(u) is the solution of u = F(x), i.e.

F(x)=[1+exp(—x)] ' =u = exp(—x) = % —-1= 1= “

x = —In (1 - ”> = FY(u).

Nikolai Kolev, Leandro Ferreira and Rafael Aguilera Dependence Analysis via Copulas
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Copula basics

Example 1 - copula of bivariate Gumbel distribution

@ By analogy, y = —1In (1_") = G(v);

o In H(x,y) = [1+exp(—x) +exp(—y)] " we substitute
x = FY(u) and y = G71(v) to get

C(u,v) =H (F(u), G (v))
= {1+ exp [In(354)] + exp [In(554)]) 17

@ Thus, the copula of bivariate symmetric Gumbel distribution is

1-u 1-v) !
C(u,v) = {1—1— = V} -

u u+v—uv
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Copula basics

Example 1 - Graphs of bivariate Gumbel distribution

Bivariate Gumbel distribution and its copula

10

Scatterplot of a sample of size 10000



Copula basics

Example 2 - copula of asymmetric distribution

o Consider the asymmetric distribution (H(x,y) # H(y, x))

betloel)-A i (x,y) € [-1,1] x [0,00],
H(x,y) = 41 —exp(~y), if (x,y) € (1,00) x [0,00],
0, elsewhere.
(1)
@ The distribution function of the marginal variable X is
0, if x< -1,
F(x)=< x if xe[-1,1],
1, elsewhere,

i.e., X ~ U(—1,1). Therefore, x = F~1(u) = 2u — 1.



Copula basics

Example 2 - copula of asymmetric distribution

@ The distribution function of the random variable Y is

0, if y<O0,
Gly) =
1 —exp(—y), elsewhere,

e, Y~Exp(l)and y = G}(v) = —In(1 — v);
@ Substituting solutions x = 1( )=2u—1 and
y =G }v)=—In(l—v)in H(x,y), given by (1), we obtain
1-u 1-v !
C(u7\/):{1+ U+ V} :L
v u+v—uv
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Copula basics

Conclusion: symmetric and asymmetric distributions with
the same copula, i.e. having the same dependence
structure 777

@ The symmetric bivariate Gumbel logistic distribution

H(x,y) = [1 + exp(—x) + exp (fy)]_1 , forall x,y € [—00, +00]

and the asymmetric distribution

Certllewl) Il i (x,y) € [1,1] x [0, o],
H(x,y) = q1—exp(—y), if (x,y)€ (1,00) x [0,00],
0, elsewhere

uv

share the same copula C(u,v) = H(F~!(u), G7(v)) = 72,
@ Mathematically correct, but confusing! Believe in to the same

dependence structure.
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Copula basics

Fréchet-Hoeffding bounds for the joint distribution H(x, y)

@ The bounds for the distribution function H(x, y) are given by
max(F(x) + G(y) — 1,0) < H(x,y) < min(F(x), G(y));

@ In absence of information about genuine dependence, the
joint distribution can be bounded by functions of marginals;

@ These bounds can also be written in terms of copulas as
max(u + v —1,0) < C(u, v) < min(u, v),

(use the relations F(x) = u, G(y) = v and
Clu,v) = H(F}(u), GH(v)));

@ These bounds can be sharper under additional information
(about the value of correlation coefficient, for example).
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Copula basics

Comonotonic copula M(u, v)

@ The upper Fréchet-Hoeffding bound is the copula
M(u,v) = P(U < u,V <v)=min(u,v), i.,e. U=V almost
surely and U and V are called comonotonic (meaning that
they possess the highest possible positive dependence);

@ The graph of the copula M(u, v) = min(u, v) is given below.
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Copula basics

Countermonotonic copula W (u, v)

@ The lower Fréchet-Hoeffding bound is the copula
W(u,v)=P(U<u,V <v)=max(u+v—1,0)

@ In this case, U =1 — V almost surely, and U and V are
named countermonotonic, meaning that U and V exhibit
the extreme possible negative dependence;

@ The graph of the copula W(u,v) = max(u+ v —1,0) is given
below.

/
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Copula basics

Independent copula and level curves

@ The copula representing the independence structure between
U and V is given by
M(u,v)=P(U<u,V<v)=PU<u)P(V <v)=uy;

@ The independent copula MN(u, v) characterizes the
independence between U and V;

e Let Hi(x,y) and Ha(x, y) have the same marginal
distributions F(x) and G(y)

- If X and Y are independent, then
Hi(x,y) = F(x)G(y), i=1,2;

- But the product F(x)G(y) does not characterize
independence uniquelly.
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Copula basics

Level curves

@ Some level curves are presented for the copulas M, I and
W, i.e., curves such that C(u,v) = a = constant in [0, 1].

M(u,v)

: I

00 02 04 o8 o8 1o 00 02 04 08 s 0 00 02 04 05 o8 10
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Copula basics

Copula invariance under increasing transformation

Let X and Y be continuous random variables and let Cxy(u, v) be
its respective copula.

Copula invariance

If a(x) and 5(y) are strictly increasing functions in DomX and
DomY, then

Cax),8(v) (4, v) = Cxy(u,v),

i.e., Cxy(u,v) is invariant under strictly increasing
transformation of X and Y.
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Copula basics

Invariance proof

Proof.

Denote by F1, Gi1, F> and Gy the distribution functions of X, Y,
a(X) and 5(Y), respectively.

Since a(x) and j3(y) are strictly increasing functions,

Fa(x) = Pla(X) < x] = PIX < a~}(x)] = Fy(a~}(x)).
Analogously, Go(y) = Gi(51(y)).

Therefore, for all (x,y) in 12 we have

Cax),8(v)(F2(x), G2(y)) = Pla(X) < x, 8(Y) < y]
=P[X <a™'(x),Y <B7Hy)]
= Cxy(Fi(a™(x)), GL(B7H(¥))) = Cxv(Fa(x), Ga(y))
Since X and Y are continuous, DomF; = DomG, = [0, 1].
Therefore, Cyx)5(v)(u, v) = Cx,y(u,v) in [0,1]2 O
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Copula basics

Example 3a: linear and compounded returns

o Consider the linear (R,) and compound (C,) returns of
prices (Pp ) between times t and t + 1 for the same stocks

'Dn,t+1
Pn t

)

P
-1, C,=In( P’Hl);
n,t

)

Rn

@ These two types of returns, although calculated on the same
stock prices, are different: R, = €% —1 and C, = In(1+ Rp);

@ For example, if stock prices distribution Hp is a
multivariate log-normal distribution, linear returns
distribution Hg follow a multivariate shifted lognormal
distribution and compounded returns H¢ follow a
multivariate normal distribution.
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Copula basics

Example 3a: graphical interpretation

Compounded returns C=(C,C,)

fﬁ ’ ‘I C-fe

iy
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Copula basics

Example 3a: graphical interpretation

Compounded returns C=(C,,C,) Linear returns R=(R,,R;)

~ R, ‘-1
- fe e

N - | E C-. fR
L Y ,m(me) L \;

1
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Copula basics

Example 3a: graphical interpretation

Compounded returns C=(C,,C,) Linear returns R=(R,,R;)
. Lo €2 N
“f(‘l | & C - fC }gb
SR A
! \ C=In(l1+ R) L \
il | -

w.}}z
Copula U=(U,,U,)

1)

U-fu

uy
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Copula basics

Example 3a: graphical interpretation

Compounded returns C=(C,,C,) Linear returns R=(R,,R;)

v R, ‘-1
- fe e

1/, [ ” C
s ! ’ Jr
L : ,m(ma) L \

1

E
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Copula basics

Example 3a: conclusions

@ Since R, = e — 1 is an increasing transformation a(C,)
and C, = In(1 4+ R,) is as increasing transformation 5(R;)
then Cg, c,(u,v) = Cg(r,),a(c) (U, V)

@ Thus, the copula that joins the linear returns and the copula
that joins the compounded returns is the same.
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Copula basics

Example 3a: Commands in R for bivariate Gumbel

Let Hi(x,y) be a bivariate Gumbel distribution with copula C(u,v) = —%—,

u+v—uv
applying the increasing transformations eX — 1 for marginals obtaining a new

distribution H>(x,y) with the same copula C(u, v).

1| scatterhist = function(x, y, xlab="", ylab="",xI=NULL, yl=NULL,m=NULL){
2| plot(x, y,xlab=xl, ylab=yl,6 pch=".", 6 cex=1.5,main=m)

3| hist(x, freq=FALSE, xlab=x|, main=xl)

4| hist(y, freq=FALSE, xlab=yl , main=yl)

5

6

7| #Getting a sample from H1

8| Hl=sample . gumbel (10000)

9| scatterhist (H1[,1], H1[,2],xlab="F1", ylab="Gl1")

10

11| #Getting a sample from Copula using marginals from H1
12| H1. copula = 1/(1+exp(—H1))
13| scatterhist (Hl.copula[,1], Hl.copula[,2],xlab="U", ylab="V")

15| #Getting a sample from H2 via transformation
16| H2 = exp(H1) — 1
17| scatterhist (H2[,1], H2[,2], xI=c(0,50),yl=c(0,50),xlab="F2", ylab="G2")

19| #Getting a sample from Copula using marginals from H2

20| H2. copula=(H2+1)/(H2+2)
21| scatterhist (H2.copula[,1], H2.copula[,2], xlab="U", ylab="V")
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Copula basics

Example 3a: Graphs for bivariate Gumbel

U
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Copula basics

Copula of increasing/decreasing transformations

@ Analogously, we have the following relations:

@ If a(x) is strictly increasing in DomX and §(y) is strictly
decreasing in DomY, then
Ca(x),8(v) (U, v) = u— Cxy(u, 1 —v);

Q If a(x) is strictly decreasing in DomX and ((y) is strictly
increasing in DomY’, then
Ca(X),B(Y)(Ua V) =V — ny(l — u, V);

© If a(x) and B(y) are strictly decreasing in DomX and
DomY, then Cy(x) (y)(u,v) = u+v—1+Cxy(l—-u,1—-v).
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Copula basics

Conditional copula

alv) = PV <vU=u)
= lim P(V < vju< U< u+ Au)
Au—0

P(V<v,U<u+8u)— PV <v,U<u)

= lim
Au—0 P(u< U< u+ Au)
i C(u+ Au,v) — C(u,v)
= lim —
Au—0 Au

a
= —C(u,v) = C(v]u)

Definition (Conditional copula)

Conditional copula in u: cy(v) = 2<% = P(V < v|U = u) and conditional copula

inv: ¢ (u) = % =P(U < u|lV =v).

@ Let us calculate cy(v) of copula C(u,v) = -
c (V) _ 0 uv _ v(utv—uw)—uv(l—v) __ v2
u T~ Ou \utv—uv ) T (utv—uv)? = (utv—w)?"
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Copula basics

Generating random variables using conditional copulas

Generating random variables using conditional copulas

To generate one observation of a given copula C(u, v):

© generate two standard uniform observations v and t;

Q fix v = ¢ !(t), where c;1(t) is inverse of conditional copula
cu(t);
© (u,v) is the required observation.

’
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Copula basics

Example 3b

o To generate observation of copula C(u,v) = /%0 we
proceed as follows:
oC 2.
Q calculate cu(v_) (g‘; v — = (;55w) ; .
@ generate two independent standard uniform random variables u
and t ;
_ T A :
© from t = ¢,(v) obtain v = ¢, '(t) = — (;\fu)\/,
Q setv= uy/t

Ve
Q (u,v)is the required observation of (U, V).
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Copula basics

Example 3b: Commands in R

The R code of previously algorithm is given below.

#set the size of sample
n <— 10000

#set uniforms

u <— runif(n)

t <— runif(n)

#fix v using the conditional copula inverse
v<—u
for(i in 1:n){

) vlil=ul[i]ssqrt(t[i]) /(A—Q—u[i])xsart(t[i]))

=
COW~NOUAWNH

=
N =

#scatterplot of a sample (U,V) required
plot(u,v, xlab="U", ylab="V", pch =".", cex = 1.5)

-
w
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Example 3b: Graphs

Scatterplot of a copula C(u, v) = ;= obtained by previously algorithm.

e |
<~
g 4

\ \ \ \ \ \

0.0 02 04 06 08 1.0

u
Sample of size 10000
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Application: Monte Carlo integration using copulas

@ Aim: to obtain the expected value of a continuous function
q(x,y) of a bivariate random vector (X, Y') having joint
distribution H(x,y), i.e.

B )= [ [T ataydrx)
y=—00 Jx=—00
e Given the copula C(u,v) = H(F~(v), G"1(v)) and marginal
distributions F(x) = Ii_)m H(x,y) and G(y) = Ii_)m H(x,y),
y—00 X—»00
we can use the following algorithm to approximate the value
of E(q(X, Y)):
@ generate n observations of the bivariate random vector (X, Y);

@ for each observation i, calculate ¢; = q(x;,yi), i =1,2,...,n;
@ E(qX,Y)~ 1 Xl
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Example 4

O Let (X,Y) is the Gumbel bivariate distributed, i.e.

H(x,y) = [1 +exp (—x) +exp (—y)] "

Q Marginal inverses are F~1(u) = —In (=) and
1(v) (1 v)’
© We intend to estimate E(q(X, Y)), where
a(x,y) = VX2 +y?

@ The algorithm is presented in the sequel.
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Simulation for Example 4

@ Fori=1to ndo:

@ generate two standard uniform random variables u; and t;;

v — uivt .
Q@ fix v, = o) V5

O fixx; = —1In (1 i”’) and y; = —In (1‘/"");
O calculate g; = W
@ obtain E(vVX2 + Y?2) x "
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Commands in R for Example 4

1| #Example 4

2

3| n = 1000

4l qg =0

5u = runif(n)
6t = runif(n)
7/lx =y =u

8

9| for(i in 1:n){

10 v[iil=u[i]*sqrt(t[i
11 x[i]=—log((1—u[i])/,
121 y[il==log((1=v[i]),
13 . g=q+sqrt (x[i]"2+y

—(1—u[i])=sqrt(t[i]))

15| E=q/n #Estimation of expected value
16| E

The Result is E (\/x2 T Y2> ~ 2.127499.
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Dependence measures

Dependence measures

@ We will present four dependence measures between two
random variables X and Y: the Pearson linear correlation
coefficient and its local version, Kendall's tau 7(X, Y),
Spearman'’s rho p(X, Y) and Blest's measure of rank
correlation v(X, Y);

@ The measures 7(X, Y), p(X,Y) and v(X, Y) depend only on
the copula C(u, v) corresponding to (X, Y). Therefore, their
values do not change under strictly increasing
transformations of X and Y (since copula is time
invariant).
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Dependence measures

Pearson linear correlation coefficient

@ Correlation coefficient should be used with caution when
working outside the class of elliptical distributions. It is
defined by

Cov(X,Y)
Var(X)Var(Y)'

Corr(X,Y) =

e Corr(X,Y) is defined only when we have finite variances
and it measures linear dependence and assumes values in
the interval [—1,1];

@ If two random variables X and Y are independent, then
Corr(X,Y) = 0. The inverse statement is not always true.
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Pearson linear correlation coefficient - some pitfalls

@ The Pearson linear correlation coefficient is invariant under
strictly increasing linear transformations, i.e.,

Corr(X,Y) = Corr(a1 X + b1, a2Y + by);

e Corr(X,Y) # Corr(a(X),B(Y)), for monotone increasing
non-linear functions «(x) and 5(y).
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Dependence measures

Pearson linear correlation coefficient - some pitfalls

@ It is not true that given two marginal distributions F(x) and
G(y) and a value for the Pearson linear correlation coefficient
it is always possible to obtain a bivariate distribution with
these characteristics (the statement is valid for elliptical
world);

@ We know that
max(F(x) + G(y) — 1,0) < H(x,y) < min(F(x), G(y)),
W(x,y) < H(x,y) < M(x,y);
@ The following relations are valid

Fmin = tw < ry = Corr(X,Y) < ry = rmax.
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Example - McNeil et al. (2005)

@ Consider two log-normally distributed random variables X
and Y, ie., InX ~N(0,1) and In Y ~ N(0,02);

e It is important to note that if 02 # 1 then X and Y are not
of the same type, i.e., do not exist real constants a and b
such that X =9 a+ bY, i.e., X and Y are neither
comonotonic nor countermonotonic when o2 # 1.
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Dependence measures

Example - McNeil et al. (2005)

@ The maximum (rmax(X, Y)) and minimum (rmin(X, Y)) values that
Corr(X, Y) may assume in this case are given by the following expressions

(X, Y) = exp(o) — 1 0
K= e e D
and
(X, Y) = exp(—o) —1 ;

_>
V(e —1)(exp(c?) — 1) oee
@ The graph below illustrates the maximum and minimum values that
Corr(X, Y) may assume as a function of the parameter o.
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Comments

@ Note how both limits tend fast to 0 as o increases.

@ The graph shows that we may have comonotonic random
variables (maximally positive dependent) exhibiting values of
linear correlation coefficient close to 0;

@ Since comonotonicity is the strongest form of positive
dependence, this example provides a correction to the usual
view that small correlation imply weak dependence;

@ Therefore, the concept of Pearson linear correlation coefficient
is meaningless unless applied in the context of elliptical world.
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Local Pearson linear correlation coefficient

While the Pearson linear correlation coefficient

_E[(X — E[X])(Y — E[Y])]
pX,Y) = VEIX — EXDAENY - E[V])

is a number in [—1, 1], the local Pearson linear correlation
coefficient

E[(X — E(X]Y = y))(Y — E(Y[X =x))]
VEX = E(XIY = y)PE(Y — E(YIX = X))’

plocal(xa y) =

is a surface depending of (x,y) and pjocar(x,y) € [-1,1].
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Kendall's tau

Definition: Kendall's tau

The population version of Kendall’s tau, 7(X, Y), for the bivariate random vector
(X, Y) is defined as the difference between the probabilities of concordance and
discordance, i.e.,

(X, Y)=P[(X =X )Y =Y )>0-P[(X-X)Y-Y)<0],

where (X/, Yl) is an independent copy of (X, Y).

Definition: sample version of Kendall’s tau

Let (X1, Y1), ..., (Xn, Yn) be a sample of (X, Y). Denote by R; and S; the ranks in
the sets Xi,..., X, and Yi,..., Yy, respectively, 1 < i < n. The sample version of
Kendall's tau, 75, is given by

2

Z sign(R; — R;)sign(S; — Sj).
=" a<reizn
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Kendall's tau

Let (X, Y) be a vector of continuous random variables with copula
C(u,v). Then the population Kendall’s tau is given by

X, Y) = 4/01 /01 C(u,v)dC(u, v) —1,

Note that if U, V ~ U(0,1), then

7(X,Y) = 4E[C(U, V)] — 1.
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Spearman'’s rho

Definition: Spearman'’s rho, p(X, Y)
The population Spearman’s rho, p(X, Y), for the vector (X, Y) is

p(X,Y)=3P[X =X )Y =Y )>0—-P[(X-X)Y-Y")<0],

where (X, Y), (X', Y') and (X", Y") are independent copies of (X, Y)
and X" and Y are independent.

Definition: sample version Spearman'’s rho, p,

The sample version p, of Spearman's rho is

1 n

2 +1)
fnz S_ nfl ’
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Spearman'’s rho

Let (X, Y) be a vector of continuous random variables with copula
C(u,v). Then population Spearman’s rho for (X, Y) is given by

1 1 1,1
p(X,Y) = 12/ / uvdC(u,v) —3 = 12/ / C(u, v)dudv — 3.
o Jo o Jo

Theorem
Let (X, Y) be a vector of continuous random variables, X ~ F(x),
Y ~ G(y), U=9 F(X) ~ U(0,1) and V =9 G(Y) ~ U(0,1) . Then

o6, v) = — V) o x, 6(v)).

\/ Var(U)Var(V)
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Dependence measures

Spearman'’s rho

Let (X, Y) be a vector of continuous random variables with copula
C(u, v). Then the measure Spearman'’s rho for (X, Y) is given by

11
p(X,Y) = 12/0 /0 [C(u,v) — uv]dudyv.

@ This result provides a geometric interpretation for the
coefficient p(X, Y): it is proportional to the volume between
the surfaces of copula C(u, v) and independence copula
M(u,v) = uv.
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The measures of Kendall, Spearman and Pearson

@ The classical non-parametric Kendall's tau and Spearman’s
rho are preferable dependence measures than Corr(X,Y),
since they are invariant under increasing variable
transformations (since the corresponding copula is invariant);

o If X and Y are continuous random variables with copula
C(u, v), then

C(u,v) = M(u,v) =min(u,v) & 7(X,Y)=p(X,Y) =1,

C(u,v) = W(u,v) = max(u+v—1,0) < 7(X,Y) = p(X,Y) = -1
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Blest's measure of rank correlation, v

@ The sample versions of Kendalls tau and Spearman’s rho,

2 . .
= Z sign(R; — R;)sign(S; — Sj)
1<i<j<n

and
(n+1)

12 3
pn:n3_n;Ri5i_n_1 ;

attribute the same importance to the difference between
the ranks R} — S;, i=1,...,n;
Idea: The correlation in the pairs (R;, S;) provides an idea of
consistency between two ranks and the difference between two
extreme ranks should be emphasized. Thus, Blest (2000)
proposed an alternative non-parametric correlation measure of

2 1) K
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Blest's measure of rank correlation, v

Definition: sample version of Blest's measure of rank correlation, v,

The sample version of Blest's measure of rank correlation, v,, is

n 2
2n+1 12
n — - 5
Y n—1 n—nz ( n+1)

Definition: Population version of Blest's measure of rank correlation, v

The population Blest's measure of rank correlationfor the vector (X, Y)

® v(X,Y)=2-12 fER2 Ll = FQ(X)] G(y)dH(x,y)
=2-12 [, o (1= u)"vdC(u, v),

where v(X, Y) € [0, 1].
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Blest's measure of rank correlation, v

@ The extreme values of v, occur when we have (R; = S;) or
(Ri=n+1-35);

e Meanwhile is valid the property v(X,—Y) = —v(X,Y);

e Explicit expressions for (X, Y) can be obtained for several
bivariate distributions only.

Example. Suppose (X, Y) follows a bivariate standard normal
distribution with correlation coefficient r. Then
v(X,Y) =p(X,Y) = 2arcsin(§), while 7(X, Y) = 2 arcsin(r).
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Gini measure

Population Kendall's tau: 7(X,Y) =4E[C(U, V)] —1 =4E[K(Z)] — 1.
Population Spearman’s rho: p(X,Y) =12 fol fol[C(u7 v) — uv]dudyv,

i.e. both measures serve for ordinal variables X and Y (since copula is invariant on
increasing transformation).

@ But, when one variable is ordinal (say X) and the other is nominal (say Y),
then p(X,Y) and 7(X, Y) are not appopriate.

@ In this case, one can use Gini measure ['(X, Y). If can be shown that
Cov[Y, F(X)] = E[Y - F(X)] — £,

def Cov[Y, F(X)]
rx.v) = Covl[Y,G(Y)]’

where
Cov]Y, G(Y)] = %E[(Yl — Ya)sign(Yi — ¥a)] = %E[v1 ~ vy,

with Y7 and Y, being independent copies of Y.
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Coefficients of tail dependence

Definition: Upper tail dependence coefficient, Ay

Let X and Y be two continuous random variables with copula C(u,v). The
upper tail dependence coefficient \y between X and Y is a property of the
copula C(u,v). It is defined by
Au= lim M:P(UZUIVZU):M,
um1— 1—u 1—u
provided the limit exists and belongs to the interval [0, 1].
C(u, v) is the survival copula, given by

C(l—ul-v)=1—u—v+ C(u,v).

@ If Ay € (0,1], then X and Y display upper tail dependence, or extreme
dependence in the upper tail;

@ If Ay =0, X and Y are asymptotically independent in the upper tail.
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Coefficients of tail dependence

Definition: Lower tail dependence, A\,

Let X and Y be two continuous random variables with copula
C(u, v). The lower tail dependence coefficient \; between X
and Y is defined by

provided the limit exists and belong to the interval [0, 1].

e If Ay € (0,1], then X and Y display lower tail dependence,
or extreme dependence in the lower tail;

o If A\ =0, X and Y are asymptotically independent in the
lower tail.
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Archimedean copulas

Definition (Archimedean copulas)

A copula C(u, v) belongs to the Archimedean family if
C(u,v) = p(p™ (u) + ¢ H(v)) with (u,v) € [0, 1]%,

for continuous, positive non-increasing and convex functions
¢ :[0,00) — [0, 1] such that ©(0) = 1. The function ¢(.) is
denominated generator function of the copula C(u,v).

@ Typical examples of Archimedean family are the Clayton,
Frank and Gumbel copulas presented in the sequel.
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Clayton copula

@ The Clayton copula is given by
Colu,v) =max[(u™*+v % — 1)_é,0];

@ The generator function is p(t) =
a € [-1,00)\{0};
@ The relation between its parameter a and corresponding

Kendall's tau 7 = 4f01 fol C(u,v)dC(u,v) —1is given by
27
=17

Q=

(t7* —1), where

@ In this case, A\; = 2_§, for > 0. So, Clayton copula
displays lower tail dependence, which tends to 1 as a@ — .
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Clayton copula - commands in R

library (copula)

# Clayton copula

cc <— claytonCopula(2)

sample <— rCopula(10000,cc)

#Scatterplot

plot(sample, xlab="U", ylab="V", pch = ".”, cex = 1.5)

#Density
persp(cc,dCopula, xlab="u", ylab="v", zlab="c(u,v)")

COW~NOUAWNH

=
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Clayton copula - scatterplot and copula density

Clayton

Clayton copula with parameter o = 2
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Frank copula

@ The Frank copula is given by

{14 loot-as) Doy -1},

1
Co(u,v)=—=1In exp(—a) — 1 ;

(07

@ The generator function is ¢(t) = —In {%}, where
a € (—00,00)\{0};
@ The relation between its parameter o and Kendall's tau (7) is

— 1-— 1 [«
D) = 1 = T, where D;(a) = / _t dt
a 4 a o exp(t)—1

(D1(«) is the Debye function of the first kind).
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Frank copula - commands in R

library (copula)

#Frank Copula

fr <— frankCopula (10)

sample <— rCopula (10000, fr)

#Scatterplot

plot(sample, xlab="U", ylab="V", pch = ".”, cex = 1.5)

#Density
persp(fr,dCopula, xlab="u", ylab="v", zlab="C(u,v)”, shade=.0001)

COW~NOUAWNH

=
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Frank copula - scatterplot and copula density

Frank

Frank copula with parameter o = 10
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Gumbel-Hougard copula

@ The Gumbel-Hougard copula is given by

a1
Calu, v) = exp {—[(— Inu)® + (~Inv)°] } ;

@ The generator function is given by ¢(t) = (—Int)®, where
a € [1,00);
@ The relation between its parameter a and Kendall's 7 is
1

o =1

e \y=2-— 2e. If > 1, the copula displays upper tail
dependence. This dependence tends to 1 as o — oo, (what
is to be expected, since in this situation, the Gumbel-Hougard
copula tends to the comonotonic copula).
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Gumbel copula - commands in R

library (copula)

# Gumbel copula

gu <— gumbelCopula(4)

sample <— rCopula(10000,gu)

#Scatterplot

plot(sample, xlab="U", ylab="V", pch = ".”, cex = 1.5)

#Density
persp(gu,dCopula, xlab="u", ylab="v", zlab="C(u,v)")

COW~NOUAWNH

=
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Gumbel copula - scatterplot and copula density

Gumbel

Gumbel-Hougard copula with parameter a = 4
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Standard univariate normal distribution

@ The distribution function of a random variable X that follows
a standard normal N(0,1) distribution is given by

b(x) = P(X < x) = \/12? /_X exp(—£2/2)dt
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Bivariate normal distribution

@ The density function of a random vector (X, Y') that follows a
standard bivariate normal distribution with correlation
coefficient p is given by

1 1
P2,p(x,y) = mexp <_2(1—p2) (X +y? - QPX)’]> ,

where —co < x < o0, =1 <p<1land X,Y ~ N(0,1);

@ The corresponding joint distribution function is given by

Pop(x,y) =P(X <x, Y <y)= / / $2,p(u, v)dudv.
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Univariate t—Student distribution

@ A random variable 7 follows the Student—t distribution with

: : d
v degrees of freedom whenever it can be written as n = ﬁ

X ~ N(0,1) and is independent of ¢ ~ x2;
@ The density function is given by

W= ()

where x € ® and v > 0.
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Bivariate t-Student distribution

@ A random vector T = (Ty, T,) follows a bivariate t-Student
distribution with v degrees of freedom whenever it can be written
as

X Y
T,Wh)=|—,—&|-
( ) \/Z \/g
14 v
The bivariate random vector (X, Y) has standard bivariate normal
distribution with correlation coefficient p being independent of
£~ X2
@ The joint density function is given by

a2
X22pr+y2} 2

1
t,o(x,y) = 1+
2 Y) o /1= 2 2 { v(1 = p2)?
where x,y € (—o0,0), p € [-1,1].
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Elliptical distributions

@ The name "elliptical” comes from the elliptical (sum of
squares) form of the level curves of the joint density
function, i.e., f(x,y) = a = constant;

@ The bivariate random vector Z = (Z1, Z») follows a spherical
distribution if and only if its characteristic function can be
represented by E[exp(it” Z)] = (22 + 23), t € R?, for some
function ¢ : ® — R;

@ The bivariate random vector W = (W;, W) follows a
elliptical distribution if W = u + AZ, where 1 € %2,

A€ R? x R? and Z follows a spherical distribution;

o Particular cases of elliptical distributions are the bivariate
normal as well as the bivariate t-Student distributions.
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Elliptical copulas

@ Elliptical copulas became very popular in finance and risk
management because they are easily implemented. The ease in
obtaining the marginal distribution functions is another advantage
when one uses this elliptical copulas for forecast, see Frees e Wang
(2005);

@ "Elliptical” because they are associated with a quadratic form of
correlation coefficient between the marginals. It means, the
elliptical family of copulas is symmetric. The dependence structure
is determined by the correlation matrix;

@ The Gaussian copula and the t-copula are particular cases of
elliptical copulas, with dispersion matrix inherited from the
elliptical distributions (correlation coefficient p). The t-copula
possesses an additional degrees of freedom parameter v, which
modify the shape of the copula for given level of dependence
governed by p.
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Bivariate Gaussian copula

@ The bivariate Gaussian copula with parameter p € [-1,1] is

given by
(u,v) / / ¢2p x, y)dxdy,

where ¢ ,(x,y) = ﬁ exp ( (1 -7 [X + y? 2pxy}>

and ®~1(-) is the inverse of standard normal distribution;

@ The relation between Kendall's tau and the correlation

coefficient is p = sin(37), i.e. 7= 2 arcsin p.
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Tail dependence of Gaussian copula

Due to symmetry of Gaussian copula we have equal upper and
lower tail dependence coefficients, i.e. Ay = Ap = X\ with

W):
VITo

Interpretation: Independently of the value of the correlation
coefficient, asymptotically the Gaussian copula displays
independence in both tails, meaning that regardless of how
high a correlation coefficient we choose, if we go far enough into
the tail, extreme events appear to occur independently in
each margin.

X—r—00

A=2 lim <D<
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Density of a bivariate copula

To calculate the density c(u, v) of a bivariate copula proceed as follows

H? H?
Ou Ov C(u,v) = Ou 8VH

c(u,v) =

Therefore,

@ If we know the bivariate density h(x,y), then we can obtain f(x),
F~Y(x), g(y) and G~1(y), to calculate

h(F1(u), GH(v)) .
F(F~1(u)g(GH(v))’

@ If we know copula density c(u, v) and the marginal densities
f(x) and g(y), we can calculate F(x) and G(y). Thus,

h(x,y) = c(F(x), G(y))f(x)g(y)-

Nikolai Kolev, Leandro Ferreira and Rafael Aguilera Dependence Analysis via Copulas

c(u,v) =



Copula families

Density of the bivariate Gumbel logistic copula

@ The copula corresponding to the bivariate Gumbel logistic

distribution is given by
Cu,v) = H(F Y (1), G (v)) = —
(0.v) = H(F(0), 6 (1)) = -

@ lts density function is

(1, v) = 02 uv B 2uv
A= 0o \utv— v _(u+v—uv)3'
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Density of bivariate Gaussian copula

@ The density function ¢,(u, v) of a bivariate Gaussian copula is
obtained by calculating 8?—;‘/Cp(u, v);

@ Therefore

cp(u, v) 8u8v/ / ¢2p X, y)dxdy;

@ Thus, if bivariate Gaussian density is ¢ ,, the corresponding copula
density is given by

$2,p[® 7 (u), (V)]
c,(u,v) = ;
)= Gle Tw)ofe 1(v)
@ If we know the copula density and the marginal densities then

h(x,y) = c(F(x), G(y))f(x)g(y) and we are able to reconstruct the
bivariate Gaussian density function from the relation

92,,(%,¥) = ¢ (P(x). (1)) $(x)o ().
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R code to visualize the density functions of a standard
bivariate normal distribution and its copula

1| library (mvtnorm)

2| d=2;x = seq(—3,3,6%.025);x.cop = seq(0,1,.025)

3| #Covariance matrix

4| cl<—c(1,.7);c2<—c(.7,1) ;R=cbind(cl,c2)

5| dens = dens.cop = dens2 = dens3 = matrix(0,nrow=length(x),ncol=length(x))

6

7|#Calculating densities of distributions

8| for(i in 1:dim(dens)[1])

9| {for(j in 1:dim(dens)[2])

10| {dens[i,j] = dmvnorm(x=c(x[i],x[]j]) ,mean=rep(0,d),h sigma=R)

11| dens.cop[i,j] = dmvnorm(x=c(gnorm(x.cop[i]),qnorm(x.cop[j]) ), mean=rep(0,d),
sigma=R) /(dnorm (gnorm(x.cop[i]) )*dnorm(gnorm(x.cop[j])))}}

12

13| #Density of a standard bivariate normal distribution

14| persp(x,x,dens , xlab="x",ylab="y" ,zlab="f(x,y)" ,shade = 0.75)

15| #Density of normal copula

16| persp(x.cop,x.cop, dens.cop,xlab="u" 6 ylab="v" K zlab="c(u,v)” ,shade = 0.75)
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Graph of the standard bivariate normal density function

The density ¢ ,(x,y) of a standard bivariate normal distribution,
with p = 0.7
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Graphs of two standard univariate normal densities

F AN

1

divided by the product of the corresponding marginal standard
normal densities ¢(x) and ¢(y) ...

Nikolai Kolev, Leandro Ferreira and Rafael Aguilera Dependence Analysis via Copulas



Copula families

Graph of the Gaussian copula density

provides the Gaussian copula density

v — 20 H0). 071(V))
P (@ T(w)o(@ (V)
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Summarizing

The standard bivariate normal density ¢> , divided by the product
of the corresponding marginal standard normal density functions
results in the bivariate Gaussian copula density c,(u, v)
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Generating a density of new bivariate distribution

If we multiply the bivariate Gaussian copula density c,(u, v) by two
arbitrarily density functions we will obtain a new bivariate density
function: h(x,y) = c,(F(x), G(y))f(x)g(y). It keeps the
dependence structure of the standard bivariate normal distribution
but the marginal distributions are just F(x) and G(y)
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Generating a density of new bivariate distribution

Commands in R to generating a density of a new bivariate
distribution with gamma(5,1) and N(0, 1) marginals

#Calculating densities of distributions
for(i in 1:dim(dens)[1])
{for(j in 1:dim(dens)[2])
{#using normal and normal as marginals
dens2[i, j]=dens.cop[i,j]*(dnorm(x[i])=*dnorm(x[j]))
#using gamma and normal as marginals
dens3[i,j]=dens.cop[i,j]*(dgamma(x[i], shape=5,scale=1)xdnorm(x[j]))}}

© O~ A WNR

#Density of the density using normal marginals

10| persp(x,x,dens2 ,xlab="x" ,ylab="y" ,zlab=""f(x,y)")

11| #Density of the density using gamma and normal marginals

12| persp(x,x,dens3 ,xlab="x",ylab="y" ,zlab=""f(x,y)" ,xlim=c(—3,3),ylim=c(—3,3),theta
=80,shade = 0.75,expand=0.8)
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Bivariate t-copula

@ The bivariate t-copula is given by
Cop(u,v) = Tup(T, M (w), T, H(v)),

where p € [-1,1], T,(.) is the univariate distribution function
of a random variable that follow the t-Student distribution
with v degrees of freedom and T, ,(.,.) is the joint
distribution function of a random bivariate vector

T = (T1, T2) that follows a bivariate t-Student distribution
with v degrees of freedom;

@ The corresponding bivariate t-copula density is

b (T, T (V)
(T () (T ()
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Tail dependence of t-copula

Due to the symmetry of t-copula for tail dependence coefficient
we have

(v +1)(1 - p))

Au=AL=A=2T, -
U L +1< 1+,

when T,1 means the distribution function of a random variable
that follows t-Student distribution with v 4 1 degrees of freedom.

Provided p > —1, t-copula is asymptotically dependent in both
tails.
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Bivariate t-copula

e The Kendall's tau 7 = 4f01 I3 Coplu, v)dC, p(u, v) — 1is
%arcsin(p), i.e. the same expression as the Gaussian copula
with correlation coefficient p;

@ Just like the univariate t-Student distribution, the degrees of
freedom v control the weight in the tails, i.e., the

smaller v the heavier the tails (modify the copula shape);

@ A bivariate Gaussian copula with correlation coefficient p can
be considered as the limiting case of a bivariate t-copula with
the same parameter p, when v — oco.
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Bivariate t-copula: Commands in R

1| library (copula)

2

3| #The bivariate t copula

4| te<— tCopula (0.8, dim=2, dispstr = "un”, df = 1)

5| sample <— rCopula (10000, tc)

6

7| #Scatterplot

8| plot(sample, xlab="u", ylab="v", pch = ".", cex = 1.5)
9

10| #Density

11| persp(tc,dCopula, xlab="u", ylab="v", zlab="c(u,v)" shade=0.35)
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Bivariate t-copula - scatterplot and density

tcopula
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Bivariate t-copula with parameters p =08 and v =1
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Other examples of copulas

Besides the families of copulas we have already seen there are
others that exhibit tail dependence (frequently used in
practice). We will consider

@ Rotated Gumbel Copula (lower tail);

@ Symmetrized Joe-Clayton Copula (upper and lower tail).
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Rotated Gumbel copula

@ The Rotated Gumbel copula is given by
Cre(u,vla) =u+v -1+ Cy(1 —u,1—v|a),

where a € [1,400) and C, is the Gumbel-Hougard copula,
which is given by

o1
Co(u, v) :exp{—[(—ln )+ (= Inv)?] } :

@ This copula exhibits only lower tail dependence.
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Rotated Gumbel copula: Commands in R

1
2
3
4
5
6
7
8

library (" CDVine")

# simulate from a bivariate Rotated—Gumbel (90 degrees) copula
rg90 = BiCopSim(10000,24, —3)

plot(rg90,xlab="U", ylab="V" pch = "." cex=1.5)

# simulate from a bivariate Rotated—Gumbel (270 degrees) copula
rg270 = BiCopSim(10000,34, —3)
plot(rg270,xlab="U", ylab="V" ,pch = "." cex=1.5)
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Rotated Gumbel copula - scatterplot

Rotated Gumbel copula with & = 90 and « = 270

Scatterplot of a sample of size 10000
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Symmetrized Joe-Clayton copula

@ The Symmetrized Joe-Clayton copula Cs,c is given by

Cssc(u, vy, 7" = % [Coec(u, vir?, )
+Cic(1—u,1—vrY, ™) 4 u+v—1],
where Cc is the Joe-Clayton copula represented by
Coc(uvirV, 7 =1— (1 {1 - (1 —u)"]"
Hl- (1= v) T =),
with k = 1/log,(2 — 7Y), v = =1/ log,(7") and 7V, 7" € (0, 1).

@ The SJC has both upper and lower tail dependence parameters. lts
own dependence parameters, 7Y and 7!, are the measures of dependence
of the upper and lower tail, respectively. Furthermore, 7¥ and ' range
freely and are not dependent on each other.
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Power copula

@ Let C be an arbitrary copula and define the power copula P¢
as following

Pc(u, v)—u VQQC( 1= 91,v1_92),

where the parameters 61,6, € [0, 1].
@ When we choose 0; = 6> = 0 then Pc(u,v) = C(u,v).
@ In financial derivatives, for example, the parameters 61 and 6,

control the slope and the curvature of the implied
volatility smile.
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Comparison of a Gaussian copula and Power Gaussian copula densities

Gaussian copula, Power Gaussian copula,
p=0.7. p=20.7,0; =0.7 and 6, = 0.3.
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Scatterplot of Power Gaussian copula

Sampling of Power Gaussian copula,

p=0.7,60, =07 and 6 =0.3.
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Example: Marshall-Olkin copula

If our base copula is
M(u,v) = min(u, v),
then the resulting power copula is
Pum(u,v) = u?v% min (ulf@l, vlfez) ,

being the Marshall-Olkin copula.
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Kendall distribution

Recall that, according to Probability Integral Transform
U=F(X)~U(0,1), ie. P(U<SW)=w

@ "Bivariate Prob. Int. Transform” is the Kendall distribution
K(w) = P[H(X,Y) <w)=P[C(X,Y)<w), wel01]

K(w) is univariate summary of dependence embodied in C;

K(w) depends only on the copula C associated with H, and hence
not on the marginals F and G;

w< K(w) <1, welo,1j
If U and V are independent the
K(w) = P(UV < w) =w — wlog(w);

@ In general, K(w) # w, i.e. H(X,Y) is not U(0,1).
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Empirical copula and empirical Kendall distribution

@ Let (X1, Y1),...,(Xn, Ya), n > 2, be a random sample of a continuous
distribution and let X;) and Y{;) be the order statistics of the sample.
@ The empirical copula C, is defined as

C, = % (number of points (Xm, Ym) such that X, < X(;) and Y, < V).

An equivalent form of empirical copula is given by
Co(u,v) = Zlu,<uv,<v)

where 1(-) is the indicator function,

rank(X;) R rank(Y;) Si
uj=——= and vi= ———+ = ;
n+1 n+1 n+1 n+1

@ The empirical Kendall distribution function K,(t) for all t is given by

Ka(t) = = (number of points (Xm, Ym) such that C,(u,v) < 't).

Nikolai Kolev, Leandro Ferreira and Rafael Aguilera Dependence Analysis via Copulas



Copula families

Construction of Kendall plot

e The Kendall plot (K-plot) is based on Kendall distribution
function K(w) = P(C(U,V) <w)=P(H(X,Y) <w) and it
is analog of the classic Q-Q plot. It is introduced by Genest
and Boies (2003) to evaluate the dependence structure in a
bivariate sample. The construction follows the steps:

@ Calculate H; = w foreachi=1,...,m

@ Order the H!s, such that H(l) . < Hey;

© Plot the pairs (W;.p, Hijy), 1 <i g n, where W;., represents
the expected value of the ith order statistic in a sample with
size n of the distribution Ko(w) = w — wlog(w), 0 <w <1
(Kendall distribution in independence case).
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ndall plot - commands in R

1| library (CDVine)

2| library (MASS)

3

4| n<—250

5| nu<—c(0,0)

6| sigmal<—1

7| sigma2<—1

8| rho<—seq(—1,1,0.2)

9| for (i in 1:length(rho))

10

11 S<—cbind (c(sigmal”~2,rho[i]*sigmalxsigma2),c(rho[i]+*sigmal*sigma2,6sigma2~2))
12 X<—mvrnorm (n=n, mu=nu, Sigma=S)

13 vipt<—apply(X,2,rank)/n

14 #Kendall Plot

15 BiCopKPlot(vipt[,1],vipt[,2], family="B")
16| }
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Animation of Kendall plot

Win

K>>I (=] +
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Tail copula

Remind that

A= dim S g = i S )

u—0* u u—0t u

can be regarded as directional derivatives of C(u,v). Assuming
different directions (ug, vq), we get lower tail copulas. The lower
tail copula Af(u, v) and upper tail copula Ay(u, v) associated with
X and Y is a function of their copula C(u, v) or survival copula

C(u, v), respectively and are defined by

_ . C(ug, vq) . C(uq,vq)
Au(w,v) = Jim =570 and Ay(u,v) = lim =T
for all (u,v) € [0,00)? = R3.
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@ A general goodness-of-fit test for copulas does not necessarily
provide a good model for tail dependence;

@ The reason is that the estimation techniques are usually based
on entire available data set in the unit square [0, 1]%;

2 4 06 08
Normalised ranks (crude oil residuals)

@ However, due the fact that the center of distribution say
[0.1,0.9] x [0.1,0.9] does not contain any information
about tail performance, the conventional estimation
techniques yield biased estimates for the tail dependence.
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In order to overcome this problem, we apply the concept of tail
copulas being function of the underlying copula (which describes
the dependence structure in the tail of multivariate distributions)

Ar(u,v) = lim €(ug, vq) and Ay(u,v) = lim M;

q—0* q q—0* q

The tail copulas can be considered as a local version of tail
dependence coefficients A\; and Ay because

/\/_(1, 1) = /\L and Au(l, 1) = Au;

To obtain estimators that are more robust with respect to the
center of distribution, there are 2 approaches:

to use tail copula (which enable to model tail dependence of
arbitrary form);

to rely a extreme value copula (Pareto one, say).
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Tail empirical copula

@ If C, is the empirical copula, the empirical lower tail copula is defined by

o2
n n
Zl<u,-§£,vf'§ kv );
— n+1 n+1

@ If C, is the empirical survival copula, the empirical upper tail copula is

Apo(u,v) =

xl= X3

n—~ (ku kv
A n\U, = *Cn —,
vun(u V) k ( n’n )
1< n— ku n— kv
~ - 1(u> , Vi >
k — n+1 n+1
for some parameter k € {1,--- ,n} (see Schmidt and Stadtmller (2006)).
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Tail empirical copula for the data

Implementing the procedure described by Schmidt and Stadtmuller (2006), one can
calculate the empirical tail copulas for the log-returns of the crude oil and natural gas

futures.

e
SR,
SIS .’0};‘::

05 05

Empirical lower tail copula. Empirical upper tail copula.
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Example: Copula for discrete bivariate distribution

Consider the joint discrete distribution

YWX | 0 1 | Gly)
0 | 1/8 | 2/8 | 3/8
1 |2/8|3/8]| 5/8
F(x) | 3/8 | 5/8 | 1

0, x <0 0, y<O0
F(x)=P(X<x)=4¢ 3/8 0<x<1 and G(y)=<¢ 3/8, 0<y<1
1, x>1 1, y>1

i.e. marginal distributions are the same. Furthermore, from Sklar's theorem
H(x,y) = P(X < x,Y <y)= C(F(x),G(y)), forall x,y and some copula C.

Since RanX = RanY = {0, 3/8,1}, the only constraint for copula C is
C(3/8,3/8) = 1/8, i.e. there are infinitely many such copulas, because C(0,0) =0
and C(1,1) =1.

Conclusion: There is more than one copula in discrete bivariate case.
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As conclusions for copula pitfalls

@ Any bivariate distribution with H(x,y) = P(X < x,Y < y) can be
trasformed to copula via

Clu,v) = H(FH(u), 67(v)), u,v€[0,1]. (2)
Thus, copula C represents the class of all bivariate distributions
H = [H(x, y)| continuous marginals are exactly F(x) and G(y)].

@ In general, any result valid for bivariate distributions can be transported
to copula theory via (2).

@ But any result obtained for a copula
Clu,v)=PU<uV<v), U~U(01),V ~ U(0,1),

can be translated only for bivariate distributions E(x, y) with same
marginals (i.e. for exchangeable variables)

E(x,y) = P(X <x,Y <y), with E(x,00) = F(x) and E(o0,y) = G(y).
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Parameter estimation

@ We will present three different methodologies (two parametric
and one semi-parametric) to estimate unknown parameters:

@ The classical maximum likelihood estimation;
@ The inference for the marginals;

e Semi-parametric approach, see Genest et al. (1995).

Observation: Exist Bayesian based approaches as well.
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Maximum likelihood estimation

@ To apply the maximum likelihood (ML) methodology, we
need to find the joint density in terms of the copula density.
We have already seen that

h(x,y; ©) = c(F(x;61), G(y; 62); 0)f(x; 01)g(y : 02),

where 01 and 6, are parameters of the marginal distributions
and 6 is copula parameter.

@ Therefore, © = (61,02, 0) is the parameter vector.
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Maximum likelihood estimation

@ Given a random sample (Xj, Y;), j=1,..., m, the likelihood

function is
L(X:©) = [T [e(F (5:62). G (1:62) .6) (i) £ (5 02)]
= T c(F (x:62). 6 (:62).) IT £ (i) & (3 02)

@ For the log-likelihood In L (X;©) we have

InL(X;0) = é nc (F (xj;01), G (y;;62),0)
+ ; [Inf (x;; 01) + Ing (yj; 62)].
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Maximum likelihood estimation

Maximum likelihood estimators

The Maximum likelihood estimators are given by

9 argmax 3 2nE(F 05 ) 6 (4:61) .0)

- 00 ’
j=1
91 T Z aInc(F(x; ?G)IG(yJ i0n).9) n i dln ;(0?-;01)’

Jj=1 Jj=1

b, — o maxz anc(F(x; (;16)2G(yj n),0) n Z Blnga(e);j 02).
j=1

In general, we do not have closed form expressions for the
parameter estimators, so numerical optimization is needed.
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Simulation of data set

@ Let us assume that marginals are Gamma distributed with parameters
(a1, B1) = (2,1) and (a2, B2) = (3,2), i.e., the corresponding density function is

. Baxa7167XB
glxi o, B) = o)

forx > 0and o, 8 > 0.

We will generate a sample of size n=200 of a bivariate distribution with
selected Gamma marginals and Gaussian copula with parameter p = 0.5 using

R package copula, see Yan (2007).

1| library (copula)

2
3| myMvd = mvdc(copula = ellipCopula(family = "normal”, param = 0.5), margins
= c("gamma” , "gamma"), paramMargins = list(list(shape = 2,scale =
1),list (shape = 3, scale = 2)))
4| n = 200
5| dat = rmvdc(myMvd, n)
6| persp (myMvd,dMvdc, xlim=c(0,1), ylim=c(0,1), xlab="x1", ylab="x2", zlab="f

(x1,x2)"

7| plot(dat[,1], dat[,2],xlab="x1", ylab="x2")
8

9| u=pgamma(dat[,1],shape = 2,scale = 1)

10| v=pgamma(dat[,2],shape = 3,scale = 2)

11

12| plot (u,v,xlab="U", ylab="V")
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Simulated data
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Simulated data
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Model fitting - maximum likelihood method

@ Let us use the maximum likelihood method to estimate the
parameters of the model, i.e., 01 = (a1, 1), 02 = (a2, 2)
and 0 = p.

@ As initial estimates for the parameters a1, ap, 81, 5> and 0
we will use their estimators obtained by method of

moments.

1|mm <— apply(dat, 2, mean) #mean of data

2| vv <— apply(dat, 2, var) #variance of data

3 b1.0 <— c(mm[1]"2/vv[1], vv[1]/mm[1])

4] b2.0 <— c(mm[2]"2/vv[2], vv[2]/mm[2])

5[ a.0 <— sin(cor(dat[, 1], dat[, 2], method = "kendall") x pi/2)

6| start <— c(bl1.0, b2.0, a.0)

7| fit <— fitMvdc(dat, myMvd, start = start ,optim.control = list(trace = TRUE,
maxit = 2000))

8| fit
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Results - maximum likelihood estimates

@ True values are: (a1, 1) = (2,1), (a2, 52) = (3,2) and
p=0,5.

The Maximum Likelihood estimation is based on 200 observations.

Marginal 1
Estimate  Std. Error
g 2,046 0,190
B1 1,034 0,109
Marginal 2
Estimate  Std. Error
ar 3,048 0,290
B2 2,003 0,207
Copula
Estimate  Std. Error
) 0,522 0,051

The maximized loglikelihood shows value -774,236
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Comments

@ Usually, the estimator of the copula dependence parameter 0 is
affected by the parametric structure of the marginal distributions,
i.e. by parameters f; and 6,. One can observe the inverse effect
as well.

@ When we are interested mainly on the dependence structure, it
is profitable to have a tool that relax this influence.

@ Two appropriate methodologies are
- the inference for the marginals;

- the semi-parametric method (when the marginal distributions are
estimated using some non-parametric approach);

@ Both methods are conceptually straightforward.
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Estimation and model fitting

Inference for marginals

@ The inference for marginals simplifies the estimation
procedure of the parameters involved, since it divides the
problem in two stages.

@ In the first stage, the marginal parameters 6; and 6, are
estimated by maximum likelihood method.

Estimators for the marginal density parameters.

0; = arg maxz 55
1

j=1

m
=~ dIng (yj; 02)
05 = arg maij:1 T;
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Estimation and model fitting

Inference for marginals

@ In the second stage, the dependence parameter @ is
estimated using a pseudo-likelihood.

Dependence parameter estimator.

A ™. dlnc (1, v;,0
9*:argmaxzanc(aué’vﬂ ),

Jj=1

~

Whereﬁj:F<xj;9f>, Vj:G(yj;@\;) forall j=1,...,m.

@ The name pseudo-likelihood comes from the fact that we
use U = F (XJGT) and v; = G (yj@) instead of the
observed values u; and vj, j=1,...,m.
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Estimation and model fitting

Clayton, Frank and Gaussian copulas

@ Let us apply the inference for marginals method to
estimate the parameters of Clayton, Frank and Gaussian
copula joining the marginal gamma distributions.

1| #loglikelihood for margins

2| loglik .marg <— function(b, x) sum(dgamma(x, shape = b[1], scale = b[2],log =
TRUE) )

3| ctrl <— list(fnscale = —1)

4

5| #First stage for estimation process

6| blhat <— optim(bl1.0, fn = loglik.marg, x = dat[, 1], control = ctrl)$par

7| b2hat <— optim(b2.0, fn = loglik .marg, x = dat[, 2], control = ctrl)$par

8| udat <— cbind (pgamma(dat[, 1], shape = blhat[1], scale = blhat[2]) ,pgamma(dat][,
2], shape = b2hat[1l], scale = b2hat[2]))
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Estimation and model fitting

Inference for marginals

1| #second stage for estimation process

2(#Defining copula object

3| myCop.clayton <— claytonCopula(dim=2, param = 2)

4| myCop. frank <— frankCopula(dim=2, param = 2)

5| myCop. gaussian <— normalCopula(dim=2, param = 0.9)

6

7| #Model fitting

8| fit.ifl <— fitCopula(myCop.clayton, udat, start = a.0)
9| fit.if2 <— fitCopula(myCop.frank, udat, start = a.0)
10| fit.if3 <— fitCopula(myCop.gaussian , udat, start = a.0)
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Estimation and model fitting

Results - inference for marginals

@ The estimators of copula parameters using the inference for
marginals method are:

Estimate Std. Error zvalue Pr(>|z|)

Clayton param 0,644 0,127 5,061  4,17E-07
Frank param 2,964 0,499 5945  2,76E-09
Gaussian p 0,452 0,060 7,541  4,66E-14

ML of p was 0.522 (the true value in Gaussian case is 0.5)

@ How can we select the model that best fits the data?
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Estimation and model fitting

Inference for marginals - comments

@ The estimator of copula parameter 6 obtained from the
maximum likelihood and the inference for marginals methods
are different (0,522 and 0,452 in Gaussian case).

@ Xu (1996) performed Monte Carlo simulations to compare the
results and verified that in almost all simulations the
relative efficiency was very close to 1.

@ In general, the inference for marginals method is
preferable than the exact maximum likelihood approach.
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Estimation and model fitting

Inference for marginals - comments

@ The estimation of the parameters in two steps leads to a loss
in efficiency and standard errors cannot be obtained as
the inverse of the Fisher Information.

e Patton (2006a) shows in a simulation study that method does
not perform very well applying one step of the
Newton-Rhapson algorithm to the full likelihood function.

@ Alternatively when the marginal model is unknown Genest
et al. (1995) suggest modeling the marginal distribution with
the empirical distribution and estimating the copula via ranks
of the data.
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Estimation and model fitting

Model selection

@ A general criteria for model selection is the Akaike
Information Criterion (AIC).

@ It was developed by Hirotsugu Akaike (Akaike, 1974) and is
based in the concept of information entropy, offering a
relative measure of the information lost when some
model is used to describe the reality.
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Estimation and model fitting

Model selection

@ In the general case, AIC is given by:
AZC =2k — 2In(L)

where k is the number of parameter in the statistical model
and L is the maximized value of the likelihood function of the
estimated model.

@ For a set of candidate models for the data, the "best” one is
with minimum corresponding A/C value.

@ An alternative measure to AIC is the Bayesian Information
Criterion (BIC), given by:

BIC = klin(n) —2In L,

where n is the sample size. Again, the minimum of BIC
indicates better fit.
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Estimation and model fitting

Inference for marginals

@ Below we present the code in R to obtain results applying
AZC and BIC criteria

#Aic criterion

aicClayton <— —2xfit.ifl@loglik+2
aicFrank <— —2«fit.if2Q@loglik+2
aicGaussian <— —2«fit.if3@loglik+2

#Bic criterion

bicClayton <— —2xfit.ifl@loglik+log(200)
bicFrank <— —2«fit.if2@loglik+log(200)
bicGaussian <— —2«fit.if3@loglik+log(200)

© W~ A WN R
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Estimation and model fitting

Model selection - inference for marginals method

@ Comparison among the models obtained by the inference for
margins method.

’ ‘Maximized LogL‘ AIC ‘ BIC ‘

Clayton 16,36 -30,73 | -27,43
Frank 22,08 -42,16 | -38,86
Gaussian 22,74 -43,48 | -40,18

i.e. the Gaussian copula gives better fit.
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Estimation and model fitting

Semi-parametric inference

@ Many semi-parametric methods can be found in the
literature, e.g., Clayton (1978), Clayton and Cuzick (1985),
Genest et al. (1995) and Oakes (1994).

@ In all these approaches, the first step consists in estimating

the marginal distribution functions (l?(x) , @(y)) applying
some non-parametric methodology and, in the second step,
performing a data transformation

X o~ o~
T (Fg) Gly))
Xm Ym Un Vm

@ In the third step, some parametric copula family that better
fits the data is chosen.
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Estimation and model fitting

Marginal distribution estimation

o Several semi-parametric methodologies to estimate a
density function f (x) exist. For example, one can use kernel
smoothing to obtain f (x) and to calculate

@ In Genest et al. (1995), empirical distribution functions
were used,

~

= rx.j ry.
F H = H p—
() = =5, G ) = =7

where rx j is the rank of jth sample observation of random
variable X (the same for Y).
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Estimation and model fitting

Dependence parameter estimation

@ The dependence parameter can be estimated via

m ~ o~
a_argmaxzw,

Jj=1

o The estimator @ is consistent and asymptotically normal
distributed.
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Estimation and model fitting

Semi-parametric inference

@ Below we present the code in R used to perform the
semi-parametric inference:

#First stage: Getting empirical distribution
eu <— cbind((rank(dat[, 1]) — 0.5)/n, (rank(dat[, 2]) — 0.5)/n)

#second stage for estimation process

#Defining copula object

myCop. clayton <— claytonCopula(dim=2, param = 2)
myCop. frank <— frankCopula(dim=2, param = 2)
myCop. gaussian <— normalCopula(dim=2, param = 0.9)

© O~ A WNR

10| #Model fitting

11| fit.ecml <— fitCopula(myCop.clayton ,eu, start = a.0)
12| fit.cm2 <— fitCopula(myCop.frank ,eu, start = a.0)

13| fit.cm3 <— fitCopula(myCop.gaussian ,eu, start = a.0)
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Estimation and model fitting

Semi-parametric inference

@ Below we present the code in R to obtain results applying AIC
and BIC criteria

#Aic criterion

aicClayton <— —2xfit.cml@loglik+2
aicFrank <— —2«fit.cm2@loglik+2
aicGaussian <— —2x«fit.cm3@loglik+2

#Bic criterion

bicClayton <— —2xfit.cml@loglik+log (200)
bicFrank <— —2«fit.cm2@loglik+log (200)
bicGaussian <— —2«fit.cm3@loglik+log(200)

© W~ A WN R
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Estimation and model fitting

Semi-parametric inference

@ In the table below we present the results for the selected models
using the semi-parametric inference method.

Estimate Std. Error zvalue Pr(> |z|)

Clayton  param 0,503 0,102 4940  7,82E-07
Frank param 2,894 0,508 5,699 1,21E-08
Gaussian p 0,447 0,060 7,402  1,34E-13

@ For comparison, see inference for marginals results

Estimate Std. Error zvalue Pr(> |z])

Clayton  param 0,644 0,127 5,061  4,17E-07
Frank param 2,964 0,499 5,945  2,76E-09
Gaussian p 0,452 0,060 7,541 4,66E-14
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Estimation and model fitting

Semi-parametric inference: model selection

@ In the table below we present a comparison among the models
using AIC and BIC criterion.

| | Maximized LogL | AIC | BIC |

Clayton 13,23 24 46 | -21,16
Frank 21,19 -40,39 | -37,09
Gaussian 33,07 -42,09 | -38,80

For comparison (inference for marginals method)

| | Maximized LogL [ AIC [ BIC |

Clayton 16,36 -30,73 | -27,43
Frank 22,08 -42,16 | -38,86
Gaussian 22,74 -43,48 | -40,18
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Real data analysis: Option pricing via Copulas

Real data analysis

Consider the bivariate stochastic process {X;}/_; with

X = (Xlt,th),. Let H(x1t, x2¢) be the joint distribution. Whereas
F(x1t.6,), G(x2t.,0,) the marginal distribution functions and

f(x1t,0,), &(x2t,6,) the correponding density functions.

By Sklar’s theorem there exists a copula function

C(+,-0) : [0,1]> — [0, 1] mapping the marginal distributions of X;; and
Xot to their joint distribution through

H(X1t7X2t) = C(F(le,el), G(X2t,02)|9)-

To satisfy all this (theorical) requirement implies that we limit
ourselves to the specific case that each processes {X;;} only depends
on its own past, but not on the past of the other process

{Xjt, (i #j)}. and that there is only instantaneous causality between
the variables (described by copula).
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Real data analysis: Option pricing via Copulas

We assume that the marginals can be modeled parametrically.
The probability integral transform of marginal distributions are
given by U; = F(x1¢;01) and Vi = G(xat; 62) where 01 and 6, are
the vector of parameters. In financial econometrics Xj; the marginal
processes (i = 1,2) are usually modeled by ARMA-GARCH type
model, whose residuals are treated as independent and
identically distributed (i.i.d.) random variables.
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Real data analysis: Option pricing via Copulas

Fair rainbow options

Options consisting of two or more underlying stocks are called rainbow options. The
price of these options are influenced by the dependence structure between the stocks
since the fair option price still is the expected value.

Fair price of a bivariate rainbow option V/(t, S1, S2)

Let S; and S, be two stocks traded on a complete and arbitrage free market. Let t be
the present time and T the time of maturity, then the price V/(t, S1,S2) of an option
with a given payoff function g(51(T), S2(T)) is

V(e,S152) =exp{-r(T=0} [ [ ()2, (xy) dry.
o Jo
Where fs? s is the joint probability distribution of the two stocks under the

risk-neutral probability measure @ and the sigma-algebra F; is the filtration
containing all information about the two stocks up to time t.

We will use in our analysis the so called Exchange option., i.e, the payoff function is
given by g(51(T), S2(T)) = max(S2(T) — S1(T),0). This means that the option will
be exercised only if stock 2 is worth more than stock 1
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Real data analysis: Option pricing via Copulas

Real data analysis: Option pricing via Copulas

@ We use the observed data for 2 stocks to obtain a fair
rainbow option price:
@ The food processing company Kraft Foods (KFT),
representing {Xi+};
@ The technology company Hewlett-Packard (HPQ),
representing {Xa;}.
KFT and HPQ are traded on the New York Stock Exchange.
@ We will analyse a one year time period from 1 August 2012 to
30 September 2013 (250 trading days). We use daily close
prices (Pj;) in USD that are adjusted for dividends and splits.
@ The LogReturn of individual series is given by

Ric = log(Pjt) — log(Pi(¢—1)), t = 1,2,...,n = 249.

where Pj; is the stock price at time t with i =1, 2.
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Real data analysis: Option pricing via Copulas

KFT and HPQ: Stock prices and LogReturns

il
\(\

i r J"““
|

First deductions:
@ The LogReturns range of KFT is more volatile that HPQ;
@ It is not evident if both series are independent or dependent.
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Real data analysis: Option pricing via Copulas

KFT and HPQ: Histograms
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LogReturns KFT LogRetums HPQ

Histograms of the LogReturns for KFT and HPQ.



Real data analysis: Option pricing via Copulas

KFT and HPQ: Dependence Analysis

To test independence between LogReturns of KFT and HPQ we use the
following statistics

- for correlation coefficient: \/’,’1"?1 ~ N(0,1), where p, is sample Pearson’s;

9 n(n—1)
2

- for Kendall's tau: o5 Tn ~ N(0,1), where 7, is sample Kendall's.

In table below several calculus values of measures of dependence between the
LogReturns of KFT and HPQ are displayed along with corresponding p-values
for the null hypothesis of independence.

Spearman’s rho  Kendall's tau  Correl. coef.
0.206 0.139 0.153
p-value  0.0053 0.0052 0.008
Measures of dependence between LogReturns of KFT and LogReturns of HPQ.

Conclusion: The KFT and HPQ stocks are statistically dependent (of level 0.8%).
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Real data analysis: Option pricing via Copulas

Time series GARCH process

We will model both series (KFT and HPQ) of LogReturns by
GARCH(p, q) model, defined by

Rt =V htgta Et N(O, 1),

where the errors (residuals) ; are assumed independent and
(conditional) variance h; is specified by

p q
ht:a0+zath2—i+Z/8fht—i’ t=1,2,...,n
i=1 i=1
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Real data analysis: Option pricing via Copulas

GARCH parameters estimates: STEP 1A

@ For both vectors of stock LogReturns, we use the R package
fGarch to estimate the parameters of GARCH(p,q) model;

@ We obtain a good fit for both series adopting GARCH(1,1).
The estimate of parameters ag, @1 and 7 are given below:

Stock «ap a1 051
KFT 6.665 x 107> 0.298 0.296
HPQ 6.988 x 10719 10-% 0.9991
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Real data analysis: Option pricing via Copulas

Verification validity of GARCH(1,1) model: STEP 1B

Use the estimated parameters in Step 1A

Stock g g B1
KFT 6.665 x 10— ° 0298  0.296
HPQ  6.988 x 10°1° 1078  0.9901

to calculate conditional variance
he = ag + a1R?_1 + Brhe—1, t=1,2,..,n
and residuals ; for each stock;

@ The residuals in the GARCH model, i.e. &;'s, should follow a standard
normal distribution N(0,1).

@ Furthermore & should also have independent increments.

We carry out two tests in order to validate the GARCH(1,1) process
@ The Kolmogorov-Smirnov (KS1) test (to test € ~ N(0,1), i =1,2);
@ The Ljung-Box (LB) test (for independence of residuals).
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Real data analysis: Option pricing via Copulas

The Kolmogorov-Smirnov (KS1) test

@ The Kolmogorov-Smirnov (KS1) test is applied for each stocks residual
ejt, 1 = 1,2 with a 5% significance level.

@ The residuals empirical distribution Femp(x) and Gemp(y) are used to check
N(0, 1) for residuals.

@ The statistical tests and p-values are presented below:

KS1 = max(|®(x)— Femp(x)]) and KS1 = max(|®(y)~Gamp(¥)]). () ~ N(0,1).

KFT HPQ
KS1 0.558 0.566
p-value 0.888 0.872

The KS1 distance and p-values testing N(0, 1) of the residuals.

We can not reject the null hypothesis that residual are indeed
standard normally distributed.
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Real data analysis: Option pricing via Copulas

The Ljung-Box (LB) test

@ The increments independence of ¢j;, i = 1,2 is tested with the Ljung-Box (LB)
test

M
Pk 2
LB=N(N+2))_ o~ M),
k=1
where N is the sample size, M is the number of autocorrelation lags and
_ S (=R =)
VEE =02 /S 902
@ The null hypothesis is that there is no autocorrelation. For N(0, 1) residuals,
this implies independent increments of €, i = 1,2. The results are given
below:

Pk is the autocorrelation at lag k.

KFT HPQ
LB 19.243  7.860
p-value  0.203 0.929
P-values for independence of the residuals using Ljung-Box test.

It can be seen, that we can not reject the null hypothesis that
residuals are independent, (i.e., there is no autocorrelation), at 5%
significance level.
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Real data analysis: Option pricing via Copulas

QQ-Plot of Residuals

Normal G- Plot for KFT Normal Q- Plot for HPQ

QQ-plot of Residuals for KFT and HPQ.

By now, we justified the choice of GARCH(1,1) model for KFT and HPQ.
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Real data analysis: Option pricing via Copulas

Conclusions by now

@ GARCH(1,1) serves to model individual time series (KFT and HPQ).

This means that
- residuals (gj, i = 1,2) are N(0,1) distributed
- (eit, i = 1,2) are independent
@ Nevertheless, both series seem weak dependent (Spearman’s rho=0.206 and
Kendall's tau=0.1390.)

Therefore the first steps are
Step 1A Get the GARCH parameters estimates;
Step 1B Validate the GARCH(1,1) model;
So we will complement the analysis joining the error terms of both series with an
appropriate copula. The algorithm can be summarized as follows
Step 2A Transform the error terms into U(0, 1) distributed random variables;
Step 2B Fit the data set using some copula models via maximum likelihood
method and select the best one using AIC and BIC criteria;
Step 2C Generate a sample from the copula selected;
Step 3A Transform the marginals from previously step into N(0,1) (error
terms);
Step 3B Get the stock prices at time of maturity T;
Step 3C Get the option price at time of maturity T.
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Real data analysis: Option pricing via Copulas

Transform the error terms into marginal uniforms: STEP
2A

In order to use copulas to join residuals in both series, we need to transform the error
terms into U(0, 1) distributed random variables. We invert residuals £;; obtained in
step 1B for each stock into U(0,1) by u = ®(e1;) and v = ®(e3;) , where

®(.) ~ N(0,1), i=1,2,...,249.
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Real data analysis: Option pricing via Copulas

Copula fitting and model selection: STEP 2B

Apply the maximum likelihood to fit a copula to (u, v) from Step 2A. That is,
for the transformed data {u:, vi }{—1, estimate the copula parameters 6¢ through

ArgMaxg,. Z In[c((ut, ve); 0¢)],

t=1

where c(u, v) is the density function of the selected copula C(u, v|fc).

Copula Gaussian  Student’s t Clayton  Gumbel
Parameter 0.135 (0.139, 308.48) 0.028 1.059
AlIC -3.087 -0.976 1.567 0.562
BIC 0.430 6.059 5.085 4.079

The estimated parameters for the different copulas and corresponding values of AIC and BIC criteria.

i.e. the Gaussian copula gives better fit.
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Real data analysis: Option pricing via Copulas

Generate a sample from the copula: STEP 2C

Generate a sample {u}, v}, from a U(0, 1) marginal distribution using the chosen
copula. Here T is the time to maturity for the option;

Gaussian Copula

Scatterplot of a sample {uf, v}, from a Gaussian copula.
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Real data analysis: Option pricing via Copulas

Transform the generated marginals into N(0,1) margins:
STEP 3A

For each time instant t = 1,..., T, transform the generated
marginals into N(0,1) margins (in the risk-neutral world), by
el = 71 (up) and &3, = O (v);

2
] | o) = o B
s 2 T2 s

residual residual 2
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Real data analysis: Option pricing via Copulas

Stock price at time of maturity T: STEP 3B

Use €}, from Step 3A to calculate the conditional variances hj
give as considering GARCH parameters estimated in Step 1A.
The two future stock prices at time T are

.
ST)=Si(0) exp {> Vhiech}, i=1,2
t=1

Stock Price
KFT  44.95
HPQ 17.50

Stock prices at maturity time T = 260 using Gaussian Copula (i.e. 10 days after our

last observations).

Nikolai Kolev, Leandro Ferreira and Rafael Aguilera Dependence Analysis via Copulas
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Application: Monte Carlo integration using copulas

@ Aim: to obtain the expected value of a continuous function
q(x,y) of a bivariate random vector (X, Y') having joint
distribution H(x,y), i.e.

B )= [ [T ataydrx)
y=—00 Jx=—00
e Given the copula C(u,v) = H(F~(v), G"1(v)) and marginal
distributions F(x) = Ii_)m H(x,y) and G(y) = Ii_)m H(x,y),
y—00 X—»00
we can use the following algorithm to approximate the value
of E(q(X, Y)):
@ generate n observations of the bivariate random vector (X, Y);

@ for each observation i, calculate ¢; = q(x;,yi), i =1,2,...,n;
@ E(qX,Y)~ 1 Xl
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Option price at time of maturity T: STEP 3C

Let g(S1(T),S2(T)) = max(S2(T) — S1(T),0) be the payoff
function and repeat Steps 2C to 3B for N runs. Finally, we
obtain the Monte Carlo option price:

N
V(e.51.5) = FPEAT 2O 5™ (s(7). 5(T)).

i=1

Exchange option 24.23

Option prices for Exchange option at time of maturity T=260.
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Comments

@ The marginal distributions that describe the individual
behavior of each variables and the copula that fully captures
the dependence between the variables.

@ Furthermore, given a set of marginal distributions and a
copula a multivariate distribution can be constructed by
coupling the marginals with the copula. The flexibility of the
way dependencies can be modeled independently of the
marginal distributions.
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Several conclusions

@ Copula is useful tool in many applied areas where the interest is in
analysis of multivariate dependence and when the multivariate
normal distribution is controversial.

@ In actuarial science, copulas are used in modeling dependence
between mortality and losses, e.g., Frees, Carriere and Valdez
(1996), Frees and Valdez (1998), Frees and Wang (2005).

@ In finance, copulas are successfully applied in asset allocation,
credit scoring, default risk modeling, derivative pricing and risk
management, e.g., Bouye, Durrleman, Bikeghbali, Riboulet and
Roncalli (2000), Embrechts, Lindskog and McNeil (2003) and
Cherubini, Luciano and Vecchiato (2004).

@ In biomedical studies, copulas are used in modeling correlated
events times and competing risks, e.g., Wang and Wells (2000),
Escarela and Carriere (2003).
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Several conclusions

@ In many real situations, empirical evidence has proved the
inadequate use of the normal multivariate distribution:

e Empirical marginal distributions are skewed and heavy-tailed;
o Possibilities of extreme co-movements, in contrast to the
multivariate normal distribution.

@ Copulas provide an alternative solution and often more useful
representations of multivariate distribution functions
compared to traditional approaches such as multivariate
normal distribution.

@ The use of linear correlation coefficient should be restricted to
multivariate elliptical distributions. Copula based
dependence measures (Spearman’s ps and Kendall’s 7x)
are free of such limitations.
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