
Introduction
Copula basics

Dependence measures
Copula families

Estimation and model fitting
Real data analysis: Option pricing via Copulas

Dependence Analysis via Copulas

Nikolai Kolev, Leandro Ferreira and Rafael Aguilera

IME-USP

Contact e-mails: kolev.ime@gmail.com

ferreira.laf@gmail.com and aguilera@ime.usp.br

c© Kolev & PFA

Nikolai Kolev, Leandro Ferreira and Rafael Aguilera Dependence Analysis via Copulas



Introduction
Copula basics

Dependence measures
Copula families

Estimation and model fitting
Real data analysis: Option pricing via Copulas

Outline

Introduction

Copula: Definition, Sklar’s Theorem, Examples, Simulation

Dependence Measures

Copula Families

Estimation and Model Fitting

Real data analysis: Option pricing via Copulas

Nikolai Kolev, Leandro Ferreira and Rafael Aguilera Dependence Analysis via Copulas



Introduction
Copula basics

Dependence measures
Copula families

Estimation and model fitting
Real data analysis: Option pricing via Copulas

Continuous univariate distributions

Let X be a continuous random variable with distribution F (x) = P(X ≤ x).

1 F (x) is non-decreasing;

2 Inverse function is given by F−1(u) = inf
x∈<
{F (x) ≥ u}, u ∈ [0, 1], which

is non-decreasing as well;

Density function: f (x) = d
dx
F (x).

1 f (x) ≥ 0 such that
∫∞
−∞ f (u) du = 1;

2 F (x) =
∫ x

−∞ f (u) du;

3 P(a < X ≤ b) =
∫ b

a
f (u) du = F (b)− F (a).
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Continuous uniform distribution in [0, 1]

The distribution function of U(0, 1) is given by

F (x) =


0, if x < 0,

x , if x ∈ [0, 1],

1, elsewhere;

The density function of U(0, 1) is

f (x) =

{
1, if x ∈ [0, 1],

0, elsewhere;

If U ∼ U(0, 1) then E [U] = 1/2 and Var [U] = 1/12.
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Probability integral transform 1

Let X be a continuous random variable with distribution
function F (x). The relation U = F (X ) is denominated
probability integral transform.

The distribution function of random variable U = F (X ) is

P(F (X ) ≤ u) = P(X ≤ F−1(u)) = F (F−1(u)) = u.

Thus, U
d
= F (X ) ∼ U(0, 1) ⇔ F−1(U)

d
= X .

Therefore, random variables F−1(U) and X share the same
distribution.
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Probability integral transform 2

Probability integral transform

Given a continuouis random variable X with distribution function
F (x), the random variable U = F (X ) ∼ U(0, 1). Moreover,

X
d
= F−1(U) ∼ F (x).

This result is useful for simulating continuous random variables
with known distribution function F (x) using the standard
uniform random numbers generator.
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”Discrete” probability integral transform

Let X be a discrete random variable defined by pi = P(X = xi ) ≥ 0,
∑

pi = 1,
then F (X ) is not U(0, 1)-distributed.

In fact, if X is given by

X x1 x2 x3 · · ·
Prob. p1 p2 p3 · · ·

with distribution function F (x) = P(X ≤ x) =
∑

j≤i pj , for xi ≤ x < xi+1. Then

Y = F (X ) is discrete random variable

Y = F (X ) p1 p1 + p2 p1 + p2 + p3 · · ·
Prob. p1 p2 p3 · · ·

which is not U(0, 1), but

E [F (X )] = 1/2 + 1/2
k∑

i=1

p2
i

k→∞−−−−→ 1/2 which is the mean of U(0, 1),

Var [F (X )] = 1/12 + f

(
k∑

i=1

p2
i

)
k→∞−−−−→ 1/12 which is the variance of U(0, 1)
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Graphical interpretation

Note that the graph of F (x) is steeper in the interval (in red) where
there are more potential outcomes of the random variable X . This
interval spreads out over a wider interval within [0, 1];
On the other hand, we observe an inverse effect in the interval where
F (x) is flatter (in blue), i.e., where there are less potential outcomes of
the random variable X ;

Nevertheless, the probability integral transform defects the density

(heavy tails and kurthosis disappear).
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Simulating a logistic distribution

If X follows a logistic distribution with parameters β ≥ 0
and µ ∈ < = (−∞,∞), its distribution function is given by

F (x) =
1

1 + exp(− x−µ
β )

, x ∈ < = (−∞,∞);

The inverse F−1(·) of F can be found as a solution of

u = F (x)⇒ x = F−1(u) = µ− β ln(u−1 − 1);

Simulating logistic distribution with parameters β and µ:
1 Using a standard uniform random numbers generator, generate

u ∈ [0, 1];
2 Calculate x = F−1(u) = µ− β ln(u−1 − 1), which is the

required observation (since X
d
= F−1(U)).

Nikolai Kolev, Leandro Ferreira and Rafael Aguilera Dependence Analysis via Copulas



Introduction
Copula basics

Dependence measures
Copula families

Estimation and model fitting
Real data analysis: Option pricing via Copulas

Commands in R

We will simulate a sample with size N = 10000 of a logistic
distribution with parameters µ = β = 2.

The commands in R are:

1 # S i m u l a t i o n o f a l o g i s t i c d i s t r i b u t i o n
2
3 N = 10000
4 U = r u n i f (N)
5 mi = 2
6 b e t a = 2
7 X = mi−b e t a∗ l o g ( ( 1 /U)−1)
8 h i s t (X, 3 0 , f r e q=FALSE , main=”” )

Nikolai Kolev, Leandro Ferreira and Rafael Aguilera Dependence Analysis via Copulas
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Histogram of logistic distribution (µ = β = 2)
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Continuous bivariate distributions

Joint distribution of (X ,Y ): H(x , y) = P(X ≤ x ,Y ≤ y);

Marginal distributions:

F (x) = lim
y→∞

H(x , y) and G (y) = lim
x→∞

H(x , y);

Density function: h(x , y) = ∂2

∂x∂yH(x , y) ≥ 0, satisfying∫∞
u=−∞

∫∞
v=−∞ h(u, v)dudv = 1;

Marginal density functions: f (x) =
∫∞
−∞ h(x , u)du = d

dx F (x)

and g(y) =
∫∞
−∞ h(u, y)du = d

dyG (y).
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Copula: definition and Sklar’s Theorem

Definition (Bivariate copula)

A bivariate copula is a bivariate distribution function C : [0, 1]2 → [0, 1], with
standard uniform marginal distributions, i.e., C(u, v) = P(U ≤ u,V ≤ v),
where U and V ∼ U(0, 1).Therefore, C(u, v) is non-decreasing in its
arguments; C(0, 0) = 0; C(1, 1) = 1.

Sklar’s Theorem (Sklar, 1959)

Let H(x , y) be a bivariate distribution function with marginal distributions
F (x) and G(y). Then there exists a copula C : [0, 1]2 → [0, 1] such that

H(x , y) = C(F (x),G(y)),

for all (x , y) ∈ [−∞,∞]2. If F (x) and G(y) are continuous, then C is unique;
otherwise, C is uniquely determined on RanX × RanY .
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Obtaining the copula C (u, v) from H(x , y)

From relations F (x) = u and G (y) = v , where u, v ∈ [0, 1],
we obtain x = F−1(u) and y = G−1(v).

Substituting x = F−1(u) and y = G−1(v) in
H(x , y) = C (F (x),G (y)), we get the copula C (u, v).

Obtaining copula C (u, v) from joint distribution H(x , y)

Given a bivariate distribution function H(x , y), the corresponding
copula is

C (u, v) = H
(
F−1(u),G−1(v)

)
,

for all (u, v) ∈ [0, 1]2.

Nikolai Kolev, Leandro Ferreira and Rafael Aguilera Dependence Analysis via Copulas
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Graphical interpretation 1

H(x , y) = P(X ≤ x ,Y ≤ y) H(x , y) = C (F (x),G (y))

F (x) = P(X ≤ x), G (y) = P(Y ≤ y) C (u, v) = H(F−1(u),G−1(v))

U
d
= F (X ) ∼ U(0, 1), V

d
= G (Y ) ∼ U(0, 1)
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Graphical interpretation 1

Starting from the joint density h(x , y) we can obtain the marginal
densities by f (x) =

∫∞
−∞ h(x , u)du and g(y) =

∫∞
−∞ h(u, y)du.
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Graphical interpretation 1

The marginal distribution functions are given by F (x) =
∫ x

−∞ f (u) du and

G(y) =
∫ y

−∞ g (v) dv .
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Graphical interpretation 1

From the marginal distributions we have U = F (X ) and V = G(Y ),
which are uniformly distributed in [0, 1].

Nikolai Kolev, Leandro Ferreira and Rafael Aguilera Dependence Analysis via Copulas



Introduction
Copula basics

Dependence measures
Copula families

Estimation and model fitting
Real data analysis: Option pricing via Copulas

Graphical interpretation 1

The joint distribution of (U,V ) is copula C(u, v) = P(U ≤ u,V ≤ v).
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Graphical interpretation 1
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Several reliable R Packages for Copulas

Package Title

copula Multivariate dependence with copula
copulaedas Estimation of distribution, Algorithms based on copulas
CDVine Statistical inference of C- and D-vine copulas
qcmr Gaussian copula marginal regression
nacopula Nested Archimedean copulas
qrm Quantitative risk managment
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Graphical interpretation 2: Commands in R

Generating a sample of size 10000 of:

a bivariate normal distribution H(x , y) with standard normal N(0, 1)
marginals and correlation coefficient ρ has density

φ2,ρ(x , y) =
1

2π
√

1− ρ2
exp

(
− 1

2(1− ρ2)
[x2 + y2 − 2ρxy ]

)
;

corresponding copula C (u, v) via Sklar’s theorem with ρ = 0.7.

1 l i b r a r y ( mvtnorm )
2 #Step 1 : G e n e r a t i n g a sample from H
3 c1<−c ( 1 , . 7 ) ; c2<−c ( . 7 , 1 ) ; R=c b i n d ( c1 , c2 )
4 sample <− rmvnorm ( n=10000 , mean=c ( 0 , 0 ) , s igma=R)
5 p l o t ( sample [ , 1 ] , sample [ , 2 ] , x l a b=” x ” , y l a b=” y ” , pch=” . ” , cex =1.5 , main=” Sample from H

” )
6
7 #Step 2 : G e n e r a t i n g a sample from C v i a S k l a r ’ s Theorem
8 sample . c o p u l a=pnorm ( sample )
9 p l o t ( sample . copu la , x l a b=”u” , y l a b=” v ” , pch=” . ” , cex =1.5 , main=” Sample from C” )

Nikolai Kolev, Leandro Ferreira and Rafael Aguilera Dependence Analysis via Copulas
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Standard bivariate Normal distribution and its copula

Scatterplot of a sample of size 10000
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Comments

Copula contains all the information about the dependence
structure independent of marginal influence since

C (F (x),G (y)) = H(x , y);

Copulas enable us to model marginal distributions and the
dependence structure separately;

Copulas provide modelling flexibility: given a copula we can
obtain many multivariate distributions by selecting different
marginal distributions;

Any bivariate distribution can be used to construct a copula:
C (u, v) = H

(
F−1(u),G−1(v)

)
.
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Example 1 - symmetric bivariate Gumbel distribution

Symmetric (H(x , y) = H(y , x)) bivariate Gumbel distribution

H(x , y) = [1 + exp (−x) + exp (−y)]−1 ,

for all x , y ∈ [−∞,+∞] ;

The marginal distribution of X is
F (x) = lim

y→∞
H(x , y) = [1 + exp(−x)]−1;

The inverse F−1(u) is the solution of u = F (x), i.e.

F (x) = [1 + exp(−x)]−1 = u ⇒ exp(−x) =
1

u
− 1 =

1− u

u
.

and therefore,

x = − ln

(
1− u

u

)
= F−1(u).

Nikolai Kolev, Leandro Ferreira and Rafael Aguilera Dependence Analysis via Copulas
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Example 1 - copula of bivariate Gumbel distribution

By analogy, y = − ln
(

1−v
v

)
= G−1(v);

In H(x , y) = [1 + exp (−x) + exp (−y)]−1 we substitute
x = F−1(u) and y = G−1(v) to get

C (u, v) = H
(
F−1(u),G−1(v)

)
=
{

1 + exp
[
ln( 1−u

u )
]

+ exp
[
ln( 1−v

v )
])
}−1;

Thus, the copula of bivariate symmetric Gumbel distribution is

C (u, v) =

{
1 +

1− u

u
+

1− v

v

}−1

=
uv

u + v − uv
.
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Example 1 - Graphs of bivariate Gumbel distribution

Bivariate Gumbel distribution and its copula

Scatterplot of a sample of size 10000
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Example 2 - copula of asymmetric distribution

Consider the asymmetric distribution (H(x , y) 6= H(y , x))

H(x , y) =


(x+1)[exp(y)−1]
x+2 exp(y)−1 , if (x , y) ∈ [−1, 1]× [0,∞],

1− exp(−y), if (x , y) ∈ (1,∞)× [0,∞],

0, elsewhere.

(1)

The distribution function of the marginal variable X is

F (x) =


0, if x < −1,
x+1

2 , if x ∈ [−1, 1],

1, elsewhere,

i.e., X ∼ U(−1, 1). Therefore, x = F−1(u) = 2u − 1.

Nikolai Kolev, Leandro Ferreira and Rafael Aguilera Dependence Analysis via Copulas
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Example 2 - copula of asymmetric distribution

The distribution function of the random variable Y is

G (y) =

{
0, if y < 0,

1− exp (−y) , elsewhere,

i.e., Y ∼ Exp (1) and y = G−1(v) = − ln(1− v);

Substituting solutions x = F−1(u) = 2u − 1 and
y = G−1(v) = − ln(1− v) in H(x , y), given by (1), we obtain

C (u, v) =

{
1 +

1− u

u
+

1− v

v

}−1

=
uv

u + v − uv
.
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Conclusion: symmetric and asymmetric distributions with
the same copula, i.e. having the same dependence
structure ???

The symmetric bivariate Gumbel logistic distribution

H(x , y) = [1 + exp (−x) + exp (−y)]−1
, for all x , y ∈ [−∞,+∞]

and the asymmetric distribution

H(x , y) =


(x+1)[exp(y)−1]
x+2 exp(y)−1 , if (x , y) ∈ [−1, 1]× [0,∞],

1− exp(−y), if (x , y) ∈ (1,∞)× [0,∞],

0, elsewhere

share the same copula C (u, v) = H(F−1(u),G−1(v)) = uv
u+v−uv ;

Mathematically correct, but confusing! Believe in to the same

dependence structure.
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Fréchet-Hoeffding bounds for the joint distribution H(x , y)

The bounds for the distribution function H(x , y) are given by

max(F (x) + G (y)− 1, 0) ≤ H(x , y) ≤ min(F (x),G (y));

In absence of information about genuine dependence, the
joint distribution can be bounded by functions of marginals;

These bounds can also be written in terms of copulas as

max(u + v − 1, 0) ≤ C (u, v) ≤ min(u, v),

(use the relations F (x) = u, G (y) = v and
C (u, v) = H(F−1(u),G−1(v)));

These bounds can be sharper under additional information
(about the value of correlation coefficient, for example).
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Comonotonic copula M(u, v)

The upper Fréchet-Hoeffding bound is the copula
M(u, v) = P(U ≤ u,V ≤ v) = min(u, v), i.e. U = V almost
surely and U and V are called comonotonic (meaning that
they possess the highest possible positive dependence);
The graph of the copula M(u, v) = min(u, v) is given below.
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Countermonotonic copula W (u, v)

The lower Fréchet-Hoeffding bound is the copula
W (u, v) = P(U ≤ u,V ≤ v) = max(u + v − 1, 0);
In this case, U = 1− V almost surely, and U and V are
named countermonotonic, meaning that U and V exhibit
the extreme possible negative dependence;
The graph of the copula W (u, v) = max(u + v − 1, 0) is given
below.
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Independent copula and level curves

The copula representing the independence structure between
U and V is given by
Π(u, v) = P(U ≤ u,V ≤ v) = P(U ≤ u)P(V ≤ v) = uv ;

The independent copula Π(u, v) characterizes the
independence between U and V ;

Let H1(x , y) and H2(x , y) have the same marginal
distributions F (x) and G (y)

- If X and Y are independent, then
Hi (x , y) = F (x)G (y), i=1,2 ;

- But the product F (x)G (y) does not characterize
independence uniquelly.

Nikolai Kolev, Leandro Ferreira and Rafael Aguilera Dependence Analysis via Copulas



Introduction
Copula basics

Dependence measures
Copula families

Estimation and model fitting
Real data analysis: Option pricing via Copulas

Level curves

Some level curves are presented for the copulas M, Π and
W , i.e., curves such that C (u, v) = a = constant in [0, 1].
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Copula invariance under increasing transformation

Let X and Y be continuous random variables and let CXY (u, v) be
its respective copula.

Copula invariance

If α(x) and β(y) are strictly increasing functions in DomX and
DomY , then

Cα(X ),β(Y )(u, v) = CXY (u, v),

i.e., CXY (u, v) is invariant under strictly increasing
transformation of X and Y .
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Invariance proof

Proof.

Denote by F1, G1, F2 and G2 the distribution functions of X , Y ,
α(X ) and β(Y ), respectively.
Since α(x) and β(y) are strictly increasing functions,
F2(x) = P[α(X ) ≤ x ] = P[X ≤ α−1(x)] = F1(α−1(x)).
Analogously, G2(y) = G1(β−1(y)).
Therefore, for all (x , y) in <2 we have

Cα(X ),β(Y )(F2(x),G2(y)) = P[α(X ) ≤ x , β(Y ) ≤ y ]
= P[X ≤ α−1(x),Y ≤ β−1(y)]

= CXY (F1(α−1(x)),G1(β−1(y))) = CXY (F2(x),G2(y))

Since X and Y are continuous, DomF2 = DomG2 = [0, 1].
Therefore, Cα(X ),β(Y )(u, v) = CX ,Y (u, v) in [0, 1]2.

Nikolai Kolev, Leandro Ferreira and Rafael Aguilera Dependence Analysis via Copulas
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Example 3a: linear and compounded returns

Consider the linear (Rn) and compound (Cn) returns of
prices (Pn,t) between times t and t + 1 for the same stocks

Rn ≡
Pn,t+1

Pn,t
− 1, Cn ≡ ln(

Pn,t+1

Pn,t
);

These two types of returns, although calculated on the same
stock prices, are different: Rn = eCn − 1 and Cn = ln(1 + Rn);

For example, if stock prices distribution HP is a
multivariate log-normal distribution, linear returns
distribution HR follow a multivariate shifted lognormal
distribution and compounded returns HC follow a
multivariate normal distribution.
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Example 3a: graphical interpretation
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Example 3a: graphical interpretation
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Example 3a: graphical interpretation
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Example 3a: graphical interpretation
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Example 3a: conclusions

Since Rn = eCn − 1 is an increasing transformation α(Cn)
and Cn = ln(1 + Rn) is as increasing transformation β(Rn)
then CRn,Cn(u, v) = Cβ(Rn),α(Cn)(u, v);

Thus, the copula that joins the linear returns and the copula
that joins the compounded returns is the same.
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Example 3a: Commands in R for bivariate Gumbel

Let H1(x , y) be a bivariate Gumbel distribution with copula C(u, v) = uv
u+v−uv

,

applying the increasing transformations ex − 1 for marginals obtaining a new
distribution H2(x , y) with the same copula C(u, v).

1 s c a t t e r h i s t = f u n c t i o n ( x , y , x l a b=”” , y l a b=”” , x l=NULL , y l=NULL ,m=NULL){
2 p l o t ( x , y , x l a b=x l , y l a b=y l , pch=” . ” , cex =1.5 , main=m)
3 h i s t ( x , f r e q=FALSE , x l a b=x l , main=x l )
4 h i s t ( y , f r e q=FALSE , x l a b=y l , main=y l )
5 }
6
7 #G e t t i n g a sample from H1
8 H1=sample . gumbel (10000)
9 s c a t t e r h i s t (H1 [ , 1 ] , H1 [ , 2 ] , x l a b=”F1” , y l a b=”G1” )

10
11 #G e t t i n g a sample from Copula u s i n g m a r g i n a l s from H1
12 H1 . c o p u l a = 1/(1+ exp(−H1) )
13 s c a t t e r h i s t (H1 . c o p u l a [ , 1 ] , H1 . c o p u l a [ , 2 ] , x l a b=”U” , y l a b=”V” )
14
15 #G e t t i n g a sample from H2 v i a t r a n s f o r m a t i o n
16 H2 = exp (H1) − 1
17 s c a t t e r h i s t (H2 [ , 1 ] , H2 [ , 2 ] , x l=c ( 0 , 5 0 ) , y l=c ( 0 , 5 0 ) , x l a b=”F2” , y l a b=”G2” )
18
19 #G e t t i n g a sample from Copula u s i n g m a r g i n a l s from H2
20 H2 . c o p u l a =(H2+1)/ (H2+2)
21 s c a t t e r h i s t (H2 . c o p u l a [ , 1 ] , H2 . c o p u l a [ , 2 ] , x l a b=”U” , y l a b=”V” )

Nikolai Kolev, Leandro Ferreira and Rafael Aguilera Dependence Analysis via Copulas



Introduction
Copula basics

Dependence measures
Copula families

Estimation and model fitting
Real data analysis: Option pricing via Copulas

Example 3a: Graphs for bivariate Gumbel
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Copula of increasing/decreasing transformations

Analogously, we have the following relations:
1 If α(x) is strictly increasing in DomX and β(y) is strictly

decreasing in DomY , then
Cα(X ),β(Y )(u, v) = u − CXY (u, 1− v);

2 If α(x) is strictly decreasing in DomX and β(y) is strictly
increasing in DomY , then
Cα(X ),β(Y )(u, v) = v − CXY (1− u, v);

3 If α(x) and β(y) are strictly decreasing in DomX and
DomY , then Cα(X ),β(Y )(u, v) = u + v − 1 +CXY (1− u, 1− v).
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Conditional copula

cu(v) = P(V ≤ v|U = u)

= lim
∆u→0

P(V ≤ v|u ≤ U ≤ u + ∆u)

= lim
∆u→0

P(V ≤ v,U ≤ u + ∆u)− P(V ≤ v,U ≤ u)

P(u ≤ U ≤ u + ∆u)

= lim
∆u→0

C(u + ∆u, v)− C(u, v)

∆u

=
∂

∂u
C(u, v) = C(v|u)

Definition (Conditional copula)

Conditional copula in u: cu(v) = ∂C(u,v)
∂u

= P(V ≤ v |U = u) and conditional copula

in v : cv (u) = ∂C(u,v)
∂v

= P(U ≤ u|V = v).

Let us calculate cu(v) of copula C(u, v) = uv
u+v−uv

.

cu(v) = ∂
∂u

(
uv

u+v−uv

)
= v(u+v−uv)−uv(1−v)

(u+v−uv)2 = v2

(u+v−uv)2 .
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Generating random variables using conditional copulas

P(U ≤ u,V ≤ v) = P(U ≤ u)︸ ︷︷ ︸P(V ≤ v |U = u)︸ ︷︷ ︸
u · cu(v) = t

⇒ v = c−1
u (t)

Generating random variables using conditional copulas

To generate one observation of a given copula C (u, v):

1 generate two standard uniform observations u and t;

2 fix v = c−1
u (t), where c−1

u (t) is inverse of conditional copula
cu(t);

3 (u, v) is the required observation.
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Example 3b

To generate observation of copula C (u, v) = uv
u+v−uv : we

proceed as follows:
1 calculate cu(v) = ∂C(u,v)

∂u = ( v
u+v−uv )2;

2 generate two independent standard uniform random variables u
and t ;

3 from t = cu(v) obtain v = c−1
u (t) = u

√
t

1−(1−u)
√
t
;

4 set v = u
√
t

1−(1−u)
√
t
;

5 (u, v) is the required observation of (U,V ).
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Example 3b: Commands in R

The R code of previously algorithm is given below.

1 #s e t t h e s i z e o f sample
2 n <− 10000
3 #s e t u n i f o r m s
4 u <− r u n i f ( n )
5 t <− r u n i f ( n )
6
7 #f i x v u s i n g t h e c o n d i t i o n a l c o p u l a i n v e r s e
8 v <− u
9 f o r ( i i n 1 : n ){

10 v [ i ]=u [ i ]∗ s q r t ( t [ i ] ) /(1−(1−u [ i ] )∗ s q r t ( t [ i ] ) )
11 }
12 #s c a t t e r p l o t o f a sample (U, V) r e q u i r e d
13 p l o t ( u , v , x l a b=”U” , y l a b=”V” , pch = ” . ” , cex = 1 . 5 )
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Example 3b: Graphs

Scatterplot of a copula C(u, v) = uv
u+v−uv

obtained by previously algorithm.

Sample of size 10000
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Application: Monte Carlo integration using copulas

Aim: to obtain the expected value of a continuous function
q(x , y) of a bivariate random vector (X ,Y ) having joint
distribution H(x , y), i.e.

E (q(X ,Y )) =

∫ ∞
y=−∞

∫ ∞
x=−∞

q(x , y)dH(x , y);

Given the copula C (u, v) = H(F−1(v),G−1(v)) and marginal
distributions F (x) = lim

y→∞
H(x , y) and G (y) = lim

x→∞
H(x , y),

we can use the following algorithm to approximate the value
of E (q(X ,Y )):

1 generate n observations of the bivariate random vector (X ,Y );
2 for each observation i , calculate qi = q(xi , yi ), i = 1, 2, ..., n;
3 E (q(X ,Y )) ≈ 1

n

∑n
i=1 qi
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Example 4

1 Let (X ,Y ) is the Gumbel bivariate distributed, i.e.

H(x , y) = [1 + exp (−x) + exp (−y)]−1 .

2 Marginal inverses are F−1(u) = − ln
(

1−u
u

)
and

G−1(v) = − ln
(

1−v
v

)
;

3 We intend to estimate E (q(X ,Y )), where
q(x , y) =

√
x2 + y2;

4 The algorithm is presented in the sequel.
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Simulation for Example 4

1 For i = 1 to n do:
1 generate two standard uniform random variables ui and ti ;

2 fix vi = ui
√
ti

1−(1−ui )
√
ti

;

3 fix xi = − ln
(

1−ui
ui

)
and yi = − ln

(
1−vi
vi

)
;

4 calculate qi =
√
x2
i + y2

i

2 obtain E (
√
X 2 + Y 2) ≈ 1

n

∑n
i=1 qi .
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Commands in R for Example 4

1 #Example 4
2
3 n = 1000
4 q = 0
5 u = r u n i f ( n )
6 t = r u n i f ( n )
7 x = y = u
8
9 f o r ( i i n 1 : n ){

10 v [ i ]=u [ i ]∗ s q r t ( t [ i ] ) /(1−(1−u [ i ] )∗ s q r t ( t [ i ] ) )
11 x [ i ]=− l o g ((1−u [ i ] ) /u [ i ] )
12 y [ i ]=− l o g ((1−v [ i ] ) / v [ i ] )
13 q=q+s q r t ( x [ i ]ˆ2+ y [ i ] ˆ 2 )
14 }
15 E=q/n #E s t i m a t i o n o f e x p e c t e d v a l u e
16 E

The Result is E
(√

X 2 + Y 2
)
≈ 2.127499.
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Dependence measures

We will present four dependence measures between two
random variables X and Y : the Pearson linear correlation
coefficient and its local version, Kendall’s tau τ(X ,Y ),
Spearman’s rho ρ(X ,Y ) and Blest’s measure of rank
correlation ν(X ,Y );

The measures τ(X ,Y ), ρ(X ,Y ) and ν(X ,Y ) depend only on
the copula C (u, v) corresponding to (X ,Y ). Therefore, their
values do not change under strictly increasing
transformations of X and Y (since copula is time
invariant).
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Pearson linear correlation coefficient

Correlation coefficient should be used with caution when
working outside the class of elliptical distributions. It is
defined by

Corr(X ,Y ) =
Cov(X ,Y )√
Var(X )Var(Y )

;

Corr(X ,Y ) is defined only when we have finite variances
and it measures linear dependence and assumes values in
the interval [−1, 1];

If two random variables X and Y are independent, then
Corr(X ,Y ) = 0. The inverse statement is not always true.

Nikolai Kolev, Leandro Ferreira and Rafael Aguilera Dependence Analysis via Copulas



Introduction
Copula basics

Dependence measures
Copula families

Estimation and model fitting
Real data analysis: Option pricing via Copulas

Pearson linear correlation coefficient - some pitfalls

The Pearson linear correlation coefficient is invariant under
strictly increasing linear transformations, i.e.,

Corr(X ,Y ) = Corr(a1X + b1, a2Y + b2);

Corr(X ,Y ) 6= Corr(α(X ), β(Y )), for monotone increasing
non-linear functions α(x) and β(y).
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Pearson linear correlation coefficient - some pitfalls

It is not true that given two marginal distributions F (x) and
G (y) and a value for the Pearson linear correlation coefficient
it is always possible to obtain a bivariate distribution with
these characteristics (the statement is valid for elliptical
world);

We know that

max(F (x) + G (y)− 1, 0) ≤ H(x , y) ≤ min(F (x),G (y)),

W (x , y) ≤ H(x , y) ≤ M(x , y);

The following relations are valid

rmin = rW ≤ rH = Corr(X ,Y ) ≤ rM = rmax .
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Example - McNeil et al. (2005)

Consider two log-normally distributed random variables X
and Y , i.e., lnX ∼ N (0, 1) and lnY ∼ N (0, σ2);

It is important to note that if σ2 6= 1 then X and Y are not
of the same type, i.e., do not exist real constants a and b
such that X =d a + bY , i.e., X and Y are neither
comonotonic nor countermonotonic when σ2 6= 1.

Nikolai Kolev, Leandro Ferreira and Rafael Aguilera Dependence Analysis via Copulas



Introduction
Copula basics

Dependence measures
Copula families

Estimation and model fitting
Real data analysis: Option pricing via Copulas

Example - McNeil et al. (2005)

The maximum (rmax(X ,Y )) and minimum (rmin(X ,Y )) values that
Corr(X ,Y ) may assume in this case are given by the following expressions

rmax(X ,Y ) =
exp(σ)− 1√

(e − 1)(exp(σ2)− 1)
→

σ→∞
0

and

rmin(X ,Y ) =
exp(−σ)− 1√

(e − 1)(exp(σ2)− 1)
→

σ→∞
0;

The graph below illustrates the maximum and minimum values that
Corr(X ,Y ) may assume as a function of the parameter σ.
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Comments

Note how both limits tend fast to 0 as σ increases.

The graph shows that we may have comonotonic random
variables (maximally positive dependent) exhibiting values of
linear correlation coefficient close to 0;

Since comonotonicity is the strongest form of positive
dependence, this example provides a correction to the usual
view that small correlation imply weak dependence;

Therefore, the concept of Pearson linear correlation coefficient
is meaningless unless applied in the context of elliptical world.
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Local Pearson linear correlation coefficient

While the Pearson linear correlation coefficient

ρ(X ,Y ) =
E [(X − E [X ])(Y − E [Y ])]√

E [(X − E [X ])2]E [(Y − E [Y ])2]

is a number in [−1, 1], the local Pearson linear correlation
coefficient

ρlocal(x , y) =
E [(X − E (X |Y = y))(Y − E (Y |X = x))]√
E (X − E (X |Y = y))2E (Y − E (Y |X = x))2

is a surface depending of (x , y) and ρlocal(x , y) ∈ [−1, 1].
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Kendall’s tau

Definition: Kendall’s tau

The population version of Kendall’s tau, τ(X ,Y ), for the bivariate random vector
(X ,Y ) is defined as the difference between the probabilities of concordance and
discordance, i.e.,

τ(X ,Y ) = P[(X − X
′
)(Y − Y

′
) > 0]− P[(X − X

′
)(Y − Y

′
) < 0],

where (X
′
,Y
′
) is an independent copy of (X ,Y ).

Definition: sample version of Kendall’s tau

Let (X1,Y1), . . ., (Xn,Yn) be a sample of (X ,Y ). Denote by Ri and Si the ranks in
the sets X1, . . . ,Xn and Y1, . . . ,Yn, respectively, 1 ≤ i ≤ n. The sample version of
Kendall’s tau, τn, is given by

τn =
2

n2 − n

∑
1≤i<j≤n

sign(Ri − Rj )sign(Si − Sj ).
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Kendall’s tau

Theorem

Let (X ,Y ) be a vector of continuous random variables with copula
C (u, v). Then the population Kendall’s tau is given by

τ(X ,Y ) = 4

∫ 1

0

∫ 1

0
C (u, v)dC (u, v) − 1,

Note that if U,V ∼ U(0, 1), then

τ(X ,Y ) = 4E [C (U,V )]− 1.
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Spearman’s rho

Definition: Spearman’s rho, ρ(X ,Y )

The population Spearman’s rho, ρ(X ,Y ), for the vector (X ,Y ) is

ρ(X ,Y ) = 3P[(X − X
′
)(Y − Y

′
) > 0]− P[(X − X

′
)(Y − Y

′′
) < 0],

where (X ,Y ), (X
′
,Y
′
) and (X

′′
,Y
′′

) are independent copies of (X ,Y )
and X

′
and Y

′′
are independent.

Definition: sample version Spearman’s rho, ρn

The sample version ρn of Spearman’s rho is

ρn =
12

n3 − n

n∑
1=1

RiSi −
3(n + 1)

n − 1
.
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Spearman’s rho

Theorem

Let (X ,Y ) be a vector of continuous random variables with copula
C (u, v). Then population Spearman’s rho for (X ,Y ) is given by

ρ(X ,Y ) = 12

∫ 1

0

∫ 1

0

uvdC (u, v) − 3 = 12

∫ 1

0

∫ 1

0

C (u, v)dudv − 3.

Theorem

Let (X ,Y ) be a vector of continuous random variables, X ∼ F (x),
Y ∼ G (y), U =d F (X ) ∼ U(0, 1) and V =d G (Y ) ∼ U(0, 1) . Then

ρ(X ,Y ) =
Cov(U,V )√
Var(U)Var(V )

= Corr(F (X ),G (Y )).
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Spearman’s rho

Theorem

Let (X ,Y ) be a vector of continuous random variables with copula
C (u, v). Then the measure Spearman’s rho for (X ,Y ) is given by

ρ(X ,Y ) = 12

∫ 1

0

∫ 1

0
[C (u, v)− uv ]dudv .

This result provides a geometric interpretation for the
coefficient ρ(X ,Y ): it is proportional to the volume between
the surfaces of copula C (u, v) and independence copula
Π(u, v) = uv .
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The measures of Kendall, Spearman and Pearson

The classical non-parametric Kendall’s tau and Spearman’s
rho are preferable dependence measures than Corr(X ,Y ),
since they are invariant under increasing variable
transformations (since the corresponding copula is invariant);

If X and Y are continuous random variables with copula
C (u, v), then

C (u, v) = M(u, v) = min(u, v)⇔ τ(X ,Y ) = ρ(X ,Y ) = 1;

C (u, v) = W (u, v) = max(u+v−1, 0)⇔ τ(X ,Y ) = ρ(X ,Y ) = −1.
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Blest’s measure of rank correlation, ν

The sample versions of Kendalls tau and Spearman’s rho,

τn =
2

n2 − n

∑
1≤i<j≤n

sign(Ri − Rj)sign(Si − Sj)

and

ρn =
12

n3 − n

n∑
1=1

RiSi −
3(n + 1)

n − 1
,

attribute the same importance to the difference between
the ranks Ri − Si , i = 1, . . . , n;

Idea: The correlation in the pairs (Ri ,Si ) provides an idea of
consistency between two ranks and the difference between two
extreme ranks should be emphasized. Thus, Blest (2000)
proposed an alternative non-parametric correlation measure of
ranks.
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Blest’s measure of rank correlation, ν

Definition: sample version of Blest’s measure of rank correlation, νn

The sample version of Blest’s measure of rank correlation, νn, is

νn =
2n + 1

n − 1
− 12

n2 − n

n∑
1=1

Si

(
1− Ri

n + 1

)2

.

Definition: Population version of Blest’s measure of rank correlation, ν

The population Blest’s measure of rank correlationfor the vector (X ,Y )
is

ν(X ,Y ) = 2− 12
∫
<2

[
1− F 2(x)

]
G (y)dH(x , y)

= 2− 12
∫

[0,1]2 (1− u)2vdC (u, v),

where ν(X ,Y ) ∈ [0, 1].
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Blest’s measure of rank correlation, ν

The extreme values of νn occur when we have (Ri = Si ) or
(Ri = n + 1− Si );

Meanwhile is valid the property ν(X ,−Y ) = −ν(X ,Y );

Explicit expressions for ν(X ,Y ) can be obtained for several
bivariate distributions only.

Example. Suppose (X ,Y ) follows a bivariate standard normal
distribution with correlation coefficient r . Then
ν(X ,Y ) = ρ(X ,Y ) = 6

π arcsin( r
2 ), while τ(X ,Y ) = 2

π arcsin(r).

Nikolai Kolev, Leandro Ferreira and Rafael Aguilera Dependence Analysis via Copulas



Introduction
Copula basics

Dependence measures
Copula families

Estimation and model fitting
Real data analysis: Option pricing via Copulas

Gini measure

Population Kendall’s tau: τ(X ,Y ) = 4E [C(U,V )]− 1 = 4E [K(Z)]− 1.

Population Spearman’s rho: ρ(X ,Y ) = 12
∫ 1

0

∫ 1
0 [C(u, v)− uv ]dudv ,

i.e. both measures serve for ordinal variables X and Y (since copula is invariant on
increasing transformation).

But, when one variable is ordinal (say X ) and the other is nominal (say Y ),
then ρ(X ,Y ) and τ(X ,Y ) are not appopriate.

In this case, one can use Gini measure Γ(X ,Y ). If can be shown that

Cov [Y ,F (X )] = E [Y · F (X )]− E [Y ]
2
,

Γ(X ,Y )
def
=

Cov [Y ,F (X )]

Cov [Y ,G(Y )]
,

where

Cov [Y ,G(Y )] =
1

4
E [(Y1 − Y2)sign(Y1 − Y2)] =

1

4
E [Y1 − Y2],

with Y1 and Y2 being independent copies of Y .
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Coefficients of tail dependence

Definition: Upper tail dependence coefficient, λU

Let X and Y be two continuous random variables with copula C(u, v). The
upper tail dependence coefficient λU between X and Y is a property of the
copula C(u, v). It is defined by

λU = lim
u→1−

C(u, u)

1− u
= P(U ≥ u|V ≥ u) =

1− 2u + C(u, v)

1− u
,

provided the limit exists and belongs to the interval [0, 1].
C(u, v) is the survival copula, given by

C(1− u, 1− v) = 1− u − v + C(u, v).

If λU ∈ (0, 1], then X and Y display upper tail dependence, or extreme
dependence in the upper tail;

If λU = 0, X and Y are asymptotically independent in the upper tail.
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Coefficients of tail dependence

Definition: Lower tail dependence, λL

Let X and Y be two continuous random variables with copula
C (u, v). The lower tail dependence coefficient λL between X
and Y is defined by

λL = P(U ≤ u|V ≤ u) = lim
u→0+

C (u, u)

u
,

provided the limit exists and belong to the interval [0, 1].

If λL ∈ (0, 1], then X and Y display lower tail dependence,
or extreme dependence in the lower tail;

If λL = 0, X and Y are asymptotically independent in the
lower tail.
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Archimedean copulas

Definition (Archimedean copulas)

A copula C (u, v) belongs to the Archimedean family if

C (u, v) = ϕ(ϕ−1(u) + ϕ−1(v)) with (u, v) ∈ [0, 1]2,

for continuous, positive non-increasing and convex functions
ϕ : [0,∞)→ [0, 1] such that ϕ(0) = 1. The function ϕ(.) is
denominated generator function of the copula C (u, v).

Typical examples of Archimedean family are the Clayton,
Frank and Gumbel copulas presented in the sequel.
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Clayton copula

The Clayton copula is given by

Cα(u, v) = max[(u−α + v−α − 1)−
1
α , 0];

The generator function is ϕ(t) = 1
α(t−α − 1), where

α ∈ [−1,∞)\{0};
The relation between its parameter α and corresponding
Kendall’s tau τ = 4

∫ 1
0

∫ 1
0 C (u, v)dC (u, v)− 1 is given by

α = 2τ
1−τ ;

In this case, λL = 2−
1
α , for α > 0. So, Clayton copula

displays lower tail dependence, which tends to 1 as α→∞.
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Clayton copula - commands in R

1 l i b r a r y ( c o p u l a )
2
3 # C l a y t o n c o p u l a
4 cc <− c l a y t o n C o p u l a ( 2 )
5 sample <− r C o p u l a (10000 , cc )
6 #S c a t t e r p l o t
7 p l o t ( sample , x l a b=”U” , y l a b=”V” , pch = ” . ” , cex = 1 . 5 )
8
9 #D e n s i t y

10 p e r s p ( cc , dCopula , x l a b=”u” , y l a b=” v ” , z l a b=” c ( u , v ) ” )
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Clayton copula - scatterplot and copula density

Clayton copula with parameter α = 2
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Frank copula

The Frank copula is given by

Cα(u, v) = − 1

α
ln

{
1 +

(exp(−αu)− 1)(exp(−αv)− 1)

exp(−α)− 1

}
;

The generator function is ϕ(t) = −ln
{

(exp(−αt)−1)
exp(−α)−1

}
, where

α ∈ (−∞,∞)\{0};
The relation between its parameter α and Kendall’s tau (τ) is

D1(α)− 1

α
=

1− τ
4

, where D1(α) =
1

α

∫ α

0

t

exp(t)− 1
dt

(D1(α) is the Debye function of the first kind).
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Frank copula - commands in R

1 l i b r a r y ( c o p u l a )
2
3 #Frank Copula
4 f r <− f r a n k C o p u l a ( 1 0 )
5 sample <− r C o p u l a (10000 , f r )
6 #S c a t t e r p l o t
7 p l o t ( sample , x l a b=”U” , y l a b=”V” , pch = ” . ” , cex = 1 . 5 )
8
9 #D e n s i t y

10 p e r s p ( f r , dCopula , x l a b=”u” , y l a b=” v ” , z l a b=”C( u , v ) ” , shade =.0001)
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Frank copula - scatterplot and copula density

Frank copula with parameter α = 10
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Gumbel-Hougard copula

The Gumbel-Hougard copula is given by

Cα(u, v) = exp

{
−[(− ln u)α + (− ln v)α]

α−1
}

;

The generator function is given by ϕ(t) = (− ln t)α, where
α ∈ [1,∞);

The relation between its parameter α and Kendall’s τ is
α = 1

1−τ ;

λU = 2− 2
1
α . If α > 1, the copula displays upper tail

dependence. This dependence tends to 1 as α→∞, (what
is to be expected, since in this situation, the Gumbel-Hougard
copula tends to the comonotonic copula).
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Gumbel copula - commands in R

1 l i b r a r y ( c o p u l a )
2
3 # Gumbel c o p u l a
4 gu <− gumbelCopula ( 4 )
5 sample <− r C o p u l a (10000 , gu )
6 #S c a t t e r p l o t
7 p l o t ( sample , x l a b=”U” , y l a b=”V” , pch = ” . ” , cex = 1 . 5 )
8
9 #D e n s i t y

10 p e r s p ( gu , dCopula , x l a b=”u” , y l a b=” v ” , z l a b=”C( u , v ) ” )
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Gumbel copula - scatterplot and copula density

Gumbel-Hougard copula with parameter α = 4
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Standard univariate normal distribution

The distribution function of a random variable X that follows
a standard normal N(0, 1) distribution is given by

Φ(x) = P(X ≤ x) =
1√
2π

∫ x

−∞
exp(−t2/2)dt
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Bivariate normal distribution

The density function of a random vector (X ,Y ) that follows a
standard bivariate normal distribution with correlation
coefficient ρ is given by

φ2,ρ(x , y) =
1

2π
√

1− ρ2
exp

(
− 1

2(1− ρ2)

[
x2 + y2 − 2ρxy

])
,

where −∞ < x <∞, −1 ≤ ρ ≤ 1 and X ,Y ∼ N(0, 1);

The corresponding joint distribution function is given by

Φ2,ρ(x , y) = P(X ≤ x ,Y ≤ y) =

∫ x

−∞

∫ y

−∞
φ2,ρ(u, v)dudv .
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Univariate t−Student distribution

A random variable η follows the Student−t distribution with

ν degrees of freedom whenever it can be written as η
d
= X√

ξ
ν

,

X ∼ N (0, 1) and is independent of ξ ∼ χ2
ν ;

The density function is given by

tν(x) =
Γ
(
ν+1

2

)
√
νπΓ

(
ν
2

)(1 +
x2

ν

)− ν+1
2

,

where x ∈ < and ν > 0.
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Bivariate t-Student distribution

A random vector T = (T1,T2) follows a bivariate t-Student
distribution with ν degrees of freedom whenever it can be written
as

(T1,T2) =

 X√
ξ
ν

,
Y√
ξ
ν

 .

The bivariate random vector (X ,Y ) has standard bivariate normal
distribution with correlation coefficient ρ being independent of
ξ ∼ χ2

ν ;

The joint density function is given by

tν,ρ(x , y) =
1

2π
√

1− ρ2

{
1 +

x2 − 2ρxy + y2

ν(1− ρ2)2

}− ν+2
2

,

where x , y ∈ (−∞,∞), ρ ∈ [−1, 1].
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Elliptical distributions

The name ”elliptical” comes from the elliptical (sum of
squares) form of the level curves of the joint density
function, i.e., f (x , y) = a = constant;

The bivariate random vector Z = (Z1,Z2) follows a spherical
distribution if and only if its characteristic function can be
represented by E [exp(itTZ )] = ψ(z2

1 + z2
2 ), t ∈ <2, for some

function ψ : < → <;

The bivariate random vector W = (W1,W2) follows a
elliptical distribution if W = µ+ AZ, where µ ∈ <2,
A ∈ <2 ×<2 and Z follows a spherical distribution;

Particular cases of elliptical distributions are the bivariate
normal as well as the bivariate t-Student distributions.
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Elliptical copulas

Elliptical copulas became very popular in finance and risk
management because they are easily implemented. The ease in
obtaining the marginal distribution functions is another advantage
when one uses this elliptical copulas for forecast, see Frees e Wang
(2005);

”Elliptical” because they are associated with a quadratic form of
correlation coefficient between the marginals. It means, the
elliptical family of copulas is symmetric. The dependence structure
is determined by the correlation matrix;

The Gaussian copula and the t-copula are particular cases of
elliptical copulas, with dispersion matrix inherited from the
elliptical distributions (correlation coefficient ρ). The t-copula
possesses an additional degrees of freedom parameter ν, which
modify the shape of the copula for given level of dependence
governed by ρ.
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Bivariate Gaussian copula

The bivariate Gaussian copula with parameter ρ ∈ [−1, 1] is
given by

Cρ(u, v) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞
φ2,ρ(x , y)dxdy ,

where φ2,ρ(x , y) = 1

2π
√

1−ρ2
exp

(
− 1

2(1−ρ2)

[
x2 + y2 − 2ρxy

])
and Φ−1(·) is the inverse of standard normal distribution;

The relation between Kendall’s tau and the correlation
coefficient is ρ = sin(π2 τ), i.e. τ = 2

π arcsin ρ.
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Tail dependence of Gaussian copula

Due to symmetry of Gaussian copula we have equal upper and
lower tail dependence coefficients, i.e. λU = λL = λ with

λ = 2 lim
x→−∞

Φ

(
x
√

1− ρ√
1 + ρ

)
= 0.

Interpretation: Independently of the value of the correlation
coefficient, asymptotically the Gaussian copula displays
independence in both tails, meaning that regardless of how
high a correlation coefficient we choose, if we go far enough into
the tail, extreme events appear to occur independently in
each margin.
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Density of a bivariate copula

To calculate the density c(u, v) of a bivariate copula proceed as follows

c(u, v) =
∂2

∂u ∂v
C (u, v) =

∂2

∂u ∂v
H(F−1(u),G−1(v)) =

h(F−1(u),G−1(v))

f (F−1(u))g(G−1(v))
.

Therefore,

If we know the bivariate density h(x , y), then we can obtain f (x),
F−1(x), g(y) and G−1(y), to calculate

c(u, v) =
h(F−1(u),G−1(v))

f (F−1(u))g(G−1(v))
;

If we know copula density c(u, v) and the marginal densities
f (x) and g(y), we can calculate F (x) and G (y). Thus,

h(x , y) = c(F (x),G (y))f (x)g(y).
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Density of the bivariate Gumbel logistic copula

The copula corresponding to the bivariate Gumbel logistic
distribution is given by

C (u, v) = H(F−1(u),G−1(v)) =
uv

u + v − uv
;

Its density function is

c(u, v) =
∂2

∂u ∂v

(
uv

u + v − uv

)
=

2uv

(u + v − uv)3
.
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Density of bivariate Gaussian copula

The density function cρ(u, v) of a bivariate Gaussian copula is

obtained by calculating ∂2

∂u∂v Cρ(u, v);

Therefore

cρ(u, v) =
∂2

∂u∂v

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞
φ2,ρ(x , y)dxdy ;

Thus, if bivariate Gaussian density is φ2,ρ, the corresponding copula
density is given by

cρ(u, v) =
φ2,ρ[Φ−1(u),Φ−1(v)]

φ[Φ−1(u)]φ[Φ−1(v)]
;

If we know the copula density and the marginal densities then
h(x , y) = c(F (x),G (y))f (x)g(y) and we are able to reconstruct the
bivariate Gaussian density function from the relation
φ2,ρ(x , y) = cρ(Φ(x),Φ(y))φ(x)φ(y).
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R code to visualize the density functions of a standard
bivariate normal distribution and its copula

1 l i b r a r y ( mvtnorm )
2 d=2; x = seq (−3 ,3 ,6∗ . 0 2 5 ) ; x . cop = seq ( 0 , 1 , . 0 2 5 )
3 #C o v a r i a n c e m a t r i x
4 c1<−c ( 1 , . 7 ) ; c2<−c ( . 7 , 1 ) ; R=c b i n d ( c1 , c2 )
5 dens = dens . cop = dens2 = dens3 = m a t r i x ( 0 , nrow=l e n g t h ( x ) , n c o l=l e n g t h ( x ) )
6
7 #C a l c u l a t i n g d e n s i t i e s o f d i s t r i b u t i o n s
8 f o r ( i i n 1 : dim ( dens ) [ 1 ] )
9 { f o r ( j i n 1 : dim ( dens ) [ 2 ] )

10 {dens [ i , j ] = dmvnorm ( x=c ( x [ i ] , x [ j ] ) , mean=r e p ( 0 , d ) , s igma=R)
11 dens . cop [ i , j ] = dmvnorm ( x=c ( qnorm ( x . cop [ i ] ) , qnorm ( x . cop [ j ] ) ) , mean=r e p ( 0 , d ) ,

s igma=R) / ( dnorm ( qnorm ( x . cop [ i ] ) )∗dnorm ( qnorm ( x . cop [ j ] ) ) )}}
12
13 #D e n s i t y o f a s t a n d a r d b i v a r i a t e normal d i s t r i b u t i o n
14 p e r s p ( x , x , dens , x l a b=” x ” , y l a b=” y ” , z l a b=” f ( x , y ) ” , shade = 0 . 7 5 )
15 #D e n s i t y o f normal c o p u l a
16 p e r s p ( x . cop , x . cop , dens . cop , x l a b=”u” , y l a b=” v ” , z l a b=” c ( u , v ) ” , shade = 0 . 7 5 )
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Graph of the standard bivariate normal density function

The density φ2,ρ(x , y) of a standard bivariate normal distribution,
with ρ = 0.7
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Graphs of two standard univariate normal densities

divided by the product of the corresponding marginal standard
normal densities φ(x) and φ(y) ...
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Graph of the Gaussian copula density

provides the Gaussian copula density

cρ(u, v) =
φ2,ρ(Φ−1(u),Φ−1(v))

φ(Φ−1(u))φ(Φ−1(v))
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Summarizing

The standard bivariate normal density φ2,ρ divided by the product
of the corresponding marginal standard normal density functions

results in the bivariate Gaussian copula density cρ(u, v)
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Generating a density of new bivariate distribution

If we multiply the bivariate Gaussian copula density cρ(u, v) by two
arbitrarily density functions we will obtain a new bivariate density

function: h(x , y) = cρ(F (x),G (y))f (x)g(y). It keeps the
dependence structure of the standard bivariate normal distribution

but the marginal distributions are just F (x) and G (y)
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Generating a density of new bivariate distribution

Commands in R to generating a density of a new bivariate
distribution with gamma(5,1) and N(0, 1) marginals

1 #C a l c u l a t i n g d e n s i t i e s o f d i s t r i b u t i o n s
2 f o r ( i i n 1 : dim ( dens ) [ 1 ] )
3 { f o r ( j i n 1 : dim ( dens ) [ 2 ] )
4 {#u s i n g normal and normal as m a r g i n a l s
5 dens2 [ i , j ]= dens . cop [ i , j ]∗( dnorm ( x [ i ] )∗dnorm ( x [ j ] ) )
6 #u s i n g gamma and normal as m a r g i n a l s
7 dens3 [ i , j ]= dens . cop [ i , j ]∗(dgamma( x [ i ] , shape =5, s c a l e =1)∗dnorm ( x [ j ] ) )}}
8
9 #D e n s i t y o f t h e d e n s i t y u s i n g normal m a r g i n a l s

10 p e r s p ( x , x , dens2 , x l a b=” x ” , y l a b=” y ” , z l a b=” f ( x , y ) ” )
11 #D e n s i t y o f t h e d e n s i t y u s i n g gamma and normal m a r g i n a l s
12 p e r s p ( x , x , dens3 , x l a b=” x ” , y l a b=” y ” , z l a b=” f ( x , y ) ” , x l i m=c (−3 ,3) , y l i m=c (−3 ,3) , t h e t a

=80, shade = 0 . 7 5 , expand =0.8)
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Bivariate t-copula

The bivariate t-copula is given by

Cν,ρ(u, v) = Tν,ρ(T−1
ν (u),T−1

ν (v)),

where ρ ∈ [−1, 1], Tν(.) is the univariate distribution function
of a random variable that follow the t-Student distribution
with ν degrees of freedom and Tν,ρ(., .) is the joint
distribution function of a random bivariate vector
T = (T1,T2) that follows a bivariate t-Student distribution
with ν degrees of freedom;

The corresponding bivariate t-copula density is

cν,ρ(u, v) =
tν,ρ(T−1

ν (u),T−1
ν (v))

tν(T−1
ν (u))tν(T−1

ν (v))
.
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Tail dependence of t-copula

Due to the symmetry of t-copula for tail dependence coefficient
we have

λU = λL = λ = 2Tν+1

(
−

√
(ν + 1)(1− ρ)

1 + ρ

)
,

when Tν+1 means the distribution function of a random variable
that follows t-Student distribution with ν + 1 degrees of freedom.

Provided ρ > −1, t-copula is asymptotically dependent in both
tails.
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Bivariate t-copula

The Kendall’s tau τ = 4
∫ 1

0

∫ 1
0 Cν,ρ(u, v)dCν,ρ(u, v)− 1 is

2
π arcsin(ρ), i.e. the same expression as the Gaussian copula
with correlation coefficient ρ;

Just like the univariate t-Student distribution, the degrees of
freedom ν control the weight in the tails, i.e., the
smaller ν the heavier the tails (modify the copula shape);

A bivariate Gaussian copula with correlation coefficient ρ can
be considered as the limiting case of a bivariate t-copula with
the same parameter ρ, when ν →∞.

Nikolai Kolev, Leandro Ferreira and Rafael Aguilera Dependence Analysis via Copulas



Introduction
Copula basics

Dependence measures
Copula families

Estimation and model fitting
Real data analysis: Option pricing via Copulas

Bivariate t-copula: Commands in R

1 l i b r a r y ( c o p u l a )
2
3 #The b i v a r i a t e t c o p u l a
4 t c<− tCopu la ( 0 . 8 , dim=2, d i s p s t r = ”un” , d f = 1)
5 sample <− r C o p u l a (10000 , t c )
6
7 #S c a t t e r p l o t
8 p l o t ( sample , x l a b=”u” , y l a b=” v ” , pch = ” . ” , cex = 1 . 5 )
9

10 #D e n s i t y
11 p e r s p ( tc , dCopula , x l a b=”u” , y l a b=” v ” , z l a b=” c ( u , v ) ” , shade =0.35)
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Bivariate t-copula - scatterplot and density

Bivariate t-copula with parameters ρ = 0.8 and ν = 1
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Other examples of copulas

Besides the families of copulas we have already seen there are
others that exhibit tail dependence (frequently used in
practice). We will consider

Rotated Gumbel Copula (lower tail);

Symmetrized Joe-Clayton Copula (upper and lower tail).
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Rotated Gumbel copula

The Rotated Gumbel copula is given by

CRG (u, v |α) = u + v − 1 + Cα(1− u, 1− v |α),

where α ∈ [1,+∞) and Cα is the Gumbel-Hougard copula,
which is given by

Cα(u, v) = exp

{
−[(− ln u)α + (− ln v)α]

α−1
}

;

This copula exhibits only lower tail dependence.
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Rotated Gumbel copula: Commands in R

1 l i b r a r y ( ”CDVine” )
2 # s i m u l a t e from a b i v a r i a t e Rotated−Gumbel (90 d e g r e e s ) c o p u l a
3 rg90 = BiCopSim (10000 ,24 ,−3)
4 p l o t ( rg90 , x l a b=”U” , y l a b=”V” , pch = ” . ” , cex =1.5)
5
6 # s i m u l a t e from a b i v a r i a t e Rotated−Gumbel (270 d e g r e e s ) c o p u l a
7 rg270 = BiCopSim (10000 ,34 ,−3)
8 p l o t ( rg270 , x l a b=”U” , y l a b=”V” , pch = ” . ” , cex =1.5)
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Rotated Gumbel copula - scatterplot

Rotated Gumbel copula with α = 90 and α = 270

Scatterplot of a sample of size 10000
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Symmetrized Joe-Clayton copula

The Symmetrized Joe-Clayton copula CSJC is given by

CSJC (u, v |τU , τL) =
1

2
· [CJC (u, v |τU , τL)

+CJC (1− u, 1− v |τU , τL) + u + v − 1],

where CJC is the Joe-Clayton copula represented by

CJC (u, v |τU , τL) = 1− (1− {[1− (1− u)κ]−γ

+[1− (1− v)κ]−γ − 1}−1/γ)−1/κ,

with κ = 1/ log2(2− τU), γ = −1/ log2(τL) and τU , τL ∈ (0, 1).

The SJC has both upper and lower tail dependence parameters. Its
own dependence parameters, τU and τL, are the measures of dependence
of the upper and lower tail, respectively. Furthermore, τU and τL range
freely and are not dependent on each other.
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Power copula

Let C be an arbitrary copula and define the power copula PC

as following

PC (u, v) = uθ1vθ2C (u1−θ1 , v1−θ2),

where the parameters θ1, θ2 ∈ [0, 1].

When we choose θ1 = θ2 = 0 then PC (u, v) = C (u, v).

In financial derivatives, for example, the parameters θ1 and θ2

control the slope and the curvature of the implied
volatility smile.
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Comparison of a Gaussian copula and Power Gaussian copula densities

Gaussian copula,

ρ = 0.7.

Power Gaussian copula,

ρ = 0.7, θ1 = 0.7 and θ2 = 0.3.
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Scatterplot of Power Gaussian copula

Sampling of Power Gaussian copula,

ρ = 0.7, θ1 = 0.7 and θ2 = 0.3.
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Example: Marshall-Olkin copula

If our base copula is

M(u, v) = min(u, v),

then the resulting power copula is

PM(u, v) = uθ1vθ2 min
(
u1−θ1 , v1−θ2

)
,

being the Marshall-Olkin copula.
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Kendall distribution

Recall that, according to Probability Integral Transform

U = F (X ) ∼ U(0, 1), i.e. P(U ≤ w) = w

”Bivariate Prob. Int. Transform” is the Kendall distribution

K (w) = P[H(X ,Y ) ≤ w) = P[C (X ,Y ) ≤ w), w ∈ [0, 1];

K (w) is univariate summary of dependence embodied in C ;

K (w) depends only on the copula C associated with H, and hence
not on the marginals F and G ;

w ≤ K (w) ≤ 1, w ∈ [0, 1];

If U and V are independent the

K (w) = P(UV ≤ w) = w − w log(w);

In general, K (w) 6= w , i.e. H(X ,Y ) is not U(0, 1).
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Empirical copula and empirical Kendall distribution

Let (X1,Y1), . . . , (Xn,Yn), n ≥ 2, be a random sample of a continuous
distribution and let X(i) and Y(j) be the order statistics of the sample.

The empirical copula Cn is defined as

Cn =
1

n

(
number of points (Xm,Ym) such that Xm ≤ X(i) and Ym ≤ Y(j)

)
.

An equivalent form of empirical copula is given by

Cn(u, v) =
1

n

n∑
i=1

1(ui ≤ u, vi ≤ v),

where 1(·) is the indicator function,

ui =
rank(Xi )

n + 1
=

Ri

n + 1
and vi =

rank(Yi )

n + 1
=

Si

n + 1
;

The empirical Kendall distribution function Kn(t) for all t is given by

Kn(t) =
1

n
(number of points (Xm,Ym) such that Cn(u, v) ≤ t) .
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Construction of Kendall plot

The Kendall plot (K-plot) is based on Kendall distribution
function K (w) = P(C (U,V ) ≤ w) = P(H(X ,Y ) ≤ w) and it
is analog of the classic Q-Q plot. It is introduced by Genest
and Boies (2003) to evaluate the dependence structure in a
bivariate sample. The construction follows the steps:

1 Calculate Hi =
#{j 6=i :Xj≤Xi ,Yj≤Yi}

n−1 for each i = 1, . . . , n;
2 Order the H ′i s, such that H(1) ≤ . . . ≤ H(n);
3 Plot the pairs (Wi :n,H(i)), 1 ≤ i ≤ n, where Wi :n represents

the expected value of the ith order statistic in a sample with
size n of the distribution K0(w) = w − w log(w), 0 ≤ w ≤ 1
(Kendall distribution in independence case).
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Kendall plot - commands in R

1 l i b r a r y ( CDVine )
2 l i b r a r y (MASS)
3
4 n<−250
5 nu<−c ( 0 , 0 )
6 s igma1<−1
7 sigma2<−1
8 rho<−seq (−1 ,1 ,0 .2)
9 f o r ( i i n 1 : l e n g t h ( rho ) )

10 {
11 S<−c b i n d ( c ( s igma1 ˆ2 , rho [ i ]∗s igma1∗s igma2 ) , c ( rho [ i ]∗s igma1∗sigma2 , s igma2 ˆ2) )
12 X<−mvrnorm ( n=n , mu=nu , Sigma=S )
13 v i p t<−a p p l y (X, 2 , rank ) /n
14 #K e n d a l l P l o t
15 BiCopKPlot ( v i p t [ , 1 ] , v i p t [ , 2 ] , f a m i l y= ’B ’ )
16 }
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Animation of Kendall plot
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Tail copula

Remind that

λL = lim
u→0+

C (u, u)

u
and λU = lim

u→0+

C (u, u)

u

can be regarded as directional derivatives of C (u, v). Assuming
different directions (uq, vq), we get lower tail copulas. The lower
tail copula ΛL(u, v) and upper tail copula ΛU(u, v) associated with
X and Y is a function of their copula C (u, v) or survival copula
C (u, v), respectively and are defined by

ΛL(u, v) = lim
q→0+

C (uq, vq)

q
and ΛU(u, v) = lim

q→0+

C (uq, vq)

q
.

for all (u, v) ∈ [0,∞)2 = R2
+.
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A general goodness-of-fit test for copulas does not necessarily
provide a good model for tail dependence;
The reason is that the estimation techniques are usually based
on entire available data set in the unit square [0, 1]2;

However, due the fact that the center of distribution say
[0.1, 0.9]× [0.1, 0.9] does not contain any information
about tail performance, the conventional estimation
techniques yield biased estimates for the tail dependence.
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In order to overcome this problem, we apply the concept of tail
copulas being function of the underlying copula (which describes
the dependence structure in the tail of multivariate distributions)

ΛL(u, v) = lim
q→0+

C (uq, vq)

q
and ΛU(u, v) = lim

q→0+

C (uq, vq)

q
;

The tail copulas can be considered as a local version of tail
dependence coefficients λL and λU because

ΛL(1, 1) = λL and ΛU(1, 1) = λU ;

To obtain estimators that are more robust with respect to the
center of distribution, there are 2 approaches:

- to use tail copula (which enable to model tail dependence of
arbitrary form);

- to rely a extreme value copula (Pareto one, say).
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Tail empirical copula

If Cn is the empirical copula, the empirical lower tail copula is defined by

ΛL,n(u, v) =
n

k
Cn

(
ku

n
,
kv

n

)
≈ 1

k

n∑
i=1

1

(
ui ≤

ku

n + 1
, vi ≤

kv

n + 1

)
;

If Cn is the empirical survival copula, the empirical upper tail copula is

ΛU,n(u, v) =
n

k
C n

(
ku

n
,
kv

n

)
≈ 1

k

n∑
i=1

1

(
ui >

n − ku

n + 1
, vi >

n − kv

n + 1

)
for some parameter k ∈ {1, · · · , n} (see Schmidt and Stadtmller (2006)).
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Tail empirical copula for the data

Implementing the procedure described by Schmidt and Stadtmuller (2006), one can

calculate the empirical tail copulas for the log-returns of the crude oil and natural gas

futures.

Empirical lower tail copula. Empirical upper tail copula.
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Example: Copula for discrete bivariate distribution

Consider the joint discrete distribution

Y\X 0 1 G(y)
0 1/8 2/8 3/8
1 2/8 3/8 5/8

F (x) 3/8 5/8 1

F (x) = P(X ≤ x) =

 0, x < 0
3/8, 0 ≤ x < 1
1, x ≥ 1

and G(y) =

 0, y < 0
3/8, 0 ≤ y < 1
1, y ≥ 1

i.e. marginal distributions are the same. Furthermore, from Sklar’s theorem

H(x , y) = P(X ≤ x ,Y ≤ y) = C(F (x),G(y)), for all x , y and some copula C .

Since RanX = RanY = {0, 3/8, 1}, the only constraint for copula C is
C(3/8, 3/8) = 1/8, i.e. there are infinitely many such copulas, because C(0, 0) = 0
and C(1, 1) = 1.

Conclusion: There is more than one copula in discrete bivariate case.
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As conclusions for copula pitfalls

Any bivariate distribution with H(x , y) = P(X ≤ x ,Y ≤ y) can be
trasformed to copula via

C(u, v) = H(F−1(u),G−1(v)), u, v ∈ [0, 1]. (2)

Thus, copula C represents the class of all bivariate distributions

H = [H(x , y)| continuous marginals are exactly F (x) and G(y)] .

In general, any result valid for bivariate distributions can be transported
to copula theory via (2).

But any result obtained for a copula

C(u, v) = P(U ≤ u,V ≤ v), U ∼ U(0, 1),V ∼ U(0, 1),

can be translated only for bivariate distributions E(x , y) with same
marginals (i.e. for exchangeable variables)

E(x , y) = P(X ≤ x ,Y ≤ y), with E(x ,∞) = F (x) and E(∞, y) = G(y).
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Parameter estimation

We will present three different methodologies (two parametric
and one semi-parametric) to estimate unknown parameters:

The classical maximum likelihood estimation;

The inference for the marginals;

Semi-parametric approach, see Genest et al. (1995).

Observation: Exist Bayesian based approaches as well.
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Maximum likelihood estimation

To apply the maximum likelihood (ML) methodology, we
need to find the joint density in terms of the copula density.
We have already seen that

h(x , y ; Θ) = c(F (x ; θ1),G (y ; θ2); θ)f (x ; θ1)g(y : θ2),

where θ1 and θ2 are parameters of the marginal distributions
and θ is copula parameter.

Therefore, Θ = (θ1, θ2, θ) is the parameter vector.

Nikolai Kolev, Leandro Ferreira and Rafael Aguilera Dependence Analysis via Copulas



Introduction
Copula basics

Dependence measures
Copula families

Estimation and model fitting
Real data analysis: Option pricing via Copulas

Maximum likelihood estimation

Given a random sample (Xj ,Yj), j = 1, . . . ,m, the likelihood
function is

L (X; Θ) =
m∏
j=1

[c (F (xj ; θ1) ,G (yj ; θ2) , θ) f (xj ; θ1) g (yj ; θ2)]

=
m∏
j=1

c (F (xj ; θ1) ,G (yj ; θ2) , θ)
m∏
j=1

f (xj ; θ1) g (yj ; θ2)

For the log-likelihood ln L (X; Θ) we have

ln L (X; Θ) =
m∑
j=1

lnc (F (xj ; θ1) ,G (yj ; θ2) , θ)

+
m∑
j=1

[ln f (xj ; θ1) + ln g (yj ; θ2)].
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Maximum likelihood estimation

Maximum likelihood estimators

The Maximum likelihood estimators are given by

θ̂ = arg max
m∑
j=1

∂ ln c (F (xj ; θ1)G (yj ; θn) , θ)

∂θ
,

θ̂1 = arg max
m∑
j=1

∂ ln c(F(xj ;θ1)G(yj ;θn),θ)
∂θ1

+
m∑
j=1

∂ ln f (xj ;θ1)
∂θ1

,

θ̂2 = arg max
m∑
j=1

∂ ln c(F(xj ;θ1)G(yj ;θn),θ)
∂θ2

+
m∑
j=1

∂ ln g(yj ;θ2)
∂θ2

.

In general, we do not have closed form expressions for the
parameter estimators, so numerical optimization is needed.
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Simulation of data set

Let us assume that marginals are Gamma distributed with parameters
(α1, β1) = (2, 1) and (α2, β2) = (3, 2), i.e., the corresponding density function is

g(x ;α, β) =
βαxα−1e−xβ

Γ(α)
for x ≥ 0 and α, β > 0.

We will generate a sample of size n=200 of a bivariate distribution with
selected Gamma marginals and Gaussian copula with parameter ρ = 0.5 using
R package copula, see Yan (2007).

1 l i b r a r y ( c o p u l a )
2
3 myMvd = mvdc ( c o p u l a = e l l i p C o p u l a ( f a m i l y = ” normal ” , param = 0 . 5 ) , marg ins

= c ( ”gamma” , ”gamma” ) , paramMargins = l i s t ( l i s t ( shape = 2 , s c a l e =
1) , l i s t ( shape = 3 , s c a l e = 2) ) )

4 n = 200
5 dat = rmvdc (myMvd , n )
6 p e r s p (myMvd , dMvdc , x l i m=c ( 0 , 1 ) , y l i m=c ( 0 , 1 ) , x l a b=” x1 ” , y l a b=” x2 ” , z l a b=” f

( x1 , x2 ) ” )
7 p l o t ( dat [ , 1 ] , dat [ , 2 ] , x l a b=” x1 ” , y l a b=” x2 ” )
8
9 u=pgamma( dat [ , 1 ] , shape = 2 , s c a l e = 1)

10 v=pgamma( dat [ , 2 ] , shape = 3 , s c a l e = 2)
11
12 p l o t ( u , v , x l a b=”U” , y l a b=”V” )
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Simulated data

Density of Simulated data
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Simulated data

Scatterplots of Simulated data and its Copula
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Model fitting - maximum likelihood method

Let us use the maximum likelihood method to estimate the
parameters of the model, i.e., θ1 = (α1, β1), θ2 = (α2, β2)
and θ = ρ.

As initial estimates for the parameters α1, α2, β1, β2 and θ
we will use their estimators obtained by method of
moments.

1 mm<− a p p l y ( dat , 2 , mean ) #mean o f data
2 vv <− a p p l y ( dat , 2 , v a r ) #v a r i a n c e o f data
3 b1 . 0 <− c (mm[ 1 ] ˆ 2 / vv [ 1 ] , vv [ 1 ] /mm[ 1 ] )
4 b2 . 0 <− c (mm[ 2 ] ˆ 2 / vv [ 2 ] , vv [ 2 ] /mm[ 2 ] )
5 a . 0 <− s i n ( c o r ( dat [ , 1 ] , dat [ , 2 ] , method = ” k e n d a l l ” ) ∗ p i / 2)
6 s t a r t <− c ( b1 . 0 , b2 . 0 , a . 0 )
7 f i t <− f i t M v d c ( dat , myMvd , s t a r t = s t a r t , opt im . c o n t r o l = l i s t ( t r a c e = TRUE,

maxi t = 2000) )
8 f i t
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Results - maximum likelihood estimates

True values are: (α1, β1) = (2, 1), (α2, β2) = (3, 2) and
ρ = 0, 5.

The Maximum Likelihood estimation is based on 200 observations.

Marginal 1
Estimate Std. Error

α1 2,046 0,190
β1 1,034 0,109

Marginal 2
Estimate Std. Error

α2 3,048 0,290
β2 2,003 0,207

Copula
Estimate Std. Error

ρ 0,522 0,051

The maximized loglikelihood shows value -774,236
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Comments

Usually, the estimator of the copula dependence parameter θ is
affected by the parametric structure of the marginal distributions,
i.e. by parameters θ1 and θ2. One can observe the inverse effect
as well.

When we are interested mainly on the dependence structure, it
is profitable to have a tool that relax this influence.

Two appropriate methodologies are

- the inference for the marginals;

- the semi-parametric method (when the marginal distributions are
estimated using some non-parametric approach);

Both methods are conceptually straightforward.
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Inference for marginals

The inference for marginals simplifies the estimation
procedure of the parameters involved, since it divides the
problem in two stages.

In the first stage, the marginal parameters θ1 and θ2 are
estimated by maximum likelihood method.

Estimators for the marginal density parameters.

θ̂∗1 = arg max
m∑
j=1

∂ ln f (xj ; θ1)

∂θ1
,

θ̂∗2 = arg max
m∑
j=1

∂ ln g (yj ; θ2)

∂θ2
.
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Inference for marginals

In the second stage, the dependence parameter θ is
estimated using a pseudo-likelihood.

Dependence parameter estimator.

θ̂∗ = arg max
m∑
j=1

∂ ln c (ûj , v̂j , θ)

∂θ
,

where ûj = F
(
xj ; θ̂

∗
1

)
, v̂j = G

(
yj ; θ̂

∗
2

)
for all j = 1, . . . ,m.

The name pseudo-likelihood comes from the fact that we

use ûj = F
(
xj ; θ̂

∗
1

)
and v̂j = G

(
yj ; θ̂

∗
2

)
instead of the

observed values uj and vj , j = 1, . . . ,m.
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Clayton, Frank and Gaussian copulas

Let us apply the inference for marginals method to
estimate the parameters of Clayton, Frank and Gaussian
copula joining the marginal gamma distributions.

1 #l o g l i k e l i h o o d f o r marg ins
2 l o g l i k . marg <− f u n c t i o n ( b , x ) sum (dgamma( x , shape = b [ 1 ] , s c a l e = b [ 2 ] , l o g =

TRUE) )
3 c t r l <− l i s t ( f n s c a l e = −1)
4
5 #F i r s t s t a g e f o r e s t i m a t i o n p r o c e s s
6 b1hat <− optim ( b1 . 0 , f n = l o g l i k . marg , x = dat [ , 1 ] , c o n t r o l = c t r l ) $ par
7 b2hat <− optim ( b2 . 0 , f n = l o g l i k . marg , x = dat [ , 2 ] , c o n t r o l = c t r l ) $ par
8 udat <− c b i n d (pgamma( dat [ , 1 ] , shape = b1hat [ 1 ] , s c a l e = b1hat [ 2 ] ) ,pgamma( dat [ ,

2 ] , shape = b2hat [ 1 ] , s c a l e = b2hat [ 2 ] ) )
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Inference for marginals

1 #second s t a g e f o r e s t i m a t i o n p r o c e s s
2 #D e f i n i n g c o p u l a o b j e c t
3 myCop . c l a y t o n <− c l a y t o n C o p u l a ( dim=2, param = 2)
4 myCop . f r a n k <− f r a n k C o p u l a ( dim=2, param = 2)
5 myCop . g a u s s i a n <− normalCopula ( dim=2, param = 0 . 9 )
6
7 #Model f i t t i n g
8 f i t . i f 1 <− f i t C o p u l a ( myCop . c l a y t o n , udat , s t a r t = a . 0 )
9 f i t . i f 2 <− f i t C o p u l a ( myCop . f r a n k , udat , s t a r t = a . 0 )

10 f i t . i f 3 <− f i t C o p u l a ( myCop . g a u s s i a n , udat , s t a r t = a . 0 )

Nikolai Kolev, Leandro Ferreira and Rafael Aguilera Dependence Analysis via Copulas



Introduction
Copula basics

Dependence measures
Copula families

Estimation and model fitting
Real data analysis: Option pricing via Copulas

Results - inference for marginals

The estimators of copula parameters using the inference for
marginals method are:

Estimate Std. Error z value Pr(> |z |)
Clayton param 0,644 0,127 5,061 4,17E-07

Frank param 2,964 0,499 5,945 2,76E-09
Gaussian ρ 0,452 0,060 7,541 4,66E-14

ML of ρ was 0.522 (the true value in Gaussian case is 0.5)

How can we select the model that best fits the data?
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Inference for marginals - comments

The estimator of copula parameter θ obtained from the
maximum likelihood and the inference for marginals methods
are different (0,522 and 0,452 in Gaussian case).

Xu (1996) performed Monte Carlo simulations to compare the
results and verified that in almost all simulations the
relative efficiency was very close to 1.

In general, the inference for marginals method is
preferable than the exact maximum likelihood approach.
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Inference for marginals - comments

The estimation of the parameters in two steps leads to a loss
in efficiency and standard errors cannot be obtained as
the inverse of the Fisher Information.

Patton (2006a) shows in a simulation study that method does
not perform very well applying one step of the
Newton-Rhapson algorithm to the full likelihood function.

Alternatively when the marginal model is unknown Genest
et al. (1995) suggest modeling the marginal distribution with
the empirical distribution and estimating the copula via ranks
of the data.
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Model selection

A general criteria for model selection is the Akaike
Information Criterion (AIC ).

It was developed by Hirotsugu Akaike (Akaike, 1974) and is
based in the concept of information entropy, offering a
relative measure of the information lost when some
model is used to describe the reality.
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Model selection

In the general case, AIC is given by:

AIC = 2k − 2 ln(L)

where k is the number of parameter in the statistical model
and L is the maximized value of the likelihood function of the
estimated model.

For a set of candidate models for the data, the ”best” one is
with minimum corresponding AIC value.

An alternative measure to AIC is the Bayesian Information
Criterion (BIC ), given by:

BIC = k ln(n)− 2 ln L,

where n is the sample size. Again, the minimum of BIC
indicates better fit.
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Inference for marginals

Below we present the code in R to obtain results applying
AIC and BIC criteria

1 #Aic c r i t e r i o n
2 a i c C l a y t o n <− −2∗ f i t . i f 1 @ l o g l i k +2
3 a i c F r a n k <− −2∗ f i t . i f 2 @ l o g l i k +2
4 a i c G a u s s i a n <− −2∗ f i t . i f 3 @ l o g l i k +2
5
6 #Bic c r i t e r i o n
7 b i c C l a y t o n <− −2∗ f i t . i f 1 @ l o g l i k+l o g ( 2 0 0 )
8 b i c F r a n k <− −2∗ f i t . i f 2 @ l o g l i k+l o g ( 2 0 0 )
9 b i c G a u s s i a n <− −2∗ f i t . i f 3 @ l o g l i k+l o g ( 2 0 0 )
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Model selection - inference for marginals method

Comparison among the models obtained by the inference for
margins method.

Maximized LogL AIC BIC

Clayton 16,36 -30,73 -27,43
Frank 22,08 -42,16 -38,86

Gaussian 22,74 -43,48 -40,18

i.e. the Gaussian copula gives better fit.
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Semi-parametric inference

Many semi-parametric methods can be found in the
literature, e.g., Clayton (1978), Clayton and Cuzick (1985),
Genest et al. (1995) and Oakes (1994).

In all these approaches, the first step consists in estimating

the marginal distribution functions
(
F̂ (x) , Ĝ (y)

)
applying

some non-parametric methodology and, in the second step,
performing a data transformation x1 y1

...
...

xm ym


(
F̂ (xj) Ĝ (yj)

)
−→

 û1 v̂1
...

...
ûm v̂m

 .

In the third step, some parametric copula family that better
fits the data is chosen.
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Marginal distribution estimation

Several semi-parametric methodologies to estimate a
density function f (x) exist. For example, one can use kernel
smoothing to obtain f̂ (x) and to calculate

F̂ (x) =

∫
f̂ (x) dx .

In Genest et al. (1995), empirical distribution functions
were used,

F̂ (xj) =
rX ,j

m + 1
, Ĝ (yj) =

rY ,j
m + 1

,

where rX ,j is the rank of jth sample observation of random
variable X (the same for Y ).
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Dependence parameter estimation

The dependence parameter can be estimated via

θ̂ = arg max
m∑
j=1

∂ ln c (ûj , v̂j , θ)

∂θ
.

The estimator θ̂ is consistent and asymptotically normal
distributed.
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Semi-parametric inference

Below we present the code in R used to perform the
semi-parametric inference:

1 #F i r s t s t a g e : G e t t i n g e m p i r i c a l d i s t r i b u t i o n
2 eu <− c b i n d ( ( rank ( dat [ , 1 ] ) − 0 . 5 ) /n , ( rank ( dat [ , 2 ] ) − 0 . 5 ) /n )
3
4 #second s t a g e f o r e s t i m a t i o n p r o c e s s
5 #D e f i n i n g c o p u l a o b j e c t
6 myCop . c l a y t o n <− c l a y t o n C o p u l a ( dim=2, param = 2)
7 myCop . f r a n k <− f r a n k C o p u l a ( dim=2, param = 2)
8 myCop . g a u s s i a n <− normalCopula ( dim=2, param = 0 . 9 )
9

10 #Model f i t t i n g
11 f i t . cm1 <− f i t C o p u l a ( myCop . c l a y t o n , eu , s t a r t = a . 0 )
12 f i t . cm2 <− f i t C o p u l a ( myCop . f r a n k , eu , s t a r t = a . 0 )
13 f i t . cm3 <− f i t C o p u l a ( myCop . g a u s s i a n , eu , s t a r t = a . 0 )
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Semi-parametric inference

Below we present the code in R to obtain results applying AIC
and BIC criteria

1 #Aic c r i t e r i o n
2 a i c C l a y t o n <− −2∗ f i t . c m 1 @ l o g l i k+2
3 a i c F r a n k <− −2∗ f i t . c m 2 @ l o g l i k+2
4 a i c G a u s s i a n <− −2∗ f i t . c m 3 @ l o g l i k+2
5
6 #Bic c r i t e r i o n
7 b i c C l a y t o n <− −2∗ f i t . c m 1 @ l o g l i k+l o g ( 2 0 0 )
8 b i c F r a n k <− −2∗ f i t . c m 2 @ l o g l i k+l o g ( 2 0 0 )
9 b i c G a u s s i a n <− −2∗ f i t . c m 3 @ l o g l i k+l o g ( 2 0 0 )
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Semi-parametric inference

In the table below we present the results for the selected models
using the semi-parametric inference method.

Estimate Std. Error z value Pr(> |z |)
Clayton param 0,503 0,102 4,940 7,82E-07

Frank param 2,894 0,508 5,699 1,21E-08
Gaussian ρ 0,447 0,060 7,402 1,34E-13

For comparison, see inference for marginals results

Estimate Std. Error z value Pr(> |z |)
Clayton param 0,644 0,127 5,061 4,17E-07

Frank param 2,964 0,499 5,945 2,76E-09
Gaussian ρ 0,452 0,060 7,541 4,66E-14
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Semi-parametric inference: model selection

In the table below we present a comparison among the models
using AIC and BIC criterion.

Maximized LogL AIC BIC

Clayton 13,23 -24,46 -21,16
Frank 21,19 -40,39 -37,09

Gaussian 33,07 -42,09 -38,80

For comparison (inference for marginals method)

Maximized LogL AIC BIC

Clayton 16,36 -30,73 -27,43
Frank 22,08 -42,16 -38,86

Gaussian 22,74 -43,48 -40,18
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Real data analysis

Consider the bivariate stochastic process {Xt}Tt=1 with
Xt = (X1t ,X2t)

′
. Let H(x1t , x2t) be the joint distribution. Whereas

F (x1t,θ1 ),G (x2t,θ2 ) the marginal distribution functions and
f (x1t,θ1 ), g(x2t,θ2 ) the correponding density functions.
By Sklar’s theorem there exists a copula function
C (·, ·|θ) : [0, 1]2 −→ [0, 1] mapping the marginal distributions of X1t and
X2t to their joint distribution through

H(x1t , x2t) = C (F (x1t,θ1 ),G (x2t,θ2 )|θ).

To satisfy all this (theorical) requirement implies that we limit

ourselves to the specific case that each processes {Xit} only depends

on its own past, but not on the past of the other process

{Xjt , (i 6= j)}, and that there is only instantaneous causality between

the variables (described by copula).
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We assume that the marginals can be modeled parametrically.
The probability integral transform of marginal distributions are
given by Ut = F (x1t ; θ1) and Vt = G (x2t ; θ2) where θ1 and θ2 are
the vector of parameters. In financial econometrics Xit the marginal
processes (i = 1, 2) are usually modeled by ARMA-GARCH type
model, whose residuals are treated as independent and
identically distributed (i.i.d.) random variables.
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Fair rainbow options

Options consisting of two or more underlying stocks are called rainbow options. The
price of these options are influenced by the dependence structure between the stocks
since the fair option price still is the expected value.

Fair price of a bivariate rainbow option V (t,S1, S2)

Let S1 and S2 be two stocks traded on a complete and arbitrage free market. Let t be
the present time and T the time of maturity, then the price V (t, S1, S2) of an option
with a given payoff function g(S1(T ), S2(T )) is

V (t, S1, S2) = exp{−r(T − t)}
∫ ∞

0

∫ ∞
0

g(x , y)f QS1,S2
(x , y) dxdy .

Where f QS1,S2
is the joint probability distribution of the two stocks under the

risk-neutral probability measure Q and the sigma-algebra Ft is the filtration
containing all information about the two stocks up to time t.

We will use in our analysis the so called Exchange option., i.e, the payoff function is
given by g(S1(T ), S2(T )) = max(S2(T )− S1(T ), 0). This means that the option will
be exercised only if stock 2 is worth more than stock 1
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Real data analysis: Option pricing via Copulas

We use the observed data for 2 stocks to obtain a fair
rainbow option price:

1 The food processing company Kraft Foods (KFT),
representing {X1t};

2 The technology company Hewlett-Packard (HPQ),
representing {X2t}.

KFT and HPQ are traded on the New York Stock Exchange.

We will analyse a one year time period from 1 August 2012 to
30 September 2013 (250 trading days). We use daily close
prices (Pit) in USD that are adjusted for dividends and splits.

The LogReturn of individual series is given by

Rit = log(Pit)− log(Pi(t−1)), t = 1, 2, . . . , n = 249.

where Pit is the stock price at time t with i = 1, 2.
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KFT and HPQ: Stock prices and LogReturns

Daily stock prices and LogReturns for KFT (above) and HPQ (below) over the sample period.

First deductions:

1 The LogReturns range of KFT is more volatile that HPQ;

2 It is not evident if both series are independent or dependent.
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KFT and HPQ: Histograms

Histograms of the LogReturns for KFT and HPQ.
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KFT and HPQ: Dependence Analysis

To test independence between LogReturns of KFT and HPQ we use the
following statistics

- for correlation coefficient: ρn√
n−1
∼ N(0, 1), where ρn is sample Pearson’s;

- for Kendall’s tau:
√

9
2
n(n−1)
2n+5

τn ∼ N(0, 1), where τn is sample Kendall’s.

In table below several calculus values of measures of dependence between the
LogReturns of KFT and HPQ are displayed along with corresponding p-values
for the null hypothesis of independence.

Spearman’s rho Kendall’s tau Correl. coef.
0.206 0.139 0.153

p-value 0.0053 0.0052 0.008
Measures of dependence between LogReturns of KFT and LogReturns of HPQ.

Conclusion: The KFT and HPQ stocks are statistically dependent (of level 0.8%).
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Time series GARCH process

We will model both series (KFT and HPQ) of LogReturns by
GARCH(p, q) model, defined by

Rt =
√

htεt , εt ∼ N(0, 1),

where the errors (residuals) εt are assumed independent and
(conditional) variance ht is specified by

ht = α0 +

p∑
i=1

αiR
2
t−i +

q∑
i=1

βiht−i , t = 1, 2, ..., n.
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GARCH parameters estimates: STEP 1A

For both vectors of stock LogReturns, we use the R package
fGarch to estimate the parameters of GARCH(p,q) model;

We obtain a good fit for both series adopting GARCH(1,1).
The estimate of parameters α0, α1 and β1 are given below:

Stock α0 α1 β1

KFT 6.665× 10−5 0.298 0.296
HPQ 6.988× 10−10 10−8 0.9991
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Verification validity of GARCH(1,1) model: STEP 1B
Use the estimated parameters in Step 1A

Stock α0 α1 β1

KFT 6.665× 10−5 0.298 0.296

HPQ 6.988× 10−10 10−8 0.9991

to calculate conditional variance

ht = α0 + α1R
2
t−1 + β1ht−1, t = 1, 2, ..., n

and residuals εt for each stock;

The residuals in the GARCH model, i.e. εt ’s, should follow a standard
normal distribution N(0, 1).

Furthermore εt should also have independent increments.

We carry out two tests in order to validate the GARCH(1,1) process

1 The Kolmogorov-Smirnov (KS1) test (to test εit ∼ N(0, 1), i = 1, 2);

2 The Ljung-Box (LB) test (for independence of residuals).
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The Kolmogorov-Smirnov (KS1) test

The Kolmogorov-Smirnov (KS1) test is applied for each stocks residual
εit , i = 1, 2 with a 5% significance level.

The residuals empirical distribution Femp(x) and Gemp(y) are used to check
N(0, 1) for residuals.

The statistical tests and p-values are presented below:

KS1 = max
x

(|Φ(x)−Femp(x)|) and KS1 = max
y

(|Φ(y)−Gemp(y)|), Φ(·) ∼ N(0, 1).

KFT HPQ
KS1 0.558 0.566
p-value 0.888 0.872

The KS1 distance and p-values testing N(0, 1) of the residuals.

We can not reject the null hypothesis that residual are indeed
standard normally distributed.
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The Ljung-Box (LB) test

The increments independence of εit , i = 1, 2 is tested with the Ljung-Box (LB)
test

LB = N(N + 2)
M∑
k=1

ρk

N − k
∼ χ2(M),

where N is the sample size, M is the number of autocorrelation lags and

ρk =

∑k
i=1(xi−x)(yi−y)√∑k

i=1
(xi−x)2

√∑k
i=1

(yi−y)2
is the autocorrelation at lag k.

The null hypothesis is that there is no autocorrelation. For N(0, 1) residuals,
this implies independent increments of εit , i = 1, 2. The results are given
below:

KFT HPQ
LB 19.243 7.860
p-value 0.203 0.929

P-values for independence of the residuals using Ljung-Box test.

It can be seen, that we can not reject the null hypothesis that

residuals are independent, (i.e., there is no autocorrelation), at 5%

significance level.
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QQ-Plot of Residuals

QQ-plot of Residuals for KFT and HPQ.

By now, we justified the choice of GARCH(1,1) model for KFT and HPQ.
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Conclusions by now

GARCH(1,1) serves to model individual time series (KFT and HPQ).

This means that
- residuals (εit , i = 1, 2) are N(0, 1) distributed

- (εit , i = 1, 2) are independent
Nevertheless, both series seem weak dependent (Spearman’s rho=0.206 and
Kendall’s tau=0.1390.)

Therefore the first steps are
Step 1A Get the GARCH parameters estimates;
Step 1B Validate the GARCH(1,1) model;

So we will complement the analysis joining the error terms of both series with an
appropriate copula. The algorithm can be summarized as follows

Step 2A Transform the error terms into U(0, 1) distributed random variables;
Step 2B Fit the data set using some copula models via maximum likelihood

method and select the best one using AIC and BIC criteria;
Step 2C Generate a sample from the copula selected;
Step 3A Transform the marginals from previously step into N(0, 1) (error

terms);
Step 3B Get the stock prices at time of maturity T;
Step 3C Get the option price at time of maturity T.
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Transform the error terms into marginal uniforms: STEP
2A

In order to use copulas to join residuals in both series, we need to transform the error
terms into U(0, 1) distributed random variables. We invert residuals εit obtained in
step 1B for each stock into U(0, 1) by u = Φ(ε1i ) and v = Φ(ε2i ) , where
Φ(.) ∼ N(0, 1), i = 1, 2, ..., 249.

Scatterplot of copula jointly residuals of both series.Nikolai Kolev, Leandro Ferreira and Rafael Aguilera Dependence Analysis via Copulas
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Copula fitting and model selection: STEP 2B

Apply the maximum likelihood to fit a copula to (u, v) from Step 2A. That is,
for the transformed data {ut , vt}nt=1, estimate the copula parameters θC through

ArgMaxθC

n∑
t=1

ln[c((ut , vt); θC )],

where c(u, v) is the density function of the selected copula C(u, v |θC ).

Copula Gaussian Student’s t Clayton Gumbel

Parameter 0.135 (0.139, 308.48) 0.028 1.059
AIC -3.087 -0.976 1.567 0.562
BIC 0.430 6.059 5.085 4.079

The estimated parameters for the different copulas and corresponding values of AIC and BIC criteria.

i.e. the Gaussian copula gives better fit.
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Generate a sample from the copula: STEP 2C

Generate a sample {u∗t , v∗t }Tt=1 from a U(0, 1) marginal distribution using the chosen
copula. Here T is the time to maturity for the option;

Scatterplot of a sample {u∗t , v∗t }Tt=1 from a Gaussian copula.
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Transform the generated marginals into N(0,1) margins:
STEP 3A

For each time instant t = 1, ...,T , transform the generated
marginals into N(0,1) margins (in the risk-neutral world), by
ε∗1t = Φ−1(u∗t ) and ε∗2t = Φ−1(v∗t );

Histogram of Residuals for KFT and HPQ.Nikolai Kolev, Leandro Ferreira and Rafael Aguilera Dependence Analysis via Copulas
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Stock price at time of maturity T: STEP 3B

Use ε∗it from Step 3A to calculate the conditional variances hit
give as considering GARCH parameters estimated in Step 1A.
The two future stock prices at time T are

Si (T ) = Si (0) exp
{ T∑

t=1

√
hitε
∗
it

}
, i = 1, 2;

Stock Price

KFT 44.95
HPQ 17.50

Stock prices at maturity time T = 260 using Gaussian Copula (i.e. 10 days after our

last observations).
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Application: Monte Carlo integration using copulas

Aim: to obtain the expected value of a continuous function
q(x , y) of a bivariate random vector (X ,Y ) having joint
distribution H(x , y), i.e.

E (q(X ,Y )) =

∫ ∞
y=−∞

∫ ∞
x=−∞

q(x , y)dH(x , y);

Given the copula C (u, v) = H(F−1(v),G−1(v)) and marginal
distributions F (x) = lim

y→∞
H(x , y) and G (y) = lim

x→∞
H(x , y),

we can use the following algorithm to approximate the value
of E (q(X ,Y )):

1 generate n observations of the bivariate random vector (X ,Y );
2 for each observation i , calculate qi = q(xi , yi ), i = 1, 2, ..., n;
3 E (q(X ,Y )) ≈ 1

n

∑n
i=1 qi
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Option price at time of maturity T: STEP 3C

Let g(S1(T ),S2(T )) = max(S2(T )− S1(T ), 0) be the payoff
function and repeat Steps 2C to 3B for N runs. Finally, we
obtain the Monte Carlo option price:

V (t,S1, S2) =
exp{−r(T − t)}

N

N∑
i=1

g(S1i (T ),S2i (T )).

Exchange option 24.23

Option prices for Exchange option at time of maturity T=260.
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Comments

The marginal distributions that describe the individual
behavior of each variables and the copula that fully captures
the dependence between the variables.

Furthermore, given a set of marginal distributions and a
copula a multivariate distribution can be constructed by
coupling the marginals with the copula. The flexibility of the
way dependencies can be modeled independently of the
marginal distributions.
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Several conclusions

Copula is useful tool in many applied areas where the interest is in
analysis of multivariate dependence and when the multivariate
normal distribution is controversial.

In actuarial science, copulas are used in modeling dependence
between mortality and losses, e.g., Frees, Carrière and Valdez
(1996), Frees and Valdez (1998), Frees and Wang (2005).

In finance, copulas are successfully applied in asset allocation,
credit scoring, default risk modeling, derivative pricing and risk
management, e.g., Bouyè, Durrleman, Bikeghbali, Riboulet and
Roncalli (2000), Embrechts, Lindskog and McNeil (2003) and
Cherubini, Luciano and Vecchiato (2004).

In biomedical studies, copulas are used in modeling correlated

events times and competing risks, e.g., Wang and Wells (2000),

Escarela and Carrière (2003).
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Several conclusions

In many real situations, empirical evidence has proved the
inadequate use of the normal multivariate distribution:

Empirical marginal distributions are skewed and heavy-tailed;
Possibilities of extreme co-movements, in contrast to the
multivariate normal distribution.

Copulas provide an alternative solution and often more useful
representations of multivariate distribution functions
compared to traditional approaches such as multivariate
normal distribution.

The use of linear correlation coefficient should be restricted to
multivariate elliptical distributions. Copula based
dependence measures (Spearman’s ρS and Kendall’s τK )
are free of such limitations.
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