PROVA 2 - MATEMÁTICA 4 (CCM 0223)

PROF: PEDRO T. P. LOPES - WWW.IME.USP.BR/~PPLOPES/MATEMATICA4

A prova é individual e sem consulta (apenas consulte o formulário). Utilize somente resultados dados em sala de aula. Os resultados dados em sala de aula podem (e devem) ser usados sem demonstração.

Boa Prova!

Exercício 1

(1,5 Ponto) Calcule a área da superfície dada por $z^2 = x^2 + y^2$, em que $0 \le z \le \frac{3-y}{2}$.

Resolução:

Primeiro achamos uma parametrização adequada da superfície $z^2=x^2+y^2$ para $z\geq 0$. Usaremos a parametrização $\varphi\left(x,y\right)=\left(x,y,\sqrt{x^2+y^2}\right)$. Logo

$$\frac{\partial \varphi}{\partial x} \times \frac{\partial \varphi}{\partial y} = \left(1, 0, \frac{x}{\sqrt{x^2 + y^2}}\right) \times \left(0, 1, \frac{y}{\sqrt{x^2 + y^2}}\right) = \left(-\frac{x}{\sqrt{x^2 + y^2}}, -\frac{y}{\sqrt{x^2 + y^2}}, 1\right).$$

Assim, $\left\| \frac{\partial \varphi}{\partial x} \times \frac{\partial \varphi}{\partial y} \right\| = \sqrt{2}$.

Seja $S = \{(x, y, z) \in \mathbb{R}^3; z^2 = x^2 + y^2 \in 0 \le z \le \frac{3-y}{2} \}$. Logo, pela fórmula de integral de superfície, temos

$$\acute{a}rea(S) = \iint_{S} dS = \iint_{\Omega} \left\| \frac{\partial \varphi}{\partial x} \times \frac{\partial \varphi}{\partial y} \right\| dxdy = \iint_{\Omega} \sqrt{2} dxdy,$$

em que $\Omega = \left\{ (x,y) \in \mathbb{R}^2; \sqrt{x^2 + y^2} \le \frac{3-y}{2} \right\}$. Note que

$$\sqrt{x^2 + y^2} \le \frac{3 - y}{2} \iff x^2 + y^2 \le \left(\frac{3 - y}{2}\right)^2 \iff$$
$$x^2 + y^2 \le \frac{1}{4} \left(9 - 6y + y^2\right) \iff x^2 + \frac{3}{4} y^2 + \frac{3}{2} y \le \frac{9}{4} \iff$$
$$x^2 + \frac{3}{4} \left(y + 1\right)^2 \le 3.$$

Seja $x = \sqrt{3}r\cos(\theta)$ e $y = -1 + 2r\sin(\theta)$. Logo

$$x^{2} + \frac{3}{4}(y+1)^{2} \le 3 \iff r \le 1 \in \theta \in [0, 2\pi].$$

Além disso, vemos que

$$\det \left(\begin{array}{cc} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{array} \right) = \det \left(\begin{array}{cc} \sqrt{3}cos\left(\theta\right) & -\sqrt{3}rsen\left(\theta\right) \\ 2sen\left(\theta\right) & 2rcos\left(\theta\right) \end{array} \right) = 2\sqrt{3}r.$$

Concluímos, pelo teorema de mudança de variáveis de integrais em \mathbb{R}^2 , que

$$\int \int_{\Omega} \sqrt{2} dx dy = 2\sqrt{2}\sqrt{3} \int_{0}^{2\pi} \int_{0}^{1} r dr d\theta = 2\sqrt{6}\pi.$$

Exercício 2

Seja S_1 o hemisfério $x^2+y^2+z^2=1,\ 0\leq z\leq 1,\ e\ n_1$ a normal unitária que aponta para fora da esfera. Seja S_2 a região $\{(x,y,0)\in\mathbb{R}^3;\ x^2+y^2\leq 1\}$ e $n_2=(0,0,-1)$.

(1 Ponto) a) Seja $f: \mathbb{R}^3 \to \mathbb{R}^3$ a função dada por f(x, y, z) = (2x, -4y, 2z + 1). Calcule o fluxo de f em S_1 na direção n_1 e o fluxo de f em S_2 na direção n_2 .

Resolução:

Fluxo em S_2 .

Uma paramerização adequada é dada por $\varphi: B(0,1) = \{(x,y) \in \mathbb{R}^2; x^2 + y^2 < 1\} \to \mathbb{R}^3$ definida como $\varphi(x,y) = (x,y,0)$. Assim, $\frac{\partial \varphi}{\partial x}(x,y) = (1,0,0)$, $\frac{\partial \varphi}{\partial y}(x,y) = (0,1,0)$ e $\frac{\partial \varphi}{\partial x} \times \frac{\partial \varphi}{\partial y}(x,y) = (0,0,1)$.

Conluímos que

$$\int \int_{S_2} \langle f, n_2 \rangle \, dS = \int \int_{B(0,1)} \left\langle f \circ \varphi(x,y), \frac{\partial \varphi}{\partial x} \times \frac{\partial \varphi}{\partial y} \right\rangle dx dy$$

$$= \int \int_{B_1(0)} \left(2x, -4y, 1\right) . \left(0, 0, -1\right) dx dy = - \int \int_{B_1(0)} dx dy = -\pi.$$

Assim, o fluxo de f em S_2 na direção n_2 é $-\pi$.

Fluxo em S_1 .

Observemos pelo teorema da divergência que, para $R = \{(x, y, z) \in \mathbb{R}^3; x^2 + y^2 + z^2 \le 1, z \ge 0\}$, temos

$$\int \int_{S_1} \langle f, n_1 \rangle \, dS + \int \int_{S_2} \langle f, n_2 \rangle \, dS = \int \int \int_R \nabla \cdot f(x, y, z) \, dx dy dz = 0.$$

Logo o fluxo em S_1 na direção n_1 é π .

Outra forma de calcular o Fluxo em S_1 . (Cálculo na marra).

 ${
m Em}\ S_1$ podemos fazer a conta sem usar o teorema da divergência. Seja

$$\varphi(\theta, \phi) = (\cos(\theta) \operatorname{sen}(\phi), \operatorname{sen}(\theta) \operatorname{sen}(\phi), \cos(\phi)).$$

Logo podemos calcular $\frac{\partial \varphi}{\partial \theta} \times \frac{\partial \varphi}{\partial \phi}$ por

$$i \qquad j \qquad k \qquad i \qquad j \\ -sen(\theta) sen(\phi) \quad cos(\theta) sen(\phi) \quad 0 \qquad -sen(\theta) sen(\phi) \quad cos(\theta) sen(\phi) \\ cos(\theta) cos(\phi) \quad sen(\theta) cos(\phi) \quad -sen(\phi) \quad cos(\theta) cos(\phi) \quad sen(\theta) cos(\phi) \\ = \left(-cos(\theta) sen^2(\phi), -sen(\theta) sen^2(\phi), -sen(\phi) cos(\phi)\right).$$

Assim, observando que queremos calcular com a normal apontando para cima, temos

$$\int \int_{S_1} \langle f, n_1 \rangle dS = \int_0^{2\pi} \left(\int_0^{\frac{\pi}{2}} \left(2\cos^2\left(\theta\right) \operatorname{sen}^3\left(\phi\right) - 4\operatorname{sen}^2\left(\theta\right) \operatorname{sen}^3\left(\phi\right) + 2\operatorname{sen}\left(\phi\right) \cos^2\left(\phi\right) + \operatorname{sen}\left(\phi\right) \cos(\phi) \right) d\phi \right) d\theta = \dots = \pi.$$

(0.5 Ponto) b) Seja $f: \mathbb{R}^3 \to \mathbb{R}^3$ a função dada por $f(x, y, z) = (2x + \text{sen}(y^2), -4y + \cos(x^2 + z^6), 2z + e^{15x})$. Calcule o fluxo de f em $S = S_1 \cup S_2$ na direção n em que n é igual a n_1 sobre S_1 e é igual a n_2 sobre S_2 .

Resolução:

Pelo Teorema da Divergência, temos

$$\iint_{S} \langle f, n \rangle dS = \iint_{R} \nabla f(x, y, z) dx dy dz = 0.$$

Exercício 3

Seja $\Omega \subset \mathbb{R}^3$ uma região conexa e limitada com bordo $\partial\Omega$ de classe C^1 . Considere o seguinte problema: Ache uma função $u:\overline{\Omega} \to \mathbb{R}$ de classe C^2 tal que

$$\Delta u\left(x\right) = f\left(x\right), \ x \in \Omega \\ \partial_{n}u\left(x\right) = g\left(x\right), \ x \in \partial\Omega \ ,$$

em que $\partial_n u = \langle \nabla u, n \rangle$ é a derivada direcional na direção de n, a normal que aponta para fora de Ω , $f: \overline{\Omega} \to \mathbb{R}$ é uma função contínua e $g: \partial \Omega \to \mathbb{R}$ é uma função contínua.

Dica para o exercício: Use o teorema da divergência e prove que se $w: \overline{\Omega} \to \mathbb{R}$ é de classe C^2 , então

- i) $\iint \int \int \Omega \Delta w(x) dx = \iint \partial \Omega \frac{\partial w}{\partial n}(x) dS$.
- ii) $\iint_{\partial\Omega} w \frac{\partial w}{\partial n}(x) dS = \iint_{\Omega} \iint_{\Omega} ||\nabla w(x)||^2 dx$, se $\Delta w = 0$.

(1 ponto) a) Mostre que se existe uma solução u do problema acima, então f e g devem satisfazer $\int \int_{\Omega} f(x) dx = \int \int_{\partial\Omega} g(x) dS$.

Řesolução:

Observemos que se $w: \overline{\Omega} \to \mathbb{R}$ é de classe C^2 , então

$$\int \int \int_{\Omega} \Delta w\left(x\right) dx \stackrel{(1)}{=} \int \int \int_{\Omega} \nabla \cdot \left(\nabla w\left(x\right)\right) dx \stackrel{(2)}{=} \int \int_{\partial \Omega} \nabla w\left(x\right) \cdot n dS \stackrel{(3)}{=} \int \int_{\partial \Omega} \partial_n w\left(x\right) dS.$$

Note que

- (1) segue do fato de que o Laplaciano é igual ao divergente do gradiente.
- (2) Segue do Teorema da Divergência.
- (3) A derivada direcional de w na direção n é igual ao produto escalar do gradiente de w com o vetor n.

Assim, se w = u, temos

$$\iint \int \int_{\Omega} f(x) dx = \iint \int_{\Omega} \Delta u(x) dx = \iint \int_{\partial \Omega} \partial_n u(x) dS = \iint \int_{\partial \Omega} g(x) dS.$$

(1 ponto) b) Mostre que se v é uma outra solução do problema, então existe uma constante C>0 tal que u=v+C.

Resolução:

Observamos que se w é de classe C^2 , então

$$div(w \operatorname{grad}(w)) = \nabla \cdot (w \nabla w) = \nabla w \cdot \nabla w + w \Delta w.$$

Logo, se w é uma função escalar tal que $\Delta w = 0$, então

$$\int \int \int_{\Omega} \|\nabla w(x)\|^2 dx = \int \int \int_{\Omega} \nabla w \cdot \nabla w dx = \int \int \int_{\Omega} \left[\nabla \cdot (w \nabla w) - w \Delta w\right] dx$$
$$= \int \int \int_{\Omega} \nabla \cdot (w \nabla w) dx = \int \int_{\partial \Omega} w \frac{\partial w}{\partial n} (x) dS.$$

Se u e v são solução do problema, então $\Delta \left(u - v \right) = \Delta u - \Delta v = f - f = 0$. Assim, podemos usar o resultado anterior para w = u - v e obter

$$\int \int \int_{\Omega} \left\| \nabla \left(u - v \right) \left(x \right) \right\|^{2} dx = \int \int_{\partial \Omega} \left(u \left(x \right) - v \left(x \right) \right) \frac{\partial \left(u - v \right)}{\partial n} \left(x \right) dS$$
$$= \int \int_{\partial \Omega} \left(u \left(x \right) - v \left(x \right) \right) \left(\frac{\partial u}{\partial n} \left(x \right) - \frac{\partial v}{\partial n} \left(x \right) \right) dS = \int \int_{\partial \Omega} \left(u \left(x \right) - v \left(x \right) \right) \left(g \left(x \right) - g \left(x \right) \right) dS = 0.$$

Concluímos que $\int \int \int_{\Omega} \|\nabla (u-v)(x)\|^2 dx = 0$. Como $x \mapsto \|\nabla (u-v)(x)\|^2$ é contínua, concluímos que $\nabla (u-v)(x) = 0$ para todo x. Como Ω é conexo, concluímos que u-v é igual a uma função constante.

Exercício 4

(2 pontos) Seja a superfície com bordo S definida como $x^2+y^2+z^2=4,~0\leq z\leq \sqrt{2}$ e n a normal que aponta para fora da esfera. Calcule $\int\int_S \nabla\times f.ndS$, em que $f\left(x,y,z\right)=\left(zy\cos\left(\frac{\pi z^2}{2}\right),z\sin\left(\frac{\pi z^2}{2}\right),yz\right)$.

Resolução:

Usaremos o teorema de Stokes:

$$\int \int_{S} \nabla \times f.ndS = \int_{\partial S} f.d\Gamma.$$

Observemos que nesse caso, ∂S é composto de duas curvas descritas por funções em $\theta \in [0, 2\pi]$: $\gamma_1 = (2\cos(\theta), 2\sin(\theta), 0)$ e $\gamma_2 = (\sqrt{2}\cos(\theta), \sqrt{2}\sin(\theta), \sqrt{2})$. Logo

$$\begin{split} \int_{\gamma_{1}}f.d\Gamma &= \int_{\gamma_{1}}\left(02cos\left(\theta\right)\,\cos\left(\frac{\pi0^{2}}{2}\right),0\mathrm{sen}\left(\frac{\pi0^{2}}{2}\right),2sen\left(\theta\right)0\right).\left(-2sen\left(\theta\right),2cos\left(\theta\right),0\right)d\theta = 0\\ \int_{\gamma_{2}}f.d\Gamma &= \int_{0}^{2\pi}\left(\sqrt{2}\sqrt{2}sen\left(\theta\right)\,\cos\left(\pi\right),\sqrt{2}\mathrm{sen}\left(\pi\right),\sqrt{2}\sqrt{2}sen\left(\theta\right)\right).\left(-\sqrt{2}sen\left(\theta\right),\sqrt{2}cos\left(\theta\right),0\right)d\theta\\ &= -2\sqrt{2}\int_{0}^{2\pi}\,sen^{2}\left(\theta\right)d\theta = -2\sqrt{2}\pi. \end{split}$$

Usando a regra da mão direita, temos

$$\int_{\partial S} f.d\Gamma = \int_{\Upsilon_1} f.d\Gamma - \int_{\Upsilon_2} f.d\Gamma = 2\sqrt{2}\pi.$$

Exercício 5

(1 ponto) a) Considere a 1-forma diferencial $\omega\left(x,y,z\right)=f_1\left(x,y,z\right)dx+f_2\left(x,y,z\right)dy+f_3\left(x,y,z\right)dz$ em \mathbb{R}^3 . Existe uma função $g:\mathbb{R}^3\to\mathbb{R}^3,\ g=(g_1,g_2,g_3)$ tal que $d\omega\left(x,y,z\right)=g_1\left(x,y,z\right)dy\wedge dz+g_2\left(x,y,z\right)dz\wedge dx+g_3\left(x,y,z\right)dx\wedge dy$. Quem é essa função? Justifique calculando $d\omega$.

(1 ponto) b) Considere a 2-forma diferencial $\omega(x,y,z) = f_1(x,y,z) dy \wedge dz + f_2(x,y,z) dz \wedge dx + f_3(x,y,z) dx \wedge dy$ em \mathbb{R}^3 . Existe uma função g tal que $d\omega(x,y,z) = g(x,y,z) dx \wedge dy \wedge dz$. Quem é essa função? Justifique calculando $d\omega$. Resolução:

Não precisa treinar esse exercício! Formas não cairão na prova P3 de 2019.

FORMULÁRIO.

Definição 1. Seja $\varphi:\Omega\subset\mathbb{R}^2\to\mathbb{R}^3$ uma parametrização e $S=\varphi(\Omega)$. Nestas condições:

1) A área da superfície é definida como

$$\int \int_{\Omega} \left\| \frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial u} \right\| du dv.$$

2) A integral de superfície de uma função $f:U\subset\mathbb{R}^3\to\mathbb{R}$, em que $S\subset U$, é definida como

$$\iint_{S} f dS = \iint_{\Omega} f \circ \varphi(u, v) \left\| \frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial u} \right\| du dv.$$

3) O fluxo de uma função $f:U\subset\mathbb{R}^3\to\mathbb{R}$, em que $S\subset U$, é definido como $\int\int_S\langle f,n\rangle\,dS$. Portanto é calculado como

$$\int \int_{\Omega} \left\langle f \circ \varphi(u,v), \frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial u} \right\rangle du dv.$$

Teorema 1. O teorema do divergente nos diz que se $\Omega \subset \mathbb{R}^3$ é um aberto limitado e conexo e se $\partial\Omega$ for suficientemente regular (de classe C^1 , ou cubos, poliedros, semicírculos e etc) e se $u: \overline{\Omega} \to \mathbb{R}^3$ é de classe C^1 , então

$$\int\int\int_{\Omega}\nabla.udx=\int\int_{\partial\Omega}\left\langle u,n\right\rangle dS,$$

em que n é a normal unitária que aponta para fora

Teorema 2. O teorema de Stokes nos diz que se $S \subset \mathbb{R}^3$ é uma superfície de dimensão 2 com bordo suficientemente regular (por exemplos, curvas de classe C^1), e se $u: \Omega \to \mathbb{R}^3$ é uma função de classe C^1 , em que $S \subset \Omega \subset \mathbb{R}^3$ e Ω é um aberto, então

$$\int \int_{S} \nabla \times u.ndS = \int_{\partial S} u.d\alpha,$$

em que $\int_{\partial S} u.d\alpha$ é a integral de linha sobre o bordo da superfície e n é uma normal unitária da superfície. A integração de linha obdece a regra da mão direita.

Definição 2. Uma p-forma ω em \mathbb{R}^n é uma aplicação $\omega: \mathbb{R}^n \times ... \times \mathbb{R}^n \to \mathbb{R}$, com p-cópias de \mathbb{R}^n , linear em cada uma das coordenadas e alternada. Em particular, temos

$$dx_i(v_1, ..., v_n) = v_i,$$

$$dx_i \wedge dx_j ((v_1, ..., v_n), (w_1, ..., w_n)) = v_i w_j - v_j w_i.$$

Logo $dx_i \wedge dx_j = -dx_j \wedge dx_i$ e $dx_i \wedge dx_i = 0$.

Uma p-forma diferencial em \mathbb{R}^n é uma função ω definida num aberto $\Omega \subset \mathbb{R}^n$ e que a cada ponto $x \in \Omega$ corresponde uma p-forma $\omega(x)$.

Definição 3. Dado uma p-forma $\omega(x) = \sum_{i=1}^{N} a_i dx_i$, em que $dx_i = dx_{i_1} \wedge ... \wedge dx_{i_N}$, definimos a p+1-forma $d\omega$ como

$$d\omega(x) = \sum_{i=1}^{N} \sum_{k=1}^{n} \frac{\partial a_{i}}{\partial x_{k}}(x) dx_{k} \wedge dx_{I}.$$