PROVA 1 - MATEMÁTICA 4 (CCM 0223)

PROF: PEDRO T. P. LOPES - WWW.IME.USP.BR/~PPLOPES/MATEMATICA4

A prova é individual e sem consulta (apenas consulte o formulário). Utilize somente resultados dados em sala de aula. Os resultados dados em sala de aula podem (e devem) ser usados sem demonstração.

Boa Prova!

Exercício 1

- (1 Ponto) a) Calcule o comprimento da curva $\alpha: \left[0, \frac{\pi}{2}\right] \to \mathbb{R}^2$ dada por $\alpha(t) = \left(\cos^3(t), \sin^3(t)\right)$.
- (1 Ponto) b) Calcule $\int_C y dz 2z dx$, em que C é a curva que começa em (1,2,0) e vai até $(0,0,\sqrt{5})$ e está contida na intersecção das superfícies definidas por $x^2 + y^2 + z^2 = 5$ e por y = 2x.
- (1 Ponto) c) Considere uma partícula que vai do ponto (1,1) até o ponto (2,2) num campo de forças definido por $f(x,y)=(2xy,x^2)$. Calcule o trabalho de f ao longo do deslocamento da partícula.

Exercício 2

- (1 Ponto) a) Seja $f: \mathbb{R}^3 \setminus \{(x,0,0); x \in \mathbb{R}\} \to \mathbb{R}$ a função dada por $f(x,y,z) = \left(0, \frac{-z}{y^2+z^2}, \frac{y}{y^2+z^2}\right)$. Esta função tem rotacional nulo? Ela é conservativa?
 - (1 Ponto) b) O espaço $\mathbb{R}^3 \setminus \{(x,0,0) : x \in \mathbb{R}\}$ é simplemente conexo? Justifique.

Exercício 3

- (1,5 ponto) a) Dado uma curva $\alpha:[a,b]\to\mathbb{R}^2,\ \alpha(t)=(x(t),y(t)),$ definimos sua normal como $n(t)=\frac{\left(y'(t),-x'(t)\right)}{\sqrt{x'(t)^2+y'(t)^2}}.$ Seja C uma curva de Jordan C^1 por partes e f e g duas funções de classe C^2 num aberto que contém a curva e o seu interior. Mostre que $\oint_C f \frac{\partial g}{\partial n} ds = \int \int_{\mathrm{int}(C)} (f\Delta g + \nabla f.\nabla g) \, dx dy.$
- (1 ponto) b) Dizemos que $u \in C^2(\Omega)$ é um autovetor do Laplaciano com autovalor λ se $\Delta u = \lambda u$. Dizemos que este autovetor satisfaz a condição de Dirichlet se $u|_{\partial\Omega}=0$. Dizemos que este autovetor satisfaz a condição de Neumann se $\partial_n u|_{\partial\Omega}=0$. Mostre que se Ω é o interior de uma curva de Jordan C^1 por partes, então todo autovetor com condições de Dirichlet ou de Neumann possui autovalor $\lambda < 0$.

Exercício 4

(2,5 ponto) Considere a função $\varphi: \mathbb{R}^2 \to \mathbb{R}^2$ dada por $\varphi(u,v) = (u^2 - v^2, 2uv)$. Seja Q o quadrado com vértices (1,1), (1,2), (2,1) e (2,2). Esboce o conjunto $S:=\varphi(Q)$, imagem do quadrado pela função Q. Calcule

$$\int \int_{S} y^2 dx dy.$$

FORMULÁRIO.

Definição 1. Seja $f = (f_1, ..., f_n) : \Omega \subset \mathbb{R}^n \to \mathbb{R}^n$ e $\alpha : [a, b] \to \mathbb{R}^n$. Definimos a integral de linha por

$$\int f d\alpha = \int f_1 dx_1 + \dots + f_n dx_n = \int_a^b f(\alpha(t)) \cdot \alpha'(t) dt.$$

Seja $g:\Omega\subset\mathbb{R}^n\to\mathbb{R}$. Definimos a integral pelo comprimento da curva por

$$\int gds = \int_{a}^{b} g\left(\alpha\left(t\right)\right) \left\|\alpha'\left(t\right)\right\| dt.$$

Exemplo 2. Integral de linha pode ser usada para cálculo de trabalho. Integral pelo comprimento da curva pode ser usado para o cálculo de comprimento, massa, centro de massa e etc. Se $\rho:\Omega\subset\mathbb{R}^n\to\mathbb{R}$ descreve a densidade, então a massa de um objeto descrito pela curva $\alpha:[a,b]\to\Omega$ é dada por $\int \rho ds$. O centro de massa é o vetor $(y_1,...,y_n)$ dado por $y_j=\frac{\int \rho x_j\,ds}{\int \rho ds}$.

Definição 3. Uma função $f = (f_1, ..., f_n) : \Omega \subset \mathbb{R}^n \to \mathbb{R}^n$ é um campo conservativo se existe $\varphi : \Omega \to \mathbb{R}$ de classe C^1 tal que $f = \nabla \varphi$.

Definição 4. Um conjunto aberto $\Omega \subset \mathbb{R}^n$ é simplesmente conexo se toda curva fechada simples pode ser deformada em um ponto, isto é, dado $\alpha:[a,b] \to \Omega$ contínua e tal que $\alpha(a)=\alpha(b)$, então existe $H:[0,1]\times[a,b] \to \Omega$ contínua tal que $H(0,t)=\alpha(t)$ e $H(1,t)=p\in\Omega$. Conjuntos estrelados (tais que existe $p\in\Omega$ tal que todo outro ponto de Ω pode ser ligado por um segmento de reta até p) são simplesmente conexos.

Proposição 1. Se f é uma função conservativa de classe C^1 , então seu rotacional é zero. (Dizemos que f tem rotacional zero se $\frac{\partial f_i}{\partial x_j} = \frac{\partial f_j}{\partial x_i}$). Se Ω é simplesmente conexo, f é de classe C^1 e tem rotacional igual a zero, então f é conservativa.

Definição 5. Seja $\alpha:[a,b]\to\Omega$ uma curva de Jordan (fechada e simples) de classe C^1 por partes e cujo interior, denotado por R, pertence ao aberto $\Omega\subset\mathbb{R}^n$. Sejam $P,Q:\Omega\to\mathbb{R}$ duas funções de classe C^1 . Logo

$$\int_{Im(\alpha)} P dx + Q dy = \int \int_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

Definição 6. Seja $Q \subset \mathbb{R}^n$ e $\varphi: Q \to \tilde{Q}$ um difeomorfismo. Seja $f: Q \to \mathbb{R}$ uma função integrável. Logo

$$\int_{Q} f dx = \int_{\varphi^{-1}(Q)} f \circ \varphi \left| \det d\varphi \right| dx,$$

em que $\det(d\varphi) = \det\left(\frac{\partial \varphi_i}{\partial x_j}\right)$.