LISTA PARA REVISÃO 1 MAP0217 / MAT0311 CÁLCULO DIFERENCIAL / CÁLCULO V

Exercício 1. Considere F(x,y)=(2x+y,3x+2y) e G(u,v)=(2u-v,-3u+v). Seja $H=G\circ F$. Calcule H explicitamente e sua matriz Jacobiana no ponto $(x_0,y_0)=(5,7)$. Então, utilizando a regra da cadeia, calcule novamente a matriz Jacobiana no mesmo ponto para comparar os resultados.

Exercício 2. Considere a curva descrita pela equação $x^2+y+\sin(xy)=0$. É possível descrevê-la por uma equação da forma y=f(x) em uma vizinhança do ponto (0,0)? E por uma equação da forma x=g(y)?

Exercício 3. Seja $A \subset \mathbb{R}^3$ e seja $F : A \to \mathbb{R}$. Seja S_F a superfície em \mathbb{R}^3 definida implicitamente como a superfície de nível:

$$S_F = \{(x, y, z) \in \mathbb{R}^3 : F(x, y, z) = 0\}$$

Se F é diferenciável no ponto $(x_0, y_0, z_0) \in S_F$, que é interior a A, então o espaço tangente a S_F neste ponto é o conjunto de pontos:

$$\{(x,y,z) \in \mathbb{R}^3 : A_{(x_0,y_0,z_0)}(x,y,z) = 0\}$$

onde $A_{(x_0,y_0,z_0)}$ é a aplicação afim de $\mathbb{R}^3 \to \mathbb{R}$ definida por

$$A_{(x_0,y_0,z_0)}(x,y,z) = F(x_0,y_0,z_0) + F'(x_0,y_0,z_0)(x-x_0,y-y_0,z-z_0)$$

= $F'(x_0,y_0,z_0)(x-x_0,y-y_0,z-z_0)$

Mostre que o espaço tangente em (x_0, y_0, z_0) é dado por:

$$\{(x,y,z): \langle \nabla F(x_0,y_0,z_0)|(x-x_0,y-y_0,z-z_0) \rangle = 0\}$$

Assim espaço tangente a S_F é um plano se ao menos uma das coordenadas de $\nabla F(x_0, y_0, z_0)$ é diferente de 0. Neste caso, o espaço tangente a S_F é chamado de plano tangente a S_F em (x_0, y_0, z_0) .