Address
Departamento de Matemática Aplicada
Instituto de Matemática e Estatística
Universidade de São Paulo
Rua do Matão, 1010
05508-090
- São Paulo - SP – Brasil
Tel: 55-11-30916234
Fax: 55-11-30916131
Office number: 294
e-mail: sazanata@ime.usp.br
Research Interests
· Topological Dynamics
· Twist Maps
· Hamiltonian Systems
· Bifurcation Theory
· Ergodic Theory
1) Baixe aqui as listas de Calc. Numerico - Lic.: Caderno de Exercicios
Published Papers
1) Zanata, S. and Ragazzo C. (2001) Critical number in scattering and escaping problems in classical mechanics Physical Review E 64
2) Zanata, S. (2001) Periodic and quasi-periodic orbits of a new type for twist maps of the torus Anais da Academia Brasileira de Ciencias 74(1), 25-31.
3) Zanata, S. (2002) On the existence of a new type of periodic and quasi-periodic orbits for twist maps of the torus Nonlinearity 15, 1399-1416
4) Zanata, S. and Ragazzo C. (2002) On the stability of some periodic orbits of a new type for twist maps Nonlinearity 15, 1385-1397
5) Zanata, S. and Ragazzo C. (2004) Conservative dynamics: Unstable sets for saddle-center loops. Journal of Differential Equations 197 (1), 118-146
6) Zanata, S. (2004) Instability for the rotation set of homeomorphisms of the torus homotopic to the identity. Ergodic Theory and Dynamical Systems 24 (2), 319-328
7) Zanata, S. (2004) On properties of the vertical rotation interval for twist mappings II Qualitative theory of Dynamical systems 4, 125-137
8) Zanata, S. (2005) On properties of the vertical rotation interval for twist mappings Ergodic Theory and Dynamical Systems 25, 641–660
9) Zanata, S. (2004) A note on a standard family of twist maps Qualitative Theory of Dynamical Systems 5, 1–9.
10) Zanata, S. (2006) Stability for the vertical rotation interval of twist mappings Discrete Contin. Dyn. Syst. 14, 631–642.
11) Zanata, S. (2007) A simple computable criteria for the existence of horseshoes Discrete Contin. Dyn. Syst. 17, 365–370
12) Zanata, S. (2005) Some extensions of the Poincaré-Birkhoff theorem to the cylinder Nonlinearity 18, 2243–2260
13) Tal, Fábio Armando; Addas-Zanata, Salvador (2007) On periodic points of area preserving torus homeomorphisms. Far East J. Dyn. Syst. 9, no. 3, 371–378
14) Tal, Fábio Armando; Addas-Zanata, Salvador (2008) On maximizing measures of homeomorphisms on compact manifolds. Fund. Math. 200, 145–159
15) Tal, Fábio Armando; Addas-Zanata, Salvador (2008) Maximizing measures for endomorphisms of the circle. Nonlinearity 21, 2347–2359
16) Tal, Fábio Armando; Addas-Zanata, Salvador (2010) On generic rotationless diffeomorphisms of the annulus. Proc. Amer. Math. Soc. 138, 1023–1031
17) Tal, Fábio Armando; Addas-Zanata, Salvador (2010) Support of maximizing measures for typical C^0 dynamics on compact manifolds. Discrete Contin. Dyn. Syst. 26, no. 3, 795–804
18) Tal, Fábio Armando; Addas-Zanata, Salvador (2011) Homeomorphisms of the annulus with a transitive lift. Mathematische Zeit.
19) Tal, Fábio Armando; Addas-Zanata, Salvador (2011) Boyland's Conjecture for rotationless homeomorphisms of the annulus with two fixed points. Qual. Th. of Dyn. Sys.
20) Tal, Fábio Armando; Addas-Zanata, Salvador (2011) Homeomorphisms of the annulus with a transitive lift II. Discrete and Cont. Dyn. Sys.
21) Gomes, Bernardo; Addas-Zanata, Salvador (2011) Horseshoes for a generalized Markus-Yamabe example. Qual. Th. of Dyn. Sys.
22) Addas-Zanata, S. Tal, F. Garcia, B. (2014) Dynamics of homeomorphisms of the torus homotopic to Dehn twists. Ergodic Th. and Dyn. Sys.
23) Addas-Zanata, S (2015) Area Preserving diffeomorphisms of the torus whose rotation sets have non empty interior. Ergodic Theory and Dynamical Systems
24) Addas-Zanata, S e Salomao P.(2014) Persistence of fixed points under rigid perturbations of maps. Fundamenta Mathematicae
25) Addas-Zanata, S. (2015) Uniform bounds for diffeomorphisms of the torus and a conjecture by P. Boyland. Journal of the London Mathematical Society
26) Addas-Zanata, S. and Le Calvez P. (2018) Rational mode locking for homeomorphisms of the 2-torus. Proc. Amer. Math. Soc.
27) Addas-Zanata, S. and Le Calvez P. (2020) A consequence of the growth of rotation sets for families of diffeomorphisms of the torus. Ergodic Theory Dynam. Systems
28) Addas-Zanata, S. and Jacoia B. (2021) A condition that implies full homotopical complexity of orbits for surface homeomorphisms. Ergodic Theory Dynam. Systems
29) Addas-Zanata, S. and Koropecki A. (2022) Homotopically unbounded disks for generic surface diffeomorphisms. Trans. of the Amer. Math. Soc.
30) Addas-Zanata, S. and Liu X. (2020) On stable and unstable behavior of certain rotation segments. Nonlinearity
31) Addas-Zanata, S. and Tal F. (2023) Mather's regions of instability for annulus diffeomorphisms. Bull. London Math. Soc.
Accepted Papers
Preprints
Book
1) Zanata S., Ragazzo C. e Carneiro M. Uma introdução às aplicações do tipo twist
Personal Interests
1) nature
2) poetry
3) love
4) connections between the above