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Abstract

In this note we present an example of a planar diffeomorphism satis-

fying the generalized Markus-Yamabe conditions, which has a horseshoe.

This answers negatively a belief that generically they should be Morse-

Smale.
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1 Introduction

In this paper we study diffeomorphisms of the plane, satisfying some special

conditions. In order to present the history of this problem we have to go back

to its continuous version, which is known as the Markus-Yamabe Conjecture.

Despite its name, the Markus-Yamabe Conjecture is due to Aizerman [1], who

stated it as follows:

M-Y Conjecture: Let X : IRn → IRn be a smooth vector field, such that

0 is a singular point, and for any p ∈ IRn, the Jacobian of X at p has all

eigenvalues with negative real part. Then every orbit in IRn is asymptotically

stable to the origin.

The above problem was cited by Markus and Yamabe in [11], where they

prove that the conjecture is true under some additional assumptions. It is clearly

true for n = 1 and it remained open for n = 2 until 1993, when Gutierrez [7]

and Fessler [6], independently answered it affirmatively. In 1997, Cima, Gasull,

Hubbers, Mañosas and Van den Essen [4] presented polynomial counterexamples

to the Markus-Yamabe Conjecture in any dimension greater than two. The

conjecture fails for those counterexamples, since they exhibit orbits tending to

the point at infinity.

Therefore, the Markus-Yamabe Conjecture is completely answered, being

true only in the one and two dimensional cases. Inspired by the Markus-Yamabe

Conjecture, La Salle [10] formulated the following conjecture, which is known as

the Discrete Conjecture of Markus-Yamabe, or simply the DM-Y Conjecture:

DM-Y Conjecture: Let f be a C1-map from Rn to itself such that f(0) =

0, and for any p ∈ Rn, the Jacobian of f at p has all its eigenvalues with modulus

less than one. Then every orbit in Rn is asymptotically stable to the origin.

The DM-Y Conjecture is the natural equivalent of the Markus-Yamabe Con-
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jecture for discrete dynamical systems and was motivated by the Hartman-

Grobman theorem.

In 1999, A. Cima, A. Gasull and F. Mañosas [5], based on a example of W.

Szlenk, proved that the DM-Y Conjecture is false even in the two-dimensional

setting. Since the known counter examples to the DM-Y Conjecture have un-

bounded orbits, Alarcon, Guiñez e Gutierrez [3] strengthened the hypotheses of

the DM-Y, in an attempt to guarantee the global stability of the origin, adding

the new hypothesis of repulsion at infinity. Even with this new hypothesis, the

conjecture is not true, see for instance Theorem 4.4 of [3]. In this article we

consider this new setting, which is summarized below:

Let f : IR2 → IR2 be a Cr (r ≥ 1) diffeomorphism of the plane satisfying the

following conditions:

1) for all p ∈ IR2, 0 < det(Df |p) < 1;

2) for all p ∈ IR2, spec(Df |p)
def.
= eigenvalues(Df |p) ⊂ B1(0);

3) the point at infinity is a repeller;
4) f has only one fixed point;

(1)

The above are the so called generalized Markus-Yamabe conditions. The

second condition already appeared in the DM-Y Conjecture (the first follows

from the second plus the assumption that f is orientation preserving) and the

third is equivalent to saying that there are simple closed curves γ surrounding

the origin, arbitrarily far from it, such that f(γ) is contained in the open disk

D bounded by γ. In many contexts, this condition is simply known as f is

dissipative, see for instance [3]. The fourth is not really a condition, it is a

consequence of the previous ones, as shown by Corollary 2 of [2].

Under these hypotheses, the interesting dynamics f may present is restricted

to the attractor

Σ
def.
=

∞

∩
n=0

fn(D). (2)

Remember that D is an open disk bounded by a Jordan curve γ such that
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f(γ) ⊂ D. As f dissipates area, Σ is a compact connected subset of the plane

with empty interior.

This paper is organized as follows. In the second section we state and prove

our main theorem. In the third section we present a three parameter family of

diffeomorphisms of the plane which was the inspiration for our main theorem.

For certain parameter values it is conservative, has an elliptic fixed point and the

typical complications around it. If we change the parameters in an appropriate

way, we get a diffeomorphism satisfying the generalized Markus-Yamabe condi-

tions, which still has transversal homoclinic points (that were already there in

the conservative setting). We present some figures to illustrate these behaviors.

As the computations for this family are not easy, we prove our main theorem

by a different method. We just want to point out that this family, for certain

parameters, is an example as in the main theorem.

2 Main Result and Proofs

The question we answer here is about how Σ can be. To be more precise, it

was believed by some people in the field that a generic f (in the C1 topology)

satisfying (1) had to be Morse-Smale and thus Σ had to be a Morse-Smale graph

(see [9]). Our result proves that this is not the case.

Theorem 1 : There exists a planar Cr (for all r ≥ 1) diffeomorphism satisfying

(1) which has a horseshoe.

So, as homoclinic intersections are stable under C1 perturbations, generic

diffeomorphisms satisfying the generalized Markus-Yamabe conditions are not

Morse-Smale, that is, there are open sets of such diffeomorphisms which have

horseshoes.

Our argument starts with a conservative diffeomorphism of the plane having

complicated dynamics in a neighborhood of an elliptic fixed point and after
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an appropriate perturbation we obtain one satisfying the generalized Markus-

Yamabe conditions, in a way that part of the original complication (a horseshoe)

is preserved.

Proof of theorem 1:

Let us consider an integrable area preserving Cr (for any r ≥ 1) twist dif-

feomorphism of the plane, denoted f0, which has an elliptic fixed point at the

origin and fixes every circle CR = {(x, y) ∈ IR2 : x2 + y2 = R2}, rotating its

points by an angle which increases uniformly with respect to R (f0(CR) = CR

and the dynamics of f0 on each circle is that of a rigid rotation). Clearly, f0

can be chosen in a way that Df0(0, 0) is a rotation of an angle different from

π.p/q, for any rational number p/q. To be more precise, if we identify IR2 with

the complex plane, f0 can be written in complex coordinates as

z = x+iy → z. exp[i(θ+|z|2)], for some θ which is not a rational multiple of π.

It is easy to see that the above expression satisfies all the above assumptions.

When (θ + |z|
2
) is a rational multiple of π, we have circles of periodic points.

The result of Zehnder we apply below tells us that f0 can be perturbed in a way

that some of these circles of periodic points disappear and hyperbolic periodic

points with homoclinic intersections come to place.

As we said, we can apply a result of Zehnder from [12], and perturb f0 in

order to obtain an area preserving Cr diffeomorphism f1, arbitrarily Cr−close

to f0 (for any r ≥ 1), such that:

• f1(x, y) ≡ f0(x, y) for all (x, y) /∈ Bρ(0), for some ρ > 0 such that for all

(x, y) ∈ Bρ(0), spec(Df0(x, y)) is not real.

• f1 has a periodic hyperbolic point with a transversal homoclinic intersec-

tion
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The main theorem of [12] is proved for analytic diffeomorphisms of the plane,

in an adequate topology. As is pointed out in that paper, a Cr result (for any

r ≥ 1) as we stated above follows from this analytic result, see corollary 1 of

theorem 1 of [12].

Now, if for (x, y) ∈ IR2, we denote the eigenvalues of Df1(x, y) by λ(x, y)

and 1/λ(x, y), we get that they both belong to the unitary circle. This trivially

happens for (x, y) /∈ Bρ(0). If (x, y) ∈ Bρ(0), as the eigenvalues of Df1(x, y) are

C0 close to the eigenvalues of Df0(x, y), which are not real, a simple continuity

argument, using the fact that det(Df1(x, y)) = det(Df0(x, y)) = 1 implies that

‖λ(x, y)‖ = 1.

So, for any given 0 < ǫ < 1 consider the mapping

f2(x, y) =
1

1 + ǫ
f1(x, y).

Simple computations show that the point at infinity is a repeller for f2 because

if R > 0 is sufficiently large, f1(CR) = f0(CR) = CR. Thus f2 satisfies the

generalized Markus-Yamabe conditions. Moreover, if ǫ > 0 is sufficiently small,

f2 still has a transversal homoclinic intersection and this proves our theorem.

2

3 Inspiring example

The discussion we present now could be considered a ”constructive proof” for

our theorem if we presented all the necessary computations.

Consider the following 3-parameter family of diffeomorphisms fa,b,c : IR2 → IR2

given by:

fa,b,c(x, y) = (a exp(−x2) − by, cx), for positive parameters a, b, c
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Clearly,

Dfa,b,c(x, y) =

(

−2ax exp(−x2) −b
c 0

)

So, if b, c < 1 and a2/2e < bc, it is easy to see that fa,b,c satisfies the

generalized conditions of Markus-Yamabe. Suppose a = 2 and b = c = 1. This

is a conservative mapping, whose dynamics can be seen at figure 1. There is

an elliptic fixed point, surrounded by an elliptic island, with all the expected

complications, transversal homoclinic intersections, ”islands around islands”

and so on. If we now choose b and c smaller, but very close to one, we obtain a

generalized Markus-Yamabe example, which for sufficiently small |b − 1|+|c − 1|

must have a horseshoe by the transversality of the homoclinic intersection that

existed when b = c = 1. See figure 2 for a picture of the stable and unstable

manifolds of a 3-periodic saddle for such dissipative parameters. Clearly, the

computations which prove the above assertions are far from being simple.
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Figure captions.

Figure 1. Diagram showing the dynamics of fa,b,c for conservative parameters, a = 2

and b = c = 1.

Figure 2. Diagram showing homoclinic intersections for the stable and unstable

manifolds of a hyperbolic 3-periodic saddle for parameters which cor-

respond to a mapping satisfying the generalized conditions of Markus-

Yamabe, a = 2 and b = c = 0.997.
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