Fast Two-Robot Disk Evacuation

Ioannis Lamprou, Russell Martin, Sven Schewe Department of Computer Science, University of Liverpool, UK

Distributed Search Aspects	An Extra Improvement: Fast-Chord
 Mobile agents: robots, software pieces, etc. Environment: discrete (graph) or continuous (Euclidean) Tasks: exploration, rendezvous, evacuation, patrolling Communication: wireless (global), face-to-face (local), pebbles Capabilities: speed, energy, environment dynamicity 	x_{1} $S - 1$ B x_{3} C X_{2} D
Our Problem: Fast Evacuation	
 Two robots: Fast and Slow Unit disk environment 	

- Robots initially at center, move within disk
- Unknown exit on boundary; identified only when on it
- Instantaneous communication: once exit found, beeline
- Fast with speed $s \ge 1$, Slow with speed 1

A First Strategy: Both-to-the-Same Point [1]

Figure 1: The **BSP** Strategy

Figure 3: The Fast-Chord Family of Strategies

The Strategy

- **HC** near s = 2 forces some double exploration
- ► Fast follows *CB*; only Slow explores *CD*
- ► Fast on B exactly when Slow on D
- Experiment with $|\hat{DB}|$

Lemma

FC outperforms HC for $1.71 \le s \le 2.07$

Lower Bounds

- Fast and Slow trajectories
- Both-Explore Strategy
- Both to the same boundary point; explore in opposite directions
- Optimal for case s = 1

A Better Strategy: Half-Chord

Figure 4: A Lower Bound Depiction

The idea

- Long chord with unexplored endpoints
- ► When one explored, adversary places exit on the other
- Slow may be *d* away from boundary; covers at least |*AK*|

Theorem

The Strategy

- Fast explores counterclockwise
- **Slow** takes a $\frac{2}{s}$ radius to **C**, then \widehat{CM} , then half-chord **MB**
- Slow on M exactly when Fast on A
- Finally on B at the same time

Lemma

HC outperforms *BSP* for $s \ge 1.86$

HC optimal for $s \ge 2.75$; ratio ≤ 1.22 for s < 2.75

Further Work

- Optimality for s < 2.75
- More than two robots
- Face-to-face communication

References

[1] J. Czyzowicz et al. Evacuating robots from an unknown exit located on the boundary of a disk, *DISC 2014*, LNCS 8784, pp. 122-136, Springer, 2014.

Ioannis Lamprou, Russell Martin, Sven Schewe

Ioannis.Lamprou@liverpool.ac.uk