# São Paulo School of Advanced Science on Algorithms, Combinatorics and Optimization 

# The Perfect Matching Polytope, Solid Bricks and the Perfect Matching Lattice 

July 2016

Cláudio L. Lucchesi


FACOM, UFMS, Brazil

## Genesis

- Theorem [Tait (1880)]

A 2-connected cubic graph is 4-face-colourable iff it is 3-edge-colourable


- Theorem [Petersen (1891)]

Every 2-connected cubic graph has a perfect matching

## Genesis

- Theorem [Tutte (1947)] A graph $G$ admits a perfect matching iff

$$
|\mathcal{O}(G-S)| \leq|S| \quad \forall S \subset V
$$



## Matching Covered Graphs

■ Corollary Every edge of a 2-connected cubic graph is in a perfect matching

- a matching covered graph is a connected nontrivial graph such that every edge is in a perfect matching
- Corollary Every 2-connected cubic graph is mc
- Lemma Every mo graph $G$ with $|V| \geq 4$ is 2-connected


## Illustrious Cubic Graphs



## Noncubic mc graphs

- $W_{5}, B_{10}$ and Murty's graph are examples of noncubic mc graphs:



## Building Blocks

- Splicing of two mc graphs yields another mc graph



## Building Blocks

- Splicing

$=$


## Building Blocks

- Splicing $\Rightarrow P_{10}$

$=$



## Building Blocks

- Splicing

$=$


## Building Blocks

- Splicing $\Rightarrow \mathbb{P}$

$=$



## Separating Cuts

- Which mc graphs may be obtained by splicing two smaller mc graphs?
- Those mc graphs which have separating cuts
$■$ Cut-contraction is the inverse of splicing



## Separating Cuts

$\square$ a cut $C$ of a mc $G$ is separating if both $C$-contractions are mc

- Theorem $A$ cut $C$ of $m c G$ is separating iff

$$
\forall e \in E(G) \quad \exists \mathrm{pm} M: \quad e \in M, \quad|M \cap C|=1
$$

- A cut that is not separating



## Tight Cuts

- A cut $C$ of mc $G$ is tight if $|M \cap C|=1 \quad \forall M \in \mathcal{M}$
- Tight cuts are a special type of separating cuts
- mc graphs free of nontrivial tight cuts:
- bipartite graphs: braces

■ nonbipartite graphs: bricks

## Tight Cuts

- special types of tight cuts

- $C_{1}$ : a barrier cut
- $C_{2}$ : a 2-separation cut
$\square D:$ neither a barrier nor a 2-separation cut


## Barrier Cuts

- mc $G, B \subset V$ is a barrier if $|\mathcal{O}(G-B)|=|B|$
- given barrier $B$ of mc $G$, and $K \in \mathcal{O}(G-B)$, $\partial(V(K))$ is a barrier cut



## 2-Separation Cuts

$\square$ mc $G$, a pair $S:=\{u, v\} \subset V$ is a 2-separation if
$-G-S$ is not connected and

- each component of $G-S$ is even
- 2-sep $\{u, v\}$ of mc $G$, component $K$ of $G-u-v$, $\partial(\{u\} \cup V(K))$ and $\partial(\{v\} \cup V(K))$ are $\underline{2-\text { sep cuts }}$



## Tight Cuts

- ELP cut: nontrivial barrier cut or 2-sep cut
- Theorem [Edmonds, Lovász, Pulleyblank (1982)] If a me graph has a nontrivial tight cut then it has an ELP cut

■ $\Rightarrow$ polynomial algorithm

$■ C_{1}, C_{2}$ are ELP, but $D$ is not

## Tight Cut Decomposition



## Tight Cut Decomposition

- Theorem [Lovász (1987)]

Any two applications of the tight cut decomposition procedure produces the same collection of bricks and braces, up to multiple edges

- proof by induction on $|V|$


## Crossing Cuts

- Crossing Cuts

$\square(X)$ and $\partial(Y) \underline{\text { cross }}$

|  | Y | $\bar{Y}$ |
| :---: | :---: | :---: |
| $X$ | $X \cap Y$ | $X \cap \bar{Y}$ |
| $\bar{X}$ | $\bar{X} \cap Y$ | $\bar{X} \cap \bar{Y}$ |

## Tight Cut Decomposition

- Tight cut decomposition $\Leftrightarrow$ maximal laminar collection of nontrivial tight cuts

- laminar $\Leftrightarrow$ cuts do not cross


## Common Cut $C$



## Blue $C_{1}$ and Red $C_{2}$ do not cross



- Blue $C_{1}$ and green $C_{1}$ : previous case
$\square \operatorname{Red} C_{2}$ and green $C_{2}$ : previous case
$\therefore \quad$ Every blue $C_{1}$ and red $C_{2}$ cross


## Every blue $C_{1}$ and red $C_{2}$ cross



## Crossing Tight Cuts

- Lemma If tight cuts $\partial(X)$ and $\partial(Y)$ cross, where $|X \cap Y|$ is odd, then no edge joins a vertex in $X \cap \bar{Y}$ to a vertex in $\bar{X} \cap Y$

| X | $X \cap Y$ | $X \cap \bar{Y}$ |
| :---: | :---: | :---: |
| $\bar{X}$ | $\bar{X} \cap Y$ | $\bar{X} \cap \bar{Y}$ |

- Corollary $\quad \forall S \subseteq E$

$$
\begin{aligned}
& |S \cap \partial(X)|+|S \cap \partial(Y)|= \\
& |S \cap \partial(X \cap Y)|+\mid S \cap \partial(\bar{X} \cap \bar{Y} \mid)
\end{aligned}
$$

## Crossing Tight Cuts

- Corollary If tight cuts $\partial(X)$ and $\partial(X)$ cross, where $|X \cap Y|$ is odd,

$$
\begin{aligned}
& \forall S \subseteq E \\
& |S \cap \partial(X)|+|S \cap \partial(Y)|= \\
& |S \cap \partial(X \cap Y)|+\mid S \cap \partial(\bar{X} \cap \bar{Y} \mid)
\end{aligned}
$$

- Corollary If tight cuts $\partial(X)$ and $\partial(Y)$ cross, where $|X \cap Y|$ is odd, then $\partial(X \cap Y)$ and $\partial(\bar{X} \cap \bar{Y})$ are both tight
$\partial\left(X_{1}\right), \partial\left(X_{2}\right)$ cross, $\left|X_{1} \cap X_{2}\right|$ odd, nontrivial
$\square C_{1}:=\partial\left(X_{1}\right), C_{2}:=\partial\left(X_{2}\right), C_{3}: \underset{\overline{X_{2}}}{=\partial}\left(X_{1} \cap X_{2}\right)$ is tight

\[

\]

- green uses blue $C_{1}$ and $C_{3}$
- brown uses red $C_{2}$ and $C_{3}$
- previous case:
- green $\sim$ blue (common $C_{1}$ )

■ brown $\sim \operatorname{red}\left(\right.$ common $\left.C_{2}\right)$
$\square$ green $\sim$ brown $\left(\right.$ common $\left.C_{3}\right)$

## Last Case

- just one red cut
- assume two or more, $C_{1}^{\prime}=\partial\left(X_{1}^{\prime}\right), C_{2}^{\prime}=\partial\left(X_{1}^{\prime \prime}\right)$,
$X_{1}^{\prime} \subset X_{1}^{\prime \prime}$


■ assume $\left|X_{1}^{\prime} \cap X_{2}\right|$ is odd $\Rightarrow\left|\overline{X_{1}^{\prime}} \cap \overline{X_{2}}\right|$ odd

- if $\left|X_{1}^{\prime} \cap X_{2}\right|>1$ or $\left|\overline{X_{1}^{\prime}} \cap \overline{X_{2}}\right|>1$ : previous case
$\therefore \quad \therefore \quad X_{1}^{\prime} \cap \overline{X_{2}}=X_{1}^{\prime \prime} \cap \overline{X_{2}}$ (even)


## Last Case


$\square X_{1}^{\prime} \cap \overline{X_{2}}=X_{1}^{\prime \prime} \cap \overline{X_{2}}$ (even) $\Rightarrow X_{1}^{\prime \prime} \cap X_{2}$ is odd
■ if $\left|X_{1}^{\prime \prime} \cap X_{2}\right|>1$ : previous case

- $\quad \therefore \quad X_{1}^{\prime \prime} \cap X_{2}=X_{1}^{\prime} \cap X_{2}$
- $X_{1}^{\prime \prime}=X_{2}^{\prime}$, contradiction
$\therefore \quad$ only one blue, only one red


## Last Case



## Last Case




$C$-contractions


## Invariants $b$ and $b+p$

$\square b(G)$ : the number of bricks of mc graph $G$

- $p(G)$ : the number of Petersen bricks of mc graph $G$
- $G$ is a Petersen brick if its underlying simple graph is $\mathbb{P}$
- $(b+p)(G):=b(G)+p(G)$
$-b$ and $b+p$ are important invariants

