São Paulo School of Advanced Science on Algorithms, Combinatorics and Optimization

The Perfect Matching Polytope, Solid Bricks and the Perfect Matching Lattice July 2016

Cláudio L. Lucchesi

FACOM, UFMS, Brazil

Genesis

<u>Theorem</u> [Tait (1880)] A 2-connected cubic graph is 4-face-colourable iff it is 3-edge-colourable

<u>Theorem</u> [Petersen (1891)] Every 2-connected cubic graph has a perfect matching

Genesis

■ <u>Theorem</u> [Tutte (1947)] *A graph G admits a perfect matching iff* $|\mathcal{O}(G-S)| \leq |S| \quad \forall S \subset V$

Matching Covered Graphs

- Corollary Every edge of a 2-connected cubic graph is in a perfect matching
- a matching covered graph is a connected nontrivial graph such that every edge is in a perfect matching
- Corollary Every 2-connected cubic graph is mc
- Lemma Every mc graph G with $|V| \ge 4$ is 2-connected

Illustrious Cubic Graphs

Noncubic mc graphs

• W_5 , B_{10} and Murty's graph are examples of noncubic mc graphs:

Splicing of two mc graphs yields another mc graph

Splicing

spsas-sco-1 - p. 8/33

• Splicing
$$\Rightarrow P_{10}$$

Splicing

• Splicing $\Rightarrow \mathbb{P}$

Separating Cuts

- Which mc graphs may be obtained by splicing two smaller mc graphs?
- Those mc graphs which have separating cuts
- *Cut-contraction* is the inverse of splicing

a cut C of a mc G is separating if both C-contractions are mc

• Theorem A cut C of mc G is separating iff

 $\forall e \in E(G) \quad \exists \text{ pm } M : e \in M, |M \cap C| = 1$

• A cut that is not separating

Tight Cuts

- A cut C of mc G is *tight* if $|M \cap C| = 1 \quad \forall M \in \mathcal{M}$
- Tight cuts are a special type of separating cuts
- mc graphs free of nontrivial tight cuts:
 - bipartite graphs: braces
 - nonbipartite graphs: bricks

Tight Cuts

special types of tight cuts

- \blacksquare C_1 : a barrier cut
- \blacksquare C_2 : a 2-separation cut
- D: neither a barrier nor a 2-separation cut

Barrier Cuts

- mc G, $B \subset V$ is a barrier if $|\mathcal{O}(G B)| = |B|$
- given barrier B of mc G, and $K \in \mathcal{O}(G B)$, $\partial(V(K))$ is a barrier cut

2-Separation Cuts

• mc G, a pair
$$S := \{u, v\} \subset V$$
 is a 2-separation if

- G S is not connected and
- each component of G S is even
- 2-sep $\{u, v\}$ of mc G, component K of G u v, $\partial(\{u\} \cup V(K))$ and $\partial(\{v\} \cup V(K))$ are <u>2-sep cuts</u>

Tight Cuts

- *ELP cut*: nontrivial barrier cut or 2-sep cut
- <u>Theorem</u> [Edmonds, Lovász, Pulleyblank (1982)] If a mc graph has a nontrivial tight cut then it has an ELP cut

 \square C_1, C_2 are ELP, but D is not

Tight Cut Decomposition

Tight Cut Decomposition

Theorem [Lovász (1987)] Any two applications of the tight cut decomposition procedure produces the same collection of bricks and braces, up to multiple edges

• *proof* by induction on |V|

Crossing Cuts

Crossing Cuts

 $\blacksquare \partial(X) \text{ and } \partial(Y) \underline{cross}$

Tight Cut Decomposition

■ Tight cut decomposition ⇔ maximal laminar collection of nontrivial tight cuts

• laminar \Leftrightarrow cuts do not cross

Common Cut C

Blue C_1 and Red C_2 do not cross

Blue C₁ and green C₁: previous case
Red C₂ and green C₂: previous case
∴ Every blue C₁ and red C₂ cross

Every blue C_1 and red C_2 cross

Crossing Tight Cuts

• Lemma If tight cuts $\partial(X)$ and $\partial(Y)$ cross, where $|X \cap Y|$ is odd, then no edge joins a vertex in $X \cap \overline{Y}$ to a vertex in $\overline{X} \cap Y$

• Corollary $\forall S \subseteq E$ $|S \cap \partial(X)| + |S \cap \partial(Y)| =$ $|S \cap \partial(X \cap Y)| + |S \cap \partial(\overline{X} \cap \overline{Y}|)$

Crossing Tight Cuts

• Corollary If tight cuts $\partial(X)$ and $\partial(X)$ cross, where $|X \cap Y|$ is odd,

$$\forall S \subseteq E |S \cap \partial(X)| + |S \cap \partial(Y)| = |S \cap \partial(X \cap Y)| + |S \cap \partial(\overline{X} \cap \overline{Y}|)$$

• Corollary If tight cuts $\partial(X)$ and $\partial(Y)$ cross, where $|X \cap Y|$ is odd, then $\partial(X \cap Y)$ and $\partial(\overline{X} \cap \overline{Y})$ are both tight

 $\partial(X_1), \partial(X_2)$ cross, $|X_1 \cap X_2|$ odd, nontrivial

$$\square C_1 := \partial(X_1), C_2 := \partial(X_2), C_3 := \partial(X_1 \cap X_2) \text{ is tight}$$

- green uses blue C_1 and C_3
- brown uses red C_2 and C_3
- previous case:
 - green ~ blue (common C_1)
 - brown ~ red (common C_2)
 - green ~ brown (common C_3)

just one red cut

■ assume two or more, $C'_1 = \partial(X'_1), C'_2 = \partial(X''_1),$ $X'_1 \subset X''_1$ X_2 X_2 X_2 X_2 X_2 X_1 X_2 X_2 X_1

assume |X'_1 \cap X_2| is odd \Rightarrow |X'_1 \cap \overline{X_2}| odd
if |X'_1 \cap X_2| > 1 or |\overline{X'_1} \cap \overline{X_2}| > 1 : previous case
\therefore{X'_1 \cap X_2} = X''_1 \cap \overline{X_2} (even)

spsas-sco-1 – p. 29/33

- $X'_1 \cap \overline{X_2} = X''_1 \cap \overline{X_2}$ (even) $\Rightarrow X''_1 \cap X_2$ is odd
- if $|X_1'' \cap X_2| > 1$: previous case

$$\therefore \quad X_1'' \cap X_2 = X_1' \cap X_2$$

• $X_1'' = X_2'$, contradiction

■ .:. only one blue, only one red

Invariants b and b + p

- b(G): the number of bricks of mc graph G
- p(G): the number of Petersen bricks of mc graph G
- G is a <u>Petersen brick</u> if its underlying simple graph is \mathbb{P}
- $\bullet (b+p)(G) := b(G) + p(G)$
- b and b + p are important invariants