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Genesis

Theorem [Tait (1880)]
A 2-connected cubic graph is 4-face-colourable iff it
is 3-edge-colourable
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Theorem [Petersen (1891)]
Every 2-connected cubic graph has a perfect
matching
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Genesis

Theorem [Tutte (1947)]
A graph G admits a perfect matching iff

|O(G− S)| ≤ |S| ∀S ⊂ V
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Matching Covered Graphs

Corollary Every edge of a 2-connected cubic graph

is in a perfect matching

a matching covered graph is a connected nontrivial
graph such that every edge is in a perfect matching

Corollary Every 2-connected cubic graph is mc

Lemma Every mc graph G with |V | ≥ 4 is
2-connected
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Illustrious Cubic Graphs
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Noncubic mc graphs

W5, B10 and Murty’s graph are examples of
noncubic mc graphs:
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Building Blocks

Splicing of two mc graphs yields another mc graph

v1 v2

G1 G2

G1 − v1 G2 − v2⊕ =

G

G1 − v1 G2 − v2
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Building Blocks

Splicing

v1 v2

G1 G2

⊕ =
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Building Blocks

Splicing ⇒ P10

v1 v2

G1 G2

⊕ =
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Building Blocks

Splicing

v1 v2

G1 G2

⊕ =
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Building Blocks

Splicing ⇒ P

v1 v2

G1 G2

⊕ =

spsas-sco-1 – p. 11/33



Separating Cuts

Which mc graphs may be obtained by splicing two
smaller mc graphs?

Those mc graphs which have separating cuts

Cut-contraction is the inverse of splicing

C ⇒
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Separating Cuts

a cut C of a mc G is separating if both
C-contractions are mc

Theorem A cut C of mc G is separating iff

∀e ∈ E(G) ∃ pm M : e ∈ M, |M ∩ C| = 1

A cut that is not separating

C

e
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Tight Cuts

A cut C of mc G is tight if |M ∩C| = 1 ∀M ∈ M

Tight cuts are a special type of separating cuts

mc graphs free of nontrivial tight cuts:

bipartite graphs: braces

nonbipartite graphs: bricks
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Tight Cuts

special types of tight cuts

C1

C2

D

C1: a barrier cut

C2: a 2-separation cut

D: neither a barrier nor a 2-separation cut
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Barrier Cuts

mc G, B ⊂ V is a barrier if |O(G− B)| = |B|

given barrier B of mc G, and K ∈ O(G− B),
∂(V (K)) is a barrier cut

B
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2-Separation Cuts

mc G, a pair S := {u, v} ⊂ V is a 2-separation if

G− S is not connected and

each component of G− S is even

2-sep {u, v} of mc G, component K of G− u− v,

∂({u} ∪ V (K)) and ∂({v} ∪ V (K)) are 2-sep cuts

u

v

C1

C2
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Tight Cuts

ELP cut: nontrivial barrier cut or 2-sep cut

Theorem [Edmonds, Lovász, Pulleyblank (1982)]
If a mc graph has a nontrivial tight cut then it has an
ELP cut

⇒ polynomial algorithm

C1

C2

D

C1, C2 are ELP, but D is not
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Tight Cut Decomposition

→

C D

ւ ց
C-contractions D-contractions
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Tight Cut Decomposition

Theorem [Lovász (1987)]
Any two applications of the tight cut decomposition
procedure produces the same collection of bricks
and braces, up to multiple edges

proof by induction on |V |
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Crossing Cuts

Crossing Cuts

C D

∂(X) and ∂(Y ) cross

X ∩ Y X ∩ Y

X ∩ Y X ∩ Y

X

X

Y Y
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Tight Cut Decomposition

Tight cut decomposition ⇔ maximal laminar
collection of nontrivial tight cuts

laminar ⇔ cuts do not cross
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Common Cut C

C1 = C = C2
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Blue C1 and Red C2 do not cross

C1

C2

C1

C2

Blue C1 and green C1 : previous case

Red C2 and green C2 : previous case

∴ Every blue C1 and red C2 cross
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Every blue C1 and red C2 cross
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Crossing Tight Cuts

Lemma If tight cuts ∂(X) and ∂(Y ) cross, where

|X ∩ Y | is odd, then no edge joins a vertex in X ∩ Y

to a vertex in X ∩ Y

X ∩ Y X ∩ Y

X ∩ Y X ∩ Y

X

X

Y Y

Corollary ∀S ⊆ E

|S ∩ ∂(X)|+ |S ∩ ∂(Y )| =

|S ∩ ∂(X ∩ Y )|+ |S ∩ ∂(X ∩ Y |)
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Crossing Tight Cuts

Corollary If tight cuts ∂(X) and ∂(X) cross, where

|X ∩ Y | is odd,

∀S ⊆ E

|S ∩ ∂(X)| + |S ∩ ∂(Y )| =

|S ∩ ∂(X ∩ Y )|+ |S ∩ ∂(X ∩ Y |)

Corollary If tight cuts ∂(X) and ∂(Y ) cross, where

|X ∩ Y | is odd, then ∂(X ∩ Y ) and ∂(X ∩ Y ) are
both tight
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∂(X1), ∂(X2) cross, |X1∩X2| odd, nontrivial

C1 := ∂(X1), C2 := ∂(X2), C3 := ∂(X1 ∩X2) is tight

X1 ∩X2 X1 ∩X2

X1 ∩X2 X1 ∩X2

X1

X1

X2 X2

green uses blue C1 and C3

brown uses red C2 and C3

previous case:

green ∼ blue (common C1)

brown ∼ red (common C2)

green ∼ brown (common C3)
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Last Case

just one red cut

assume two or more, C ′
1
= ∂(X ′

1
), C ′

2
= ∂(X ′′

1
),

X ′
1
⊂ X ′′

1
X′

1

X′′

1

X2

assume |X ′
1
∩X2| is odd ⇒ |X ′

1
∩X2| odd

if |X ′
1
∩X2| > 1 or |X ′

1
∩X2| > 1 : previous case

∴ X ′
1
∩X2 = X ′′

1
∩X2 (even)

spsas-sco-1 – p. 29/33



Last Case

X′

1

X′′

1

X2

X ′
1
∩X2 = X ′′

1
∩X2 (even) ⇒ X ′′

1
∩X2 is odd

if |X ′′
1
∩X2| > 1 : previous case

∴ X ′′
1
∩X2 = X ′

1
∩X2

X ′′
1
= X ′

2
, contradiction

∴ only one blue, only one red
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Last Case

X

Y

X

Y

x

y

x

y
X ∩ Y X ∩ Y

s

t
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Last Case

C D

ւ ց
C-contractions D-contractions
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Invariants b and b + p

b(G) : the number of bricks of mc graph G

p(G) : the number of Petersen bricks of mc graph G

G is a Petersen brick if its underlying simple graph
is P

(b+ p)(G) := b(G) + p(G)

b and b+ p are important invariants
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