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We propose a new distribution, the so-called beta-Weibull geometric distribution, whose failure rate function
can be decreasing, increasing or an upside-down bathtub. This distribution contains special sub-models
the exponential geometric [K. Adamidis and S. Loukas, A lifetime distribution with decreasing failure
rate, Statist. Probab. Lett. 39 (1998), pp. 35–42], beta exponential [S. Nadarajah and S. Kotz, The expo-
nentiated type distributions, Acta Appl. Math. 92 (2006), pp. 97–111; The beta exponential distribution,
Reliab. Eng. Syst. Saf. 91 (2006), pp. 689–697], Weibull geometric [W. Barreto-Souza, A.L. de Morais,
and G.M. Cordeiro, The Weibull-geometric distribution, J. Stat. Comput. Simul. 81 (2011), pp. 645–657],
generalized exponential geometric [R.B. Silva, W. Barreto-Souza, and G.M. Cordeiro, A new distribu-
tion with decreasing, increasing and upside-down bathtub failure rate, Comput. Statist. Data Anal. 54
(2010), pp. 935–944; G.O. Silva, E.M.M. Ortega, and G.M. Cordeiro, The beta modified Weibull distri-
bution, Lifetime Data Anal. 16 (2010), pp. 409–430] and beta Weibull [S. Nadarajah, G.M. Cordeiro,
and E.M.M. Ortega, General results for the Kumaraswamy-G distribution, J. Stat. Comput. Simul. (2011).
DOI: 10.1080/00949655.2011.562504] distributions, among others. The density function can be expressed
as a mixture of Weibull density functions. We derive expansions for the moments, generating function,
mean deviations and Rénvy entropy. The parameters of the proposed model are estimated by maximum
likelihood. The model fitting using envelops was conducted. The proposed distribution gives a good fit to
the ozone level data in New York.

Keywords: beta Weibull; exponential geometric distribution; generalized exponential distribution;
maximum-likelihood estimation; observed information matrix; Weibull distribution; Weibull geometric
distribution

1. Introduction

Over the last two decades several new models have been proposed that are either derived from
or in some way related to the Weibull distribution. They provide a richness that makes them
appropriate to model complex data sets. The literature on Weibull models is vast, disjointed, and
scattered across many different journals. When modelling monotone hazard rates, the Weibull
distribution may be an initial choice because of its negatively and positively skewed density
shapes. However, it does not provide a reasonable parametric fit for modelling phenomenon with
non-monotone failure rates such as the bathtub shaped and the unimodal failure rates that are
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2 G.M. Cordeiro et al.

common in reliability and biological studies. Such bathtub hazard curves have nearly flat middle
portions and the corresponding density functions have a positive anti-mode. An example of the
bathtub-shaped failure rate is the human mortality experience with a high infant mortality rate
which reduces rapidly to reach a low level. It then remains at that level for quite a few years before
picking up again. Unimodal failure rates can be observed in course of a disease whose mortality
reaches a peak after some finite period and then declines gradually.

Alternatively, various authors introduced more flexible distributions to model monotone or
unimodal failure rates but they are not useful for modelling the bathtub-shaped failure rates.
Adamidis and Loukas [1] proposed the exponential geometric (EG) distribution to model lifetime
data with the decreasing failure rate function and Gupta and Kundu [2–4] defined another lifetime
distribution, referred to as the generalized exponential (GE) (also called the exponentiated expo-
nential) distribution, and investigated some of its mathematical properties. This distribution has
only increasing or decreasing failure rate function. Following the same idea of the GE distribution,
Silva et al. [5,6] defined the generalized exponential geometric (GEG) distribution and demon-
strated that its failure rate function can be increasing, decreasing or unimodal. One generalization
of the GE distribution was proposed by Barreto-Souza et al. [7], refered to as the Weibull geomet-
ric (WG) distribution, for modelling monotone or unimodal failure rates. The beta-exponential
(BE) distribution studied by Nadarajah and Kotz [8] has also only increasing or decreasing failure
rate function.

In this article, we introduce the beta-Weibull geometric (BWG) distribution that generalizes
the WG distribution, and study some of its properties. The new distribution due to its flexibility
in accommodating unimodal failure rate functions seems to be an important distribution to be
used in a variety of problems in modelling survival data. The article is organized as follows.
In Section 2, we define the BWG model. In Section 3, we demonstrate that the probability
density function of the BWG distribution is a mixture of beta-Weibull (BW) density functions. In
Sections 4 and 5, we derive the moments and the moment generating function (mgf), respectively.
Section 6 is devoted to the quantile function. The mean deviations and Bonferroni and Lorenz
curves are determined in Section 7. The Rényi entropy is calculated in Section 8. In Section 9,
we show that the density function of the BWG order statistics is a linear combination of Weibull
density functions. Maximum-likelihood estimation of the model parameters and the observed
information matrix are discussed in Section 10. In Section 11, we perform a model check based
on Martingale-type residuals and generated envelopes In Section 12, we provide an application of
the BWG model to the ozone level data in NewYork. Concluding remarks are given in Section 13.

2. BWG distribution

Suppose that {Yi}Zi=1 are independent and identically distributed random variables having aWeibull
density function defined by gλ,c(y) = cλcyc−1e−(λy)c for y > 0, λ > 0 and c > 0 and that Z is a
geometric random variable with probability mass function given by P(z; p) = (1 − p) pz−1 for
Z ∈ N and p ∈ (0, 1). Let X = min({Yi}Zi=1). The conditional density function of X given Z = z

is g(x|z; λ, c) = czλc xc−1 exp{−(λc)x} and then the WG density function becomes

g(x; p, λ, c) = c(1 − pλcxc−1 exp{−(λx)c}[1 − p exp{−(λx)c}]−2, x > 0. (1)

The cumulative distribution function (cdf) corresponding to Equation (1) is

G(x; p, λ, c) = 1 − e−(λx)c

1 − p e−(λx)c
, x > 0. (2)
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Statistics 3

The idea of the BWG distribution stems as follows: if G(x) denotes the cdf of a random variable,
then a beta-G distribution [9,10] is defined (for a > 0 and b > 0) by

F(x) = IG(x)(a, b) = 1

B(a, b)

∫ G(x)

0
wa−1(1 − w)b−1 dw, (3)

where Iy(a, b) = By(a, b)/B(a, b) is the incomplete beta function ratio, By(a, b) =∫ y

0 wa−1(1 − w)b−1 dw the incomplete beta function and B(a, b) = �(a)�(b)/�(a + b) the beta
function. This class of generalized distributions has been receiving considerable attention over the
last years. Eugene et al. [9], Nadarajah and Kotz [11], Nadarajah and Gupta [12] and Nadarajah
and Kotz [8,13] proposed the beta normal, beta Gumbel, beta Fréchet and BE distributions by
taking G(x) in Equation (3) to be the cdf of the normal, Gumbel, Fréchet and exponential distri-
butions, respectively. More recently, Silva et al. [5,6] defined the beta modified Weibull (BMW)
distribution by taking G(x) in Equation (3) to be the cdf of the modified Weibull (MW) [14] distri-
bution and discussed the maximum-likelihood estimation of its parameters. One of the advantages
of the BMW distribution is that it includes as special sub-models several well-known distributions
such as the Weibull, Rayleigh, exponentiated Weibull (EW) [15,16], MW, BW and generalized
modified Weibull [17] distributions. In a similar manner, we are motivated to study the BWG
model because it includes some important distributions that can be useful in analyzing failure
data such as the Weibull, EG, GEG and BW distributions.

From now on, let u = exp{−(λx)c}. The cdf of the BWG distribution is defined from
Equation (2) by

F(x; p, λ, c, a, b) = I(1−u)/(1−pu)(a, b)

= 1

B(a, b)

∫ (1−u)/(1−pu)

0
wa−1(1 − w)b−1 dw, x > 0, (4)

where p ∈ (0, 1), λ > 0 is a scale parameter and a > 0, b > 0 and c > 0 are shape parameters.
The BWG density function corresponding to Equation (4) is

f (x; p, λ, c, a, b) = c(1 − p)bλcxc−1ub(1 − u)a−1(1 − pu)−(a+b)

B(a, b)
, x > 0. (5)

A random variable X having density function (5) is denoted by X ∼BWG(p, λ, c, a, b). The
failure rate function corresponding to Equation (5) reduces to

h(x; p, λ, c, a, b) = c(1 − p)bλcxc−1ub(1 − u)a−1(1 − pu)−(a+b)

B(a, b)I(1−u)/(1−pu)(a, b)
, x > 0. (6)

Clearly, the beta exponential geometric (BEG) distribution is obtained from Equation (5) for
c = 1. When b = 1, in addition to c = 1, we obtain the GEG distribution. For b = c = 1, the GE
distribution follows as the limiting distribution (the limit is defined in terms of the convergence
in distribution) of the BWG distribution when p → 0+. On the other hand, if p → 1−, we obtain
the distribution of a random variable Y such that P(Y = 0) = 1. Hence, the parameter p can be
interpreted as a degeneration parameter, because the GE distribution converges to a distribution
degenerated in zero, when p varies from zero to one. For a = b = 1, Equation (5) becomes the
WG density function. In addition, if c = 1, we obtain the EG distribution. When p approaches zero
(and a = b = 1), it leads to the Weibull distribution. If c = 1 in addition to p → 0+, the BWG
distribution reduces to the BE distribution. The following distributions are new sub-models: the
beta Rayleigh geometric (BRG), exponentiated Weibull geometric (EWG), BEG, exponentiated
Rayleigh geometric, beta Rayleigh (BR) and Rayleigh geometric. Other sub-models are: BE, EW,
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4 G.M. Cordeiro et al.
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Figure 1. Relationships of the BWG sub-models.
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Figure 2. Plots of the BWG density function for some parameter values.

exponentiated Rayleigh (ER), exponentiated exponential (EE), Rayleigh (R), Weibull (W) and
exponential (E). Several special sub-models of the BWG model are illustrated in Figure 1.

Plots of the BWG density function for selected parameter values are given in Figure 2. An
important characteristic of the BWG distribution is that its density function can be bimodal for
certain parameter values as shown in Figure 3. According to Barreto-Souza et al. [7], the WG
failure rate function can only be increasing, decreasing or unimodal. However, the BWG failure
rate function can also be bathtub shaped; see the plots of this function in Figure 4.

3. Expansion of the density function

For |z| < 1 and ρ > 0, we readily have

(1 − z)−ρ =
∞∑

j=0

�(ρ + j)

�(ρ)j ! zj . (7)
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Figure 3. Plots of the BWG density function for some parameter values.
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Figure 4. Plots of the BWG hazard rate function for some parameter values.

Applying Equation (7) into Equation (5) gives

f (x; p, λ, c, a, b) =
∞∑

j=0

wjπ(x; λ, c, a, b + j). (8)

Here, π(x; λ, c, a, b) represents the BW(λ, c, a, b) density function [18] (with scale parameter
λ > 0 and positive shape parameters c, a and b) given by

π(x; λ, c, a, b) = cλcxc−1

B(a, b)
exp{−b(λx)c}{1 − e−(λx)c}a−1, (9)

whose coefficients wj are

wj = (1 − p)b pj�(b + j)

�(b)j ! .

We can verify that
∑∞

j=0 wj = 1. Equation (8) reveals that the BWG density function can be
expressed as a mixture of BW densities. So, we can obtain some mathematical properties of
the BWG distribution directly from those properties of the BW distribution. It is evident from
Equation (8) that the BWG reduces to the BW distribution when p = 0.
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6 G.M. Cordeiro et al.

4. Moments

Suppose Yj ∼BW(λ, c, a, b + j), i.e. Yj has the BW distribution with parameters λ, c, a and
b + j . Cordeiro et al. [18] obtained the sth moment of Yj for a real non-integer as

E(Y s
j ) = �(s/c + 1)

λsB(a, b + j)

∞∑
m=0

(−1)m
(
a−1
m

)
(b + j + m)s/c+1

. (10)

If a > 0 is an integer, the index m in the above sum stops at a − 1. For a = b = 1, Equation (10)
yields precisely the sth moment of the Weibull distribution. Let X ∼ BWG(p, λ, c, a, b). By
combining Equations (8) and (10), the sth moment of X can be expressed as

μ′
s = E(Xs) = λ−s �

( s

c
+ 1

) ∞∑
j,m=0

(−1)m
(
a−1
m

)
wj

B(a, b + j) (b + j + m)s/c+1
. (11)

The skewness and kurtosis measures can be calculated from the ordinary moments using well-
known relationships. Graphical representation of these quantities for some choices of parameter
b as function of a, and for some choices of parameter a as function of b, by fixing λ = 2, c = 3
and p = 0.3, are given in Figures 5 and 6, respectively. These figures reveal that the skewness and
kurtosis curves increase when b decreases for fixed a and decrease when a decreases for fixed b.

The central moments (μp) and cumulants (κp) of X can be obtained from Equation (11) by

μp =
p∑

k=0

(
p

k

)
(−1)k μ

′p
1 μ′

p−k and κp = μ′
p −

p−1∑
k=1

(
p − 1

k − 1

)
κk μ′

p−k,

respectively, where κ1 = μ′
1. Thus, κ2 = μ′

2 − μ′2
1 , κ3 = μ′

3 − 3μ′
2μ

′
1 + 2μ′3

1 , etc. The pth
descending factorial moment of X is

μ′
(p) = E[X(p)] = E[X(X − 1) × . . . × (X − p + 1)] =

p∑
m=0

s(p, m) μ′
m,

b = 0.3
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Figure 5. Skewness and kurtosis of the BWG distribution as a function of a for some values of b.
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Figure 6. Skewness and kurtosis of the BWG distribution as a function of b for some values of a.

where s(r, m) = (m!)−1[dmm(r)/dxm]x=0 is the Stirling number of the first kind. The factorial
moments of X are given by

μ′
(p) =

∞∑
j,k=0

p∑
m=0

(−1)k
(
a−1
k

)
wj s(p, m) �

(
m
c

+ 1
)

λm B(a, b + j) (b + j + k)m/c+1
.

5. Moment generating function

An expression for the mgf of a random variable X having the BWG distribution can be obtained
from Equation (8) and the mgf of the BW distribution. If Y is a random variable having the
BW(λ, c, a, b) density function (9), the mgf of Y , say MY (t) = E[exp(tY )], was determined by
Cordeiro et al. [18] using the the Wright generalized hypergeometric function defined by

p�q

[
(α1, A1), . . . , (αp, Ap)

(β1, B1), . . . , (βq, Bq)
; x

]
=

∞∑
n=0

∏p

j=1
�(αj + Aj n)∏q

j=1
�(βj + Bj n)

xn

n! .

They demonstrated that

MY (t) = 1

B(a, b)

∞∑
j=0

(−1)j
(

a − 1
j

)
(b + j)

1�0

[
(1, 1/c)

− ; t

λ(b + j)1/c

]
, (12)

provided that c > 1. Clearly, special formulas for the mgf of the Weibull, BE, EW, EE and GE
can be obtained from Equation (12) by substitution of known parameters. So, we can express the
mgf of X from Equations (8) and (12) as

MX(t) =
∞∑

j,m=0

(−1)j
(

a − 1
j

)
wm

(b + m + j)B(a, b + m)
1�0

[
(1, 1/c)

− ; t

λ(b + m + j)1/c

]
. (13)
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8 G.M. Cordeiro et al.

An alternative expansion for the mgf of X follows from the Meijer G-function defined by

Gm,n
p,q

(
x

∣∣∣∣a1, . . . , ap

b1, . . . , bq

)
= 1

2πi

∫
L

∏m

j=1
�(bj + t)

∏n

j=1
�(1 − aj − t)∏p

j=n+1
�(aj + t)

∏p

j=m+1
�(1 − bj − t)

x−t dt,

where i = √−1 is the complex unit and L denotes an integration path ( [19, Section 9.3] for
a description of this path). The Meijer G-function contains many integrals with elementary and
special functions. Some of these integrals are included in Prudnikov et al. [20].

We assume the condition c = r/s, where r ≥ 1 and s ≥ 1 are co-prime integers, which is not
too restrictive since every real number can be approximated by a rational number. Using the

formula exp{−g(x)} = G
1,0
0,1(g(x) | −

0
) for g(·) an arbitrary function and a result in Prudnikov

et al. [20, Volume 3, Equation (2.24.1.1)], Cordeiro et al. [18] showed that

MY (t) = cλcrc−1/2(−t)−c

(2π)(r+s)/2−1B(a, b)

∞∑
j=0

(−1)j
(

a − 1
j

)
Gr,s

s,r

×
⎛
⎜⎝ λscs(b + j)s/crr

(−t)r ss

∣∣∣∣
1 − c

r
,

2 − c

r
, . . . ,

r − c

r

0,
1

s
, . . . ,

s − 1

s

⎞
⎟⎠ . (14)

The mgf of X can be obtained from Equations (8) and (14) as

MX(t) = K(t)

∞∑
j,m=0

(−1)j
(

a − 1
j

)
wm

B(a, b + m)
Gr,s

s,r

×
⎛
⎜⎝ λscs(b + m + j)s/crr

(−t)r ss

∣∣∣∣
1 − c

r
,

2 − c

r
, . . . ,

r − c

r

0,
1

s
, . . . ,

s − 1

s

⎞
⎟⎠ , (15)

where K(t) = cλcrc−1/2(−t)−c/(2π)(r+s)/2−1. Equations (13) and (15) are the main results of
this section.

6. Quantile function

The quantile function, say x = Q(z; p, λ, c, a, b) = F−1(z; p, λ, c, a, b), of the BWG distribu-
tion follows by inverting Equation (4) as

x = Q(z; p, λ, c, a, b) = λ−1

[
log

(
1 − pw

1 − w

)]1/c

, (16)

where w = Qa,b(z) denotes the quantile function of the beta distribution with parameters a and b.
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Statistics 9

We can obtain some expansions for Qa,b(z) in the Wolfram website1 such as

Qa,b(z) = v + (b − 1)

(a + 1)
v2 + (b − 1)(a2 + 3ba − a + 5b − 4)

2(a + 1)2(a + 2)
v3

+
(b − 1)[a4 + (6b − 1)a3 + (b + 2)(8b − 5)a2

+(33b2 − 30b + 4)a + b(31b − 47) + 18]
3(a + 1)3(a + 2)(a + 3)

v4

+ O(v5), (17)

where v = [a B(a, b) z]1/a for a > 0.
The simulation of the BWG distribution is very easy: if T is a random variable having a

beta distribution with parameters a and b, then the variate X = λ−1[log{(1 − pT )(1 − T )−1}]1/c

defined from Equation (16) follows the BWG distribution (4).

7. Mean deviations

The amount of scatter in a population is evidently measured to some extent by the totality of
deviations from the mean and median. If X has the BWG distribution (5), we can derive the mean
deviations about the mean μ′

1 = E(X) and about the median M from

δ1 =
∫ ∞

0
| x − μ′

1 | f (x; p, λ, c, a, b) dx and δ2 =
∫ ∞

0
| x − M | f (x; p, λ, c, a, b) dx,

respectively. The median M is the solution of the nonlinear equation

I[
1−exp{−(λx)c }

1−p exp{−(λx)c }
](a, b) = 1

2
.

These measures can be determined from the relationships

δ1 = 2[μ′
1F(μ′

1) − J (μ′
1)] and δ2 = μ′

1 − 2J (M), (18)

where F(μ′
1) = F(μ′

1; p, λ, c, a, b) is easily calculated from Equation (4) and J (q) =∫ q

0 x f (x; p, λ, c, a, b) dx. From Equation (8) and using the incomplete gamma function
γ (α, z) = ∫ z

0 uα−1e−u du, we can obtain

J (q) =
∞∑

j,m=0

wj κj γ (1 + c−1, (b + j + m)(λq)c), (19)

where

κj = (−1)m �(a + b + j)

λ m! �(b + j)�(a − m)(b + j + m)(1/c)+1
.

Equation (19) is the basic quantity to calculate the mean deviations δ1 and δ2 in Equation (18).
It can also be used to determine Bonferroni and Lorenz curves which have applications in fields
like economics, reliability, demography, insurance and medicine. They are defined by

B(π) = J (q)

πμ′
1

and L(π) = J (q)

μ′
1

,
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10 G.M. Cordeiro et al.

respectively, where q = Q(π; p, λ, c, a, b) is computed from Equation (16) for a given
probability π .

8. Rényi entropy

The entropy of a random variable X is a measure of the uncertainty variation. The Rényi entropy
is defined as IR(γ ) = 1/(1 − γ ) log{∫

R
f γ (x) dx}, where γ > 0 and γ 	= 1. We obtain from

Equation (5)

f γ (x) = cγ (1 − p)bγ λcγ x(c−1)γ ubγ (1 − u)(a−1)γ (1 − pu)−(a+b)γ

B(a, b)γ
.

By expanding (1 − u)(a−1)γ and (1 − pu)−(a+b)γ (as in Equation (7)), we obtain

f γ (x) = x(c−1)γ

∞∑
i,j=0

vi,j e−(bγ+i+j)(λx)c ,

where

vi,j = (−1)i pj cγ λcγ �((a − 1)γ + 1)�((a + b)γ + j)

�((a + b)γ )B(a, b)γ �((a − 1)γ + 1 − i)i! j ! .

But, for a > 0, ∫ ∞

0
xa−1 exp

(−δxc
)

dx = c−1 δ−a/c �
(a

c

)
and then∫ ∞

0
f γ (x) dx = c−1 λ−[(c−1)γ+1] �

(
(c − 1)γ + 1

c

) ∞∑
i,j=0

vi,j (bγ + i + j)−[(c−1)γ+1]/c.

The Rényi entropy IR(γ ) follows immediately from this equation.

9. Order statistics

We obtain an explicit expression for the density of the ith order statistic Xi:n, say fi:n(x), in a
random sample of size n from the BWG distribution. It is well-known that

fi:n(x) = f (x)

B(i, n − i + 1)

n−i∑
j=0

(−1)j
(

n − i

j

)
F(x)i+j−1,

for i = 1, . . . , n. For a beta-G model defined from the parent functions g(x) and G(x), fi:n(x)

can be written as

fi:n(x) = g(x)G(x)a−1{1 − G(x)}b−1

B(a, b)B(i, n − i + 1)

n−i∑
j=0

(−1)j
(

n − i

j

)
F(x)i+j−1. (20)

The incomplete beta function expansion for b real non-integer gives

F(x) = IG(x)(a, b) = G(x)a

B(a, b)

∞∑
m=0

(1 − b)mG(x)m

(a + m)m! = G(x)a
∞∑

m=0

am G(x)m,
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Statistics 11

where

am = (1 − b)m

B(a, b)(a + m)m!
and (f )k = f (f + 1) . . . (f + k − 1) = �(f + k)/�(f ) = (−1)k�(1 − f )/�(1 − f − k) is
the Pochhammer symbol.

We use an equation of Gradshteyn and Ryzhik [19, Section 0.314] for a power series raised to
a positive integer j ( ∞∑

i=0

aix
i

)j

=
∞∑
i=0

cj,i x
i, (21)

whose coefficients cj,i (for i = 1, 2, . . .) are easily obtained from the recurrence equation

cj,i = (i a0)
−1

i∑
m=1

(jm − i + m)amcj,i−m (22)

and cj,0 = a
j

0 . Hence, cj,i can be calculated from cj,1, . . . , cj,i−1 and then from a0, . . . , ai . The
coefficients cj,i can be given explicitly in terms of the a′

is although it is not necessary for pro-
gramming numerically our expansions in any algebraic or numerical software. By Equation (21),
we can express

F(x)i+j−1 =
( ∞∑

m=0

am G(x)m

)i+j−1

=
∞∑

m=0

ci+j−1,m G(x)m,

where the coefficients ci+j−1,m follow from Equation (22), and then

fi:n(x) = g(x)G(x)a−1{1 − G(x)}b−1

B(a, b)B(i, n − i + 1)

n−i∑
j=0

(−1)j
(

n − i

j

) ∞∑
m=0

ci+j−1,m G(x)m.

From Equation (5), we have

fi:n(x) = c(1 − p)bλcxc−1ub

B(a, b)B(i, n − i + 1)

n−i∑
j=0

(−1)j
(

n − i

j

)

×
∞∑

m=0

ci+j−1,m (1 − u)a+m−1(1 − pu)−(a+b+m).

Using two binomial expansion twice, we can write

fi:n(x) =
∞∑

r,s,m=0

(−1)sprvi,n,m�(a + m)�(a + b + m + r)

�(a + b + m)�(a + m − s)(b + r + s)r! s! g(b+r+s)1/cλ,c(x), (23)

where

vi,n,m = (1 − p)b

B(a, b)B(i, n − i + 1)

n−i∑
j=0

(−1)j
(

n − i

j

)
ci+j−1,m

and gλ,c(x) denotes (as before) the Weibull density function with scale parameter λ and shape
parameter c. Equation (23) shows that the density function of the BWG order statistics can be
expressed as a linear combination of Weibull density functions.
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12 G.M. Cordeiro et al.

Moments of order statistics play an important role in quality control testing and reliability,
where a practitioner needs to predict the failure of future items based on the times of a few early
failures. These predictors are often based on moments of order statistics. The ordinary, inverse
and factorial moments of the BWG order statistics can be calculated from a weighted infinite
linear combination of those quantities for Weibull distributions. For example, the hth moment
about zero of a Weibull random variable T with parameters λ and c is E(T h) = λ−h�(h/c + 1)

and then we immediately obtain the hth generalized moment of Xi:n as

E(Xh
i:n) = λ−h�

(
h

c
+ 1

) ∞∑
r,s,m=0

(−1)spr(b + r + s)h/c−1vi,n,m�(a + m)�(a + b + m + r)

�(a + b + m)�(a + m − s) r! s! .

(24)

10. Maximum-likelihood estimation

We determine the maximum-likelihood estimates (MLEs) of the parameters of the BWG dis-
tribution from complete samples only. Let x1, . . . , xn be a random sample of size n from
the BWG(p, λ, c, a, b) distribution. The log-likelihood function for the vector of parameters
θ = (p, λ, c, a, b)T can be written as

l(θ) = n[log(c) + b log(1 − p) + c log(λ)] − n log[B(a, b)] + (c − 1)

n∑
i=1

log(xi)

+ b

n∑
i=1

log(ui) + (a − 1)

n∑
i=1

log(1 − ui) − (a + b)

n∑
i=1

log(1 − p ui), (25)

where ui = exp{−(λxi)
c} is a transformed observation. The log-likelihood can be maximized

either directly by using the SAS (PROC NLMIXED) or the MaxBFGS routine in the matrix
programming language Ox (see, [21]) or by solving the nonlinear likelihood equations obtained
by differentiating Equation (25). The components of the score vector U(θ) are given by

Up(θ) = − nb

(1 − p)
+ (a + b)

n∑
i=1

ui

(1 − pui)
,

Uλ(θ) = nc

λ
− bc

λ

n∑
i=1

(λxi)
c + (a − 1)c

λ

n∑
i=1

(λxi)
cui

(1 − ui)
− (a + b)pc

λ

n∑
i=1

(λxi)
cui

(1 − pui)
,

Uc(θ) = n[c−1 + log(λ)] +
n∑

i=1

log(xi) − b

n∑
i=1

(λxi)
c log(λxi) + (a − 1)

n∑
i=1

(λxi)
c log(λxi)ui

(1 − ui)

− (a + b)p

n∑
i=1

(λxi)
c log(λxi)ui

(1 − pui)
,

Ua(θ) = −n[ψ(a) + ψ(a + b)] +
n∑

i=1

log(1 − ui) −
n∑

i=1

log(1 − pui),

Ub(θ) = −n[ψ(b) + ψ(a + b)] +
n∑

i=1

log(ui) −
n∑

i=1

log(1 − pui),

where ψ(·) is the digamma function.
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Statistics 13

For interval estimation and hypothesis tests on the model parameters, we require the 5 × 5
observed information matrix J = J (θ) given in the appendix. Under conditions that are fulfilled
for parameters in the interior of the parameter space but not on the boundary, the asymptotic
distribution of

√
n(θ̂ − θ) is N5(0, I (θ)−1), where I (θ) is the expected information matrix. In

practice, we can replace I (θ) by the observed information matrix evaluated at θ̂ (say J (θ̂)). We
can construct approximate confidence intervals and confidence regions for the individual param-
eters and for the hazard and survival functions based on the multivariate normal N5(0, J (θ̂)−1)

distribution.
Further, the likelihood ratio (LR) statistic can be used for comparing this distribution with

some of its special sub-models. We can compute the maximum values of the unrestricted and
restricted log-likelihoods to construct the LR statistics for testing some sub-models of the BWG
distribution. For example, the test of H0 : a = b = 1 versus H : H0 is not true is equivalent to
compare the BWG and WG distributions and the LR statistic reduces to

w = 2{
(p̂, λ̂, ĉ, â, b̂) − 
(p̃, λ̃, c̃, 1, 1)},
where p̂, λ̂, ĉ, â and b̂ are the MLEs under H and p̃, λ̃ and c̃ are the estimates under H0.

11. Residual analysis

In order to study departures from the error assumption and the presence of outliers, there are
various residuals proposed in the literature (see [22]). Here, we consider the Martingale-type
residual.

11.1. Martingale-type residual

The Martingale residual introduced in the counting process [23] can be expressed as

rMi
= δi + log[1 − F(xi; θ̂)],

where δi = 0 denotes the censored observation, δi = 1 uncensored and θ̂ is the MLE of the
parameter vector θ. For the BWG model, F(xi; θ̂) is defined by Equation (4). It takes values
between +1 and −∞, and then its distribution is skewed. Hence, another possibility is to use a
transformation of the Martingale residual in order to have a new residual symmetrically distributed
around zero. Therneau et al. [24] proposed the deviance residuals, which, for the Cox model with
no time-dependent explanatory variables, can be written as

rDi
= sign(rMi

)[−2{rMi
+ δi log(δi − rMi

)}]1/2, (26)

where rMi
is the Martingale residual. In the BWG model, the residual given in Equation (26) is not

a component of the deviance, but we will use it in order to have a transformation of the Martingale
residual.

We recommend the use of normal probability plots for rDi
with the simulated envelope as

suggested by Atkinson [25] that can be produced as follows: (i) fit the model and generate a
sample of n independent observations from the fitted model as if it were the true model; (ii) fit the
model to the generated sample and compute the values of the residuals; (iii) repeat steps (i) and
(ii) m times; (iv) obtain ordered values of the residuals, r∗

(i)v, i = 1, 2, . . . , n and v = 1, 2, . . . , m;
(iv) consider n sets of the m ordered statistics; for each set compute its average, 5th percentile and
95th percentile; (v) plot these values and the ordered residuals of the original sample against the
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14 G.M. Cordeiro et al.

normal scores. The minimum and maximum values of the m ordered statistics yield the envelope.
Observations corresponding to residuals outside the limits provided by the simulated envelope are
worthy of further investigation. Additionally, if a considerable proportion of points falls outside
the envelope, then we have evidence against the adequacy of the fitted model.

12. Application: pollution data

The data from the New York State Department of Conservation correspond to the daily ozone
level measurements in NewYork in May–September, 1973. Recently, Nadarajah [26] and Leiva et
al. [27] analysed these data using a truncated inverted beta and an extended Birnbaum–Saunders
(BS) distribution, respectively. We fit a BWG distribution to these data. Table 1 lists the MLEs
of the model parameters. Since the value of the Akaike information criterion (AIC) is smaller for
the BWG distribution compared with those values of the other sub-models, the new distribution
seems to be a very competitive model to these data.

The inverted beta and truncated inverted beta distributions are very popular models in hydrology.
Nadarajah [26] fitted a truncated version of the inverted beta distribution to air pollution data from
New York. Its density function is given by

• Inverted beta distribution

g(x) = xα−1

B(α, β)(1 + x)α+β
, x > 0,

for α > 0 and β > 0. The corresponding cdf is

G(x) = Bx/(1+x)(α, β)

B(α, β)
.

• Truncated inverted beta distribution
The pdf of the truncated version (suggested by Nadarajah [26]) is given by

f (x) = xα−1

d B(α, β)(1 + x)α+β
, (27)

for 0 ≤ B ≤ x ≤ A < ∞, where d = G(A) − G(B). The cdf corresponding to Equation (27)
becomes F(x) = [G(x) − G(B)]/d . Nadarajah [26] refers to Equation (27) as the truncated
inverted beta distribution.

Table 1. MLEs of the model parameters for the daily ozone level data, the corresponding SEs (given in
parentheses) and the AIC statistics.

Model p λ c a b AIC

BWG 0.9580 0.0175 2.6166 0.8619 0.3367 1086.6
(0.0482) (0.0040) (0.7082) (0.3788) (0.1064)

WG 0.7555 0.0128 1.7366 1 1 1087.4
(0.1744) (0.0033) (0.2076) – –

BW – 0.1655 1.1084 3.122 0.1276 1088.8
– (0.095) (0.1743) (1.0061) (0.0127)

Weibull – 0.0217 1.3402 1 1 1089.2
– (0.00159) (0.0954) – –
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Statistics 15

An alternative approach for modelling these data can be provided by the BS distribution. There
are various extensions of this lifetime distribution; see, for example, the BS-t-Student [28] and
extended BS (EBS) [27] distributions, respectively, among others. The BS density function is
given by

• BS distribution

f (x) = x−3/2(x + β)

2α
√

2βπ
exp

{
− 1

2α2

(
x

β
+ β

x
− 2

)}
, x > 0,

where α > 0 is the shape parameter and β > 0 is the scale parameter.
• BS-t-Student distribution

f (x) = �((ν + 1)/2) (x + β)

2α
√

βνπ �(ν/2)
√

x3

[
1 + 1

να2

(
x

β
+ β

x
− 2

)]−(ν+1)/2

, x > 0,

where ν is the number of degrees of freedom of the t distribution. See, for example, Díaz-García
and Leiva [28] and Barros et al. [29].

• EBS distribution

f (x) = 2 c′
x φ(cx) �(λcx), x > 0,

where

cx = ν + (x/β)1/σ − (β/x)1/σ

α
, c′

x = x2/σ + β2σ

σαβ1/σ x1+1/σ
,

and φ(·) and �(·) are the standard normal pdf and cdf, respectively. Here, the shape parameters
are α > 0, ν ∈ R and λ ∈ R, β is a scale parameter and σ > 0 is a power parameter; see, Leiva
et al. [27].

Table 2 lists the MLEs of the parameters (the standard errors are given in parentheses) for
the inverted beta, truncated inverted beta, BS, BS-t-Student and EBS distributions fitted to daily
ozone level data and the values of the AIC statistic. These numerical results are obtained using
the SAS (PROC NLMIXED). Based on the AIC criterion, we conclude that the BWG distribution
provides a superior fit to these data than the other models.

In order to assess if the model is appropriate, we plot in Figure 7(a) and (b) the histogram of
the data and the fitted BWG and WG distributions and the empirical and their estimated survival
functions, respectively. These plots indicate that the BWG distribution provides a better fit to these
data. In addition, the normal probability plot for the modified Martingale-type residual (rMDi) with
the generated envelope is presented in Figure 8. This plot provides further evidence that the BWG
distribution is adequate to fit these data.

Table 2. MLEs of the model parameters for the daily ozone level data and the AIC statistics.

Model α β AIC

Inverted beta 28.576 1.379 1121.8
Truncated inverted beta 18.539 0.704 1098.1

α β ν λ σ AIC
BS 0.982 28.093 – – – 1102.2
BS-t-Student 0.810 30.878 7.241 – – 1092.8
EBS distribution 0.780 0.610 −3.530 −0.090 3.620 1092.0
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16 G.M. Cordeiro et al.
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Figure 7. (a) Estimated densities of the BWG and WG models for daily ozone level data. (b) Estimated survival function
from the fitted BWG and WG distributions and the empirical survival for daily ozone level data.
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Figure 8. Normal probability plot for the Martingale-type residual from the BWG model fitted to the pollution data.

13. Concluding remarks

The Weibull distribution is commonly used to model the lifetime of a system. However, it does not
exhibit a bathtub-shaped failure rate function and thus it cannot be used to model the complete
lifetime of the system. We propose a new model called the BWG distribution, whose failure
rate function can be increasing, decreasing and upside-down bathtub that extends the WG and
BW distributions introduced by Barreto-Souza et al. [7] and Cordeiro et al. [18], respectively,
among other distributions. The BWG distribution is quite flexible in analysing positive data in
place of some other special sub-models. Its density function can be expressed as a mixture of
Weibull densities. We provide a mathematical treatment of the distribution including expansions
for the density function, generating function, mean deviations, Bonferroni and Lorenz curves,
order statistics and their moments. The estimation of the parameters is approached by the method
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Statistics 17

of maximum likelihood and the observed information matrix is calculated. An application shows
that the BWG distribution could provide a better fit than other well-known lifetime models. We
hope that the new model may attract wider applications in statistics.
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Appendix

Let ui = exp{−(λxi)
c}. The elements of the observed information matrix J (θ) for the parameters (p, λ, c, a, b) are

Jpp = − nb

(1 − p)2
+ (a + b)

n∑
i=1

u2
i

(1 − pui)2
,

Jpλ = − (a + b)c

λ

n∑
i=1

(λxi)
cui

(1 − pui)
− (a + b)pc

λ

n∑
i=1

(λxi)
cu2

i

(1 − pi)2
,

Jpc = −(a + b)

n∑
i=1

(λxi)
c log(λxi)ui

(1 − pui)
− (a + b)p

n∑
i=1

(λxi)
c log(λxi)u

2
i

(1 − pui)2
,

Jpa =
n∑

i=1

ui

(1 − pui)
, Jpb = − n

(1 − p)

n∑
i=1

ui

(1 − pui)
,

Jλλ = −nc

λ2
+ bc(1 − c)

λ2

n∑
i=1

(λxi)
c + (c − 1)(a − 1)c

λ2

n∑
i=1

(λxi)
cui

(1 − ui)
− (a − 1)c2

λ2

n∑
i=1

(λxi)
2cui

(1 − ui)

− (a − 1)c2

λ2

n∑
i=1

(λxi)
2cu2

i

(1 − ui)2
+ (1 − c)(a + b)pc

λ2

n∑
i=1

(λxi)
cui

(1 − pui)
+ (a + b)pc2

λ2

n∑
i=1

(λxi)
2cui

(1 − pui)

+ (a + b)p2c2

λ2

n∑
i=1

(λxi)
2cu2

i

(1 − pui)2
,

Jλc = n

λ
− bc

λ

n∑
i=1

(λxi)
c[log(λxi) + c−1] + (a − 1)c

λ

n∑
i=1

(λxi)
c log(λxi)ui

(1 − ui)
+ (a − 1)

λ

n∑
i=1

(λxi)
cui

(1 − ui)

− (a − 1)c

λ

n∑
i=1

(λxi)
2c log(λxi)ui

(1 − ui)
− (a − 1)c

λ

n∑
i=1

(λxi)
2c log(λxi)u

2
i

(1 − ui)2

− (a + b)pc

λ

n∑
i=1

(λxi)
c log(λxi)ui

(1 − pui)
− (a + b)p

λ

n∑
i=1

(λxi)
cui

(1 − pui)

+ (a + b)pc

λ

n∑
i=1

(λxi)
2c log(λxi)ui

(1 − pui)
+ (a + b)p2c

λ

n∑
i=1

(λxi)
2c log(λxi)u

2
i

(1 − pui)2
,

Jλa = c

λ

n∑
i=1

(λxi)
cui

(1 − ui)
− pc

λ

n∑
i=1

(λxi)
cui

(1 − pui)
,

Jλb = − c

λ

n∑
i=1

(λxi)
c − pc

λ

n∑
i=1

(λxi)
cui

(1 − pui)
,

Jcc = − n

c2
− b

n∑
i=1

(λxi)
c log2(λxi) + (a − 1)

n∑
i=1

[1 − (λxi)
c](λxi)

c log2(λxi)ui

(1 − ui)

+ (a + b)p

n∑
i=1

[(λxi)
c − 1](λxi)

c log2(λxi)ui

(1 − pui)
− (a − 1)

n∑
i=1

(λxi)
2c log2(λxi)u

2
i

(1 − ui)2

+ (a + b)p2
n∑

i=1

(λxi)
2c log2(λxi)u

2
i

(1 − pui)2
,

Jca =
n∑

i=1

(λxi)
c log(λxi)ui

(1 − ui)
− p

n∑
i=1

(λxi)
c log(λxi)ui

(1 − pui)
,

Jcb = −
n∑

i=1

(λxi)
c log(λxi) − p

n∑
i=1

(λxi)
c log(λxi)ui

(1 − pui)
,

Jaa = −n[ψ ′(a) − ψ ′(a + b)], Jab = nψ ′(a + b) and Jbb = −n[ψ ′(b) − ψ ′(a + b)].
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