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generalized half-normal (Cooray and Ananda, 2008) distributions. We derive expansions
for the cumulative distribution and density functions which do not depend on complicated
functions. We obtain formal expressions for the moments of the new distribution. We
examine the maximum likelihood estimation of the parameters and provide the expected
information matrix. The usefulness of the new distribution is illustrated through a real data
set by showing that it is quite flexible in analyzing positive data instead of the generalized
half-normal, half-normal, Weibull and beta Weibull distributions.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Fatigue is a structural damage which occurs when a material is exposed to stress and tension fluctuations. Statistical
models allow us to study the random variation of the failure time associated with materials exposed to fatigue as a result
of different cyclical patterns and strengths. The most popular models used to describe the lifetime process under fatigue
are the half-normal (HN) and Birnbaum-Saunders (BS) distributions. When modeling monotone hazard rates, the HN and
BS distributions may be an initial choice because of its negatively and positively skewed density shapes. However, they do
not provide a reasonable parametric fit for modeling phenomenon with non-monotone failure rates such as the bathtub
shaped and the unimodal failure rates, which are common in reliability and biological studies. Such bathtub hazard curves
have nearly flat middle portions and the corresponding densities have a positive anti-mode. According to Nelson (1990, p.
27), the distributions which permit a bathtub fit are sufficiently complex. On the other hand, more flexible distributions
usually require five or more parameters. However, more recently, Diaz-Garcia and Leiva (2005) proposed a new family of
generalized Birnbaum-Saunders distributions based on contoured elliptical distributions and Cooray and Ananda (2008)
proposed the generalized half-normal (GHN) distribution derived from a model for static fatigue.

One major benefit of the beta generalized class of distributions is its ability of fitting skewed data that cannot be properly
fitted by existing distributions. Starting from a parent cumulative distribution function (cdf) G(x), Eugene et al. (2002)
defined a class of generalized distributions by

G(x)
F(x) = Igx (a, b) = B(al b) / w07](1 — a))bflda) (1)
’ 0
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for extra parameters a > 0 and b > 0, where I,(a, b) = By (a, b)/B(a, b) is the incomplete beta function ratio, B,(a, b) =
J3 w* (1 — w)’~'dw is the incomplete beta function and B(a, b) = T'(a)T'(b)/T'(a + b) is the beta function. This class
of generalized distributions has been receiving considerable attention over the last years, in particular after the works of
Eugene et al. (2002) and Jones (2004).

We can express (1) in terms of the hypergeometric function (Gradshteyn and Ryzhik, 2000, Section 9.1), since the
properties of the hypergeometric function are well established in the literature. We have

G(x)
F(X) = ——— ,F1(a, 1= b, a+ 1; G(x)). 2
(9] aB(a.b) 1(a a-+ ) (2)
The probability density function (pdf) corresponding to (1) can be written as
g(X) a—1 b—1
=——0C 1-G , 3
f&) Ba.b) (0" (0} 3)

where g(x) = dG(x)/dx is the parent density function. The pdf f (x) will be most tractable when both functions G(x) and
g(x) have simple analytic expressions. Except for some special choices of these functions, the density f (x) will be difficult
to deal with some generality.

Eugene et al. (2002) defined the beta normal (BN) distribution by taking G(x) to be the cdf of the normal distribution
and derived some of its first moments. Nadarajah and Kotz (2004) introduced the beta Gumbel (BG) distribution by taking
G(x) to be the cdf of the Gumbel distribution and provided expressions for the moments, the asymptotic distribution of
the extreme order statistics, and examined the maximum likelihood estimation procedure. Nadarajah and Gupta (2004)
introduced the beta Fréchet (BF) distribution by taking G(x) to be the Fréchet distribution, derived the analytical shapes of
the density and hazard rate functions and the asymptotic distribution of the extreme order statistics. Further, Nadarajah
and Kotz (2005) examined the beta exponential (BE) distribution and obtained the moment generating function, the first
four moments, the asymptotic distribution of the extreme order statistics and discussed maximum likelihood estimation.
Lee et al. (2007) defined the beta Weibull (BW) distribution and showed that it can have bathtub, unimodal, increasing and
decreasing hazard rate functions.

Other authors have introduced new distributions for modeling bathtub shaped failure rate. For example, Rajarshi and
Rajarshi (1988) presented a review of these distributions and Haupt and Schabe (1992) considered a lifetime model with
bathtub failure rates. However, these models do not present much practicability to be used. Alternative new classes of
distributions were proposed in the last years based on modifications of the Weibull distribution to cope with bathtub shaped
failure rate. Pham and Lai (2007) provided a good review for some of these models. They presented the exponentiated
Weibull (EW) distribution (Mudholkar et al., 1995, 1996), the additive Weibull distribution (Xie and Lai, 1995), the extended
Weibull distribution (Xie et al., 2002), the modified Weibull (MW) distribution (Lai et al., 2003), the beta exponential
(BE) distribution (Nadarajah and Kotz, 2005), the extended flexible Weibull distribution (Bebbington et al., 2007) and the
generalized modified Weibull (GMW) (Carrasco et al., 2008).

In this note, we introduce a new four-parameter distribution, so-called the beta generalized half-normal (BGHN)
distribution, which contains as sub-models the half-normal (HN) and generalized half-normal (GHN) (Cooray and Ananda,
2008). The new distribution due to its flexibility in accommodating all the forms of the risk function is an important model to
be used in a variety of problems in survival analysis. The BGHN distribution is not only convenient for modeling comfortable
bathtub shaped failure rates but it is also suitable for testing goodness of fit of its special sub-models.

The paper is organized as follows. In Section 2, we define the BGHN distribution, present some special cases and provide
expansions for its distribution and density functions. Section 3 gives a general expansion for the moments and the moment
generating function. In Section 4, we obtain expansions for the moments of the order statistics. Maximum likelihood
estimation is discussed in Section 5. Section 6 illustrates the importance of the BGHN distribution applied to a real data
set. Finally, concluding remarks are given in Section 7.

2. Beta generalized half-normal distribution
The GHN density with shape parameter @ > 0 and scale parameter 6 > 0 has the form (Cooray and Ananda, 2008)

=2 () () e[ 5 (G)] o

Its cumulative function depends on the error function

G(x) =29 [(g)a] —1=cerf <%> , (5)
where
D (x) = 1 [1 + erf(x)} and erf(x) = 2 /X exp(—t*)dt
2 V2 VT P .
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Fig. 1. Plots of the density function (7) for some parameter values.

The HN distribution is obtained when o = 1and its nth momentis u, = 27“1" (”2%"‘) 6", where I'(.) is the gamma function
(see Cooray and Ananda, 2008).

We now introduce the BGHN distribution with four parameters @ > 0,6 > 0,a > 0 and b > 0 by taking G(x) in Eq. (1)
to be the cdf (5) of the GHN distribution. The general form for the BGHN cumulative function is given by

1 2[G) - bt
F(x) = B, b)/o 0 (1—w)’ do. (6)

Inserting (4) and (5) in Eq. (3) yields the BGHN density function (for x > 0)

2 (a o 1 2a
7 (5)(5) exp [—5 (%) ] . X\@ a1 x\@1P!
00 = e ()l R B Lt (GO g
B(a, b) 0 0

The BGHN distribution contains as special sub-models well-known distributions. It simplifies to the GHN distribution when
a =b = 1.Ifa = 1, it gives the beta half-normal (BHN) distribution. If b = 1, it leads to the exponentiated generalized
half-normal (EGHN) distribution. Further, ifa = b = 1, in addition to « = 1, it reduces to the HN distribution. The hazard
rate function corresponding to (7) becomes

JEE G e i 2 o [() ] 1) - ()]
BmJn{1—5¢K%q_gmbﬂ

If X is a random variable with density (7), we write X ~ BGHN(«, 6, a, b). The BGHN distribution is easily simulated
from F(x) as follows: if V has a beta distribution with parameters a and b, then the solution of the nonlinear equation
(%)"‘ = qYl(%) has the BGHN («, 6, a, b) distribution. To simulate data from this nonlinear equation, we can use the
matrix programming language Ox through SolveNLE subroutine (see Doornik, 2007).

Plots of the density and hazard rate functions of the BGHN distribution are presented in Figs. 1 and 2, respectively, for
selected parameter values, including the special cases of the GHN and HN distributions.

We provide two simple formulae for the cdf of the BGHN distribution depending if the parameter b > 0isreal non-integer
or integer. First, if |z| < 1and b > 0 is real non-integer, it follows the series (Nadarajah and Kotz, 2004, Eq. (1.7))

X, (—1YI(b) ;
-t =y CUTO, (9)
= L=
Using the representation (9), the BGHN cumulative function (1) for b > 0 real non-integer can be expanded as
- s CVRe[(7) ] -1
B(a, b) =5 rb-pila+p

h(x) = (8)

(10)

F(x)
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Fig. 2. Plots of the hazard rate function (8) for some parameter values.

If a > 0is an integer, Eq. (10) gives the cdf of the BGHN distribution in terms of an infinite weighted power series of the
GHN cumulative function. Otherwise, if a > 0 is real non-integer, the binomial expansion in Eq. (10) yields

I I (ON

L T - pila+))

Eq. (11) shows that for both b and a real non-integers, the cdf of the BGHN distribution can be expressed as an infinite
weighted sum of powers of the cdf of the normal N(0, 1) distribution.
By application of the binomial expansion in Eq. (1), when b > 0 is an integer, we obtain

I'(b)
B(a b)

X

0

(11)

1 2 /b—1\ (1) @ atj
=g () S e [T
B(a, b) = j a+j 0
For a > 0O integer, using the binomial expansion in Eq. (12), gives
b—1 atj ~a+tj—r itr . atir
2 -1y b—1 a-+j x\a7y 0+
R0 = gy 20y ( , ) ( ) fo[(5) (13)
B(a b) — = (a+j) j r 0
For a > 0 real non-integer, using (9) and the binomial expansion, Eq. (12) can be rewritten as
b—1 oo r i .
—1)yrs2rr 1 b—1 7S
ZZZ( ). .(a+J+ ) ( . ><r){q)[<f) ]} ' (14)
B(a b)]OrOSO(a+])F(a+]+1—r)r! j S 0

The cdf (5) of the GHN distribution comes from Eq. (12) when a = b = 1. Further, ifa = b = « = 1, Eq. (12) yields the cdf
of the HN distribution.
It can be seen in the Wolfram Functions Site! that for integer a and for integer b, we have, respectively,

a—1

(1-y)" Qb+ Yo L@+ _
L(a,b)=1- - , Iy(a, :
v(a.b) r'(b) j; TR r(a); it -y
Hence, for a > 0 integer, we can obtain
2 {1-o[(2)]) L rd+)) x\@ j
Foo=1- T(b) j; it [ (p[(é) ]_1] ’

1 http://functions.wolfram.com/
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whereas for b > 0 integer, we have an alternative form for Eq. (12) given by

e (G Rl iy G PP TEA R

I'(a) = 6

Eqs. (10)-(14) are the main expansions for the cdf of the BGHN distribution. They (and other expansions in the paper) can
be evaluated in symbolic computation software such as Mathematica and Maple. These symbolic software have currently
the ability to deal with analytic expressions of formidable size and complexity.

Alternatively to Eq. (7), we can obtain the BGHN density function for b real non-integer by differentiating (10) and using
the representation (9). Thus,

2 (2} (x)" e~ 3(D" o .
f(X):\/Z(X)(e) € g ZZk:ka‘l(a,b){qj [(g) ]]l, (15)

B(a, b) k=0 1=0

where the coefficients wj  ;(a, b) are given by

L@+ )k
C'b—Hra+j— kklj! 1)
Replacing @ (x) by the error function in Eq. (15), implies

f(x) = \/g(%) (g)a e_%(%)za Xk: Xl: tik1p(a, b) {erf|:

0 [=0 p=0
where

wjki(a, b) =

(G

~—

o0
Jik=

o p
I

=

wiki(@ b) (=17 ()
B(a, b)2!
Egs. (15)-(16) are the main expansions for the BGHN density function.

Gik,1p (a,b) =

3. Properties of the BGHN distribution
We hardly need to emphasize the necessity and importance of moments and moment generating function in any

statistical analysis especially in applied work. Some of the most important features and characteristics of a distribution
can be studied through moments (e.g., tendency, dispersion, skewness and kurtosis).

3.1. Moments

Theorem 1. If X ~ BGHN(«, 6, a, b), then the nth moment is given by

[e9) k 1
=02 Y 3 S st (M), (17)

j.k=0 =0 p=0

where p + g is a real number, t; 1 »(a, b) is just defined after Eq. (16) and

n Popr ol S (=pmE p+ 5 +1
1(7, ): —22Pt2a2 r{lm+---+m+—< ).
«P) =T 2 ";0(m1+1/2)-~-(mp—|—1/2)m1!--~mp! phe T

my=0

Proof. The nth moment of the BGHN distribution is ], = f0°° X"f (x) dx. Hence, if b > 0 is real non-integer, we obtain from
Eq. (16)

[e9) k 1 o L e 2a X\« p
wy=a ;2 2 tws@d) [ x (5) et® {erf[(ef)z“ dx. (18)

Next, on setting u = (%), u/, reduces to

/
n

2 &K o, u? u\7?
r—pn 2 - , b o _ fl — du. 19
Mo ,/ﬂ E § § tik1p(a, b) ; u eXP( 2)[er (fz)] u (19)
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. . . . _ 2 00 (_1)mx2m+1
Using the series expansion for the error function erf(x) = NG > o D
after some algebra, we have

IS S (L) S S

k=0 1=0 p= m=0  mp=0 2L 2my 4+ 1) - 2my 4+ Dmy! - - my!

(see, for example Nadarajah, 2008) and

2
X/ y2mit +mp)+p+ 3 exp< uz ) du. (20)
0

Calculating the integral in Eq. (20), we obtain

fZZnglp<a bi(=.p). (21)

j,k=0 I=0 p=0

forallp + g real number and

n p n 1 0 0 ( l)mﬁLm‘an
1(*,IJ> =g 22 w2 Z .. Z
o e o (my+1/2) - (my 4+ 1/2)my!- - - my!
p+2+1
F<m1++mp++>

Note that, if p + g is even, the integral I (g, p) can be written in terms of the Lauricella function of type A (Exton, 1978;
Aarts, 2000) defined by

o0 o0 my m

a b ...(b X, .ouxm

ngn)(a;blv-~-abn;C1»-~-,Cn;xl»...,Xn)= E § @m -+ my (D1)m, (br)m, X; n
CDmy - (C)my my!...mpy

my1=0 mp=0

where (@), = a(a— 1) ... (a— k+ 1) is the ascending factorial (with the convention that (a); = 1). Numerical routines for
the direct computation of the Lauricella function of type A are available, see Exton (1978) and Mathematica (Trott, 2006).
Hence, ), can be written in terms of the Lauricella functions of type A

\/72225’”9(0 byr~ 222P+2,X77F(P+2+1>

j,k=0 I=0 p=
+-+1 1 1 3 3
fogp) p#;7,...,7;7,...,7;—1,...,—1 . (22)
2 2 2 2 2
Eq. (22) is an infinite sum of the Lauricella functions of type A. Note also that the terms of the sums in (22) vanish when
p+ 5 isodd.

The skewness and kurtosis measures can now be calculated from the ordinary moments using well-known relationships.
Plots of the skewness and kurtosis for some choices of the parameter b as function of the parameter a, and for some choices
of the parameter a as function of the parameter b, for « = 1 and # = 55, are shown in Figs. 3 and 4, respectively. These
figures immediately reveal that the skewness and kurtosis curves increase (decrease) with b (a) for fixed a (b).

3.2. Moment generating function

Theorem 2. If X ~ BGHN («, 6, a, b), then its moment generating function (mgf) is given by

! Trer
M(s) = \/72 Zt]klp(a byr~ 22p+2a_* Zerf 1(5,11)

j.k=0 =0 p=0 r=0

where I (L, p) is just defined after Eq. (17).
Proof. The mgf of the BGHN distribution is calculated from the relation
o 2 say X\ )2 ! ()
M(s) = / exp(sx)\/j (7) <7> Z ZZtJ k.1p(a, b) {erf[ “ dx,
0 TAX 0 Jj,k=0 I=0 p=0 f
and then

koI .
M(s)_a[ZZthk,p(a b)z f N 1 _%(%)Za {erf|:( 7) :H .
Jj,k=0 \/5

I=0 p=0
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Fig. 4. Kurtosis of the BGHN distribution as function of a for some values of b and as function of b for some values of a

Substitutingu = (%), we have

j.k=0 1=0 p=0

2 X k o1 o grgr 0o u? u p
M(s) = \/; Z Z Z tik1p(a, b) Z - /0 uz exp (_2) |:erf <>:| du.
j r=0 :

(23)
V2
Following similar steps of Theorem 1, the mgf of the BGHN distribution takes the form
2 A e P 1IN0 1
M(s) = /= trp(a by b2rtse =3 5 2 (—,p). 0 (24)

4. Expansions for the order statistics

Moments of order statistics play an important role in quality control testing and reliability, where a practitioner needs
to predict the failure of future items based on the times of a few early failures. These predictors are often based on moments
of order statistics.
We now derive an explicit expression for the density of the ith order statistic X;.,, say fi.n(x), in a random sample of size
n from the BGHN distribution. It is well known that
1 i—1 n—i
fin(®) = Bin_it ])f(X)F(x) {1-Fx}",
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fori =1, ..., n. Combining (1) and (3), the density f;.,(x) can expressed in terms of the incomplete beta function ratio

. _ n'g(x) a-1pq _ h—1 -1, n—i
fin® = i gy e (1= Gl [Ioo (a, )] [1 —Ieeo(a, )] (25)

Substituting (7), (9) and (10) in Eq. (25), the density f;.,(x) for b > 0 real non-integer becomes

ni (=D () Doy 2 (2) (2) e 2 (D2 20 [(2)"] — 1)
o = $ C O 6) (22 [(:)] -1}

k= B(a, b)+*B(i,n — 1+1) {1 — @ [(2)*]} 77"

00 [ AN AP i et
x[Z( e [(5)] w} _ 26)

S Th-pita+)

We now consider the expression
1o [(5)] - 17
b —pila+j

A:

(27)

e

Il
<)

J
Letu = (
s ()]

)“. By applying Eq. (5) in (27), we obtain

S

Using the series expansion for the error function erf(.) in Eq. (28), yields

; S _ mu2m+1 J
(=1y [% > (1)7}

1
m=0 2™ 2 @m+1)m!

A=
Z L'(b —pjtla+j)

J

00
=0

Hence,

1
m=0  mj=02 *2 @my+1)-- @mj+ my Lmj!

L'(b—jjla+j)

(2 il & oS (g 2y ey
( 1)J (ﬁ) Z T Z m1+...+mj i )
T

M

(29)

-
Il
<)

We use the identity (Z;io axX" = Z,":io ck,nx" (see Gradshteyn and Ryzhik, 2000), where now a;, comes by identifying
(29) with the corresponding quantity which is elevated to the power i + k — 1in Eq. (26). We have

k 0 00
k2 (7])m1+-~~+mku2(m1+-~-+mk)
( 1) (ﬁ) |: Z T Z my---+mp+

k
m;=0 my=0 2 7<(2m1+1)~-(2mk+1)m1!-~mk!
ag = ,
K T (b — k)k!(a + k)

k
con=ay and cp, = (kag)~’ Z(nl —k+Daci_n
=

fork = 1, 2, ... Thus, after some algebra, we can write

i oo (_1)'<(";”) T (b)**Bla(i + k) +j, bld;
fin) =) @ DB =15 fi k%), (30)

k=0 j=0

where

fije@) =

FE )OI a aims .
OGO e[
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denotes the density of a BGHN(«, 0, a(i+ k) +j, b) distribution and the constants d; j x can be obtained recursively from the
following equations

1! ar) g~ (D40 —j}
diog = | —— d dijy= § e J> 1.
Lok {ar‘(b)} W Q= T LT i = pat i T

The density of the BGHN order statistics is then an infinite mixture of BGHN densities. Hence, the ordinary and central
moments of the order statistics can be calculated directly from the corresponding quantities of the BGHN distribution given
in Section 3. For b > 0 integer, expansion (30) holds but the sum in j stops at (b — 1)(k +i— 1).

An alternative expansion for the density of the order statistics follow from the identity (Zl 1 a)k = =y {my.
Qp, - . - Gm, for k a positive integer. Using this identity and Eq. (26), for b > 0 real non-integer, it turns out that

sl RO E) e D2 o [(3) 1) 10 [(3) )
fin(x) = kZ 2:: ,-;:0 B(a, b)*kB(i,n —i+ 1)

i+k—1 i+k—1
k+ > m; a(i+k)+ Z m;

o 5 () rer e[ -1)
i+k—1
111 F(b — mj)mj!(a + mj)
]:

X

Hence,

n—i oo

fn =370 > S, (31)

k=0 m1=0 Mj4k—1=0
where
1/ x\2
)a e‘i(?) 2b-1

BRI CICS i PO - SRR
Bla(i+k)+ > mj,b]

j=1

Py

Ix

denotes the density of a BGHN («, 6, a(i + k) + Z’+k ! m;, b) distribution and

k+ > mj i+k—
(—1) = J( )B(a(1+k)++Z m;, )T (b) 1

i+k—1
B(a, b)**B(i,n—i+ 1) [] T'(b—mjm;!(a+ m;)

j=1
The constants §; x are easily obtained given i, n, k and a sequence of indices my, . . ., mj;x—1. The sums in (31) extend over all
(i+ k)-tuples (k, mq, ..., mi1,—1) of non-negative integers and can be implementable on a computer. If b > 0 is an integer,
Eq. (31) holds but the indices my, ..., mjy;_1 vary from zero to b — 1. Expansion (30) is much simpler to be calculated
numerically in applications and its CPU times are usually smaller than using (31).

The sth moment of X;.,, for b > 0 real non-integer comes from (30)

i oo (—1)k ("k—") T (b)™~1B(a(i + k) + j, b)dy .«
OEDHD B(a, by™B(i,n — i+ 1)

k=0 j=0

E(XS, ), (32)

where X; j . ~ BGHN («, 0, a(i + k) + j, b) and the constants d; ; , were defined before. If b is an integer, the sum in j stops
atb — 1.

From Eq. (31), we can obtain an alternative expression for the moments of the order statistics valid for b > 0 real non-
integer

ln) = Z Z Z 8i kE(Xl K (33)

=0 my=0 Miyk—1=0

where X; x ~ BGHN(«, 0, a(i + k) + Z]”:r’f] m;j, b). For b > 0 integer, the indices m;, ..., mj 41 stopath — 1.
We therefore offer two Egs. (32) and (33) to obtain the moments of the BGHN order statistics which are the main results
of this section.
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Based upon the moments given in Eqs. (32) and (33), we can easily derive expansions for the L-moments of the BGHN
distribution as infinite weighted linear combinations of the means of suitable BGHN distributions. The L-moments are
analogous to the ordinary moments but can be estimated by linear combinations of order statistics. They have the advantage
that they exist whenever the mean of the distribution exists, even though some higher moments may not exist, and are
relatively robust to the effects of outliers. They are linear functions of expected order statistics defined by (Hosking, 1990)

-1 2 (_1)k
bt =T+ DY EKrpiorin), T=0.1
= k

The first four L-moments are: )\.1 = E(X]:]), )\2 = %E(Xz;z — X]:z), )\3 = %E(X3;3 — 2X2:3 +X1;3) and )\4 = %E(X4;4 — 3X3;4 +
3X2.4 — X1.4).

5. Estimation and inference

We consider estimation of the parameters of the BGHN distribution by the method of maximum likelihood. If Y follows
a BGHN distribution with vector of parameters X = («, 6, a, b)", the log-likelihood for the model parameters from a single
observation y of Y is given by

2 1 20
¢(\) = log (ﬁ) + log(a) — log(y) + o log (g) -3 (g’) — log[B(a, b)] + (b — 1) log(2)

+(a— 1)1og{2q> [(g)a] _ 1} + - 1)1og[1 s [(g)a]] y 0.

The components of the unit score vector U = (% %, % %)T are obtained by differentiation
RY 1—!—1 <y oo (V) (¥ 20+2(a—1) vlog (%) +(l—b) viog (%)
e aew(3) s () () 2 - ,
A A E (R ) R R (6

o« y\= oy 2(1—a) v (%) a-bn [ v()
379:5%) _(5>+ V2r [qu[(g)“]—l]+ V2 {1—qb[(g)“]}’

14 o a0l o
2 log [ch [(X) ] - 1} — @+ v@+b), = —log2+log {1 — o [(X) ]] — () + Y (a+b),
da (% ab 0
where v = exp [—% (%)Za] (£)* and ¥ (.) is the digamma function.
For a random sample y = (y1, ..., yn)" of size n from Y, the total log-likelihood is £, = £,(X) = Y i, £ (\), where
£D(\) is the log-likelihood for the ith observation (i = 1, ..., n). The total score functionis U, = >} , U?, where U? has
the form given before fori = 1, ..., n. The MLE X of \ is the solution of the system of nonlinear equations U, = 0.

For interval estimation and tests of hypotheses on the parameters in A, we require the 4 x 4 unit expected information
matrix
Ka,oz Kao,0 KO(,G Kao,b
K K K K
K= l((‘)\.) — 0,a 6,0 6,a 6,b ,
Koo Kao Kaa Kab
Kba  Kbo  Kba Kbb
where the corresponding elements are given in Appendix.

Under conditions that are fulfilled for parameters in the interior of the parameter space but not on the boundary, the
asymptotic distribution of /(A — ) is N4(0, K(X)~1). The estimated asymptotic multivariate normal N4(0, n~'"K(\)~1)
distribution of '\ can be used to construct approximate confidence intervals for the parameters and for the hazard rate and
survival functions. An asymptotic confidence interval with significance level y for each parameter A, is given by

AClL(hr, 100(1 — Y)%) = (hy — 2y jpV KA, R 2y jo RFrHr),

where £**r is the rth diagonal element of n~'K(\)~! estimated at \, forr = 1, ..., 4, and 2,2 is the quantile 1 — y /2 of
the standard normal distribution.

The likelihood ratio (LR) statistic is useful for testing goodness of fit of the BGHN distribution and for comparing this
distribution with some of its special sub-models. We can compute the maximum values of the unrestricted and restricted
log-likelihoods to construct the LR statistics for testing some sub-models of the BGHN distribution. For example, we may
use the LR statistic to check if the fit using the BGHN distribution is statistically “superior” to a fit using the GHN distribution

for a given data set. In any case, considering the partition A = (AT, Xg)T, tests of hypotheses of the type Hy : A = Xgo)
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versus Hy : \1 # X(lo) can be performed via the LR statistic w = 2{(():) — E(i)}, where X and X are the MLEs of \ under

. . d . . . .

H, and Hy, respectively. Under the null hypothesis Hy, w — X;' where q is the dimension of the vector '\; of interest. The
LR test rejects Hy if w > &,, where &, denotes the upper 100y % point of the X; distribution. From the score vector and the
information matrix given before, we can also construct the score and Wald statistics which are asymptotically equivalent
to the LR statistic.

6. Application — Myelogenous leukemia data

The data set is given in Feigl and Zelen (1965 ) for two groups of patients who died of acute myelogenous leukemia. The pa-
tients were classified into the two groups according to the presence or absence of a morphologic characteristic of white cells.
The patients termed AG positive were identified by the presence of Auer rods and/or significant granulative of the leukemic
cells in the bone marrow at diagnosis. For the AG negative patients these factors were absent. Here, we consider only patients
termed AG positive (n = 17). The survival times t; fori = 1, ..., 17 are given in weeks from the date of diagnosis.

In many applications, there is a qualitative information about the failure rate function shape, which can help in selecting
a particular model. In this context, a device called the total time on test (TTT) plot (Aarset, 1987) is useful. The TTT-plot is
obtained by plotting G(r/n) = [(Zi’:] Tin) + (n — r)T,;n]/(Z?Z] Tin), wherer = 1,...,nand T;.,,i = 1, ..., n, are the
order statistics of the sample, against r/n (Mudholkar et al., 1996).

a b
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Fig. 5. (a) TTT-plot on myelogenous leukemia data. (b) Estimated survival function from the fitted BGHN, GHN, BW and Weibull distributions and the
empirical survival for myelogenous leukemia data. (c) Estimated densities of the BGHN, GHN, BW and Weibull models for myelogenous leukemia data.
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Table 1
MLEs of the model parameters for the myelogenous leukemia data, the corresponding SE (given in parentheses) and the measures AIC, BIC and CAIC.
Model o % a b AIC BIC CAIC
BGHN 7.2688 132.50 0.0733 0.3319 165.8 169.1 169.0
(0.2117) (13.7559) (0.0212) (0.3240)
GHN 0.7557 73.6234 1 1 168.9 170.6 169.8
(0.1651) (17.8232) - -
o 1% a b
BW 110.90 7.8003 0.0631 0.1514 174.9 178.3 178.1
(12.2136) (0.2754) (0.0182) (0.0958)
Weibull 59.4592 0.8856 1 1 178.2 179.9 179.1
(17.0307) (0.1834) - -

Fig. 5a shows that the TTT-plot for these data has first a convex shape and then a concave shape. It indicates a bathtub
shaped hazard rate function. Hence, the BGHN distribution could be in principle an appropriate model for fitting such data.
Table 1 lists the MLEs (the corresponding standard errors are in parentheses) of the parameters from the fitted BGHN,
GHN, BW and Weibull models and the values of the following statistics: AIC (Akaike Information Criterion), BIC (Bayesian
Information Criterion) and CAIC (Consistent Akaike Information Criterion). The computations were performed using the
subroutine NLMixed in SAS. These results indicate that the BGHN model has the lowest values for the AIC, BIC and CAIC
statistics among the fitted models, and therefore it could be chosen as the best model.

In order to assess if the model is appropriate, Fig. 5b plots the empirical and estimated survival functions of the BGHN,
GHN, BW and Weibull distributions. Further, Fig. 5c plots the histogram of the data and the fitted BGHN, GHN, BW and
Weibull distributions. We conclude that the BGHN distribution provides a good fit for these data.

7. Conclusions

We propose the beta generalized half-normal (BGHN) distribution to extend the half-normal (HN) distribution and the
generalized half-normal (GHN) distribution introduced by Cooray and Ananda (2008). We provide a mathematical treatment
of the new distribution including expansions for its distribution and density functions. We derive infinite sums for the
moments and the moment generating function. We examine the maximum likelihood estimation of the model parameters
and derive the expected information matrix. We consider the likelihood ratio (LR) statistic which may be very useful to
compare the BGHN model with its sub-models. An application of the BGHN distribution to a real data set is given to
demonstrate that this distribution can be used quite effectively to provide better fits than other available models. We hope
that this generalization may attract wider applications in survival analysis and biology.
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Appendix

The elements of the 4 x 4 unit expected information matrix are given by

Lo )+ 22Dy T + 27
KO{U( = — s > L = N - 5 ) 2 1, 4,4,9,
, " 0,0,2,2,1,1 N 103221~ To1221 4 57012231
1-b [T T T, ]
——|T.03212—T101212—To12213]:
a2
1 2a—1)
Kao = —5 [To.o,z,o,l.l + 2To,0,2,1,1,1 — 1] - W [—T1,0,3,1,2,1 + Tl,o.l.o,z,l]
(1-b)
+T101.1.21— 2To1.2,1.31 — W [—T1,0,3,1,1.2 + T10,1,012 + T101,1,12 + To,1.2,1,1,3] ,

2 2
T 1,21, Kab = T10.1.1.1, ,
Ol\/ﬂ 1,0,1,1,2,1 o Oé\/ziﬂ“)]']]z

Kep = —V¥'(a+Db),

Ko,a = —

Koo = = [(1+420)T, - 20D rp (1+a)T + 20T, ]
00 = =5 002011~ 1| = ——F——|aT103021 — 1,0,1,0.2,1 0.1,2,0,3,1
02 024/ 2m
a(1—D>b)
- i [@T103012 — (1 +)T101012 — @To1201.3]
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20 T o
——11,0,1,0,2,1, Ko.p = —F—
021 1o 021

Here, we assume that a random variable V has a Beta(a, b) distribution and define the expected value

tssns = o [ Lo (L)oo oo () o (2]
ool ()] [(59)]

These expected values can be determined numerically using MAPLE and MATHEMATICA for any a and b. For example,

T1,0,1,0,1,2 Kaa = ¥'(@) = ¥'(@+ D), kpp = ¥'(b) — ¥'(a+ b).

Ko,a =

fora = 1.5and b = 2.5, we easily calculated all T’s in the information matrix: T1 10,12 = 0.568733,T10,1021 =
1.494227,T101.112 = —1.384679, T101,121 = —1.857818, Tpo02011 = 0.037946, Tpp21.11 = —0.119946,
T1.0,3$1,2,] = —0.385587, T1’0.1’1,2’1 = —1.689706, T0,1’2,1’3,1 = —0.64]735,]—1’0.3’1,1’2 = 2.213943, T0’1’2’1’],3 =

1.381865.
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