
ARTICLE  IN  PRESS
Computational Statistics and Data Analysis ( ) –

Contents lists available at ScienceDirect

Computational Statistics and Data Analysis

journal homepage: www.elsevier.com/locate/csda

The log-exponentiated Weibull regression model for
interval-censored data
Elizabeth M. Hashimoto a, Edwin M.M. Ortega b,∗, Vicente G. Cancho c, Gauss M. Cordeiro d
a ESALQ, Universidade de São Paulo, Piracicaba, Brazil
b Universidade de São Paulo, Brazil
c ICMC, Universidade de São Paulo, São Carlos, Brazil
d Universidade Federal Rural de Pernambuco, Recife, Brazil

a r t i c l e i n f o

Article history:
Received 17 December 2008
Received in revised form 1 October 2009
Accepted 2 October 2009
Available online xxxx

a b s t r a c t

In interval-censored survival data, the event of interest is not observed exactly but is
only known to occur within some time interval. Such data appear very frequently. In this
paper, we are concerned only with parametric forms, and so a location-scale regression
model based on the exponentiatedWeibull distribution is proposed for modeling interval-
censored data. We show that the proposed log-exponentiated Weibull regression model
for interval-censored data represents a parametric family of models that include other
regression models that are broadly used in lifetime data analysis. Assuming the use
of interval-censored data, we employ a frequentist analysis, a jackknife estimator, a
parametric bootstrap and a Bayesian analysis for the parameters of the proposedmodel.We
derive the appropriate matrices for assessing local influences on the parameter estimates
under different perturbation schemes and present some ways to assess global influences.
Furthermore, for different parameter settings, sample sizes and censoring percentages,
various simulations are performed; in addition, the empirical distribution of somemodified
residuals are displayed and comparedwith the standard normal distribution. These studies
suggest that the residual analysis usually performed in normal linear regression models
can be straightforwardly extended to a modified deviance residual in log-exponentiated
Weibull regression models for interval-censored data.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In several studies, the survival response can be interval-censored such that the event of interest is not observed exactly
but is only known to occur within time intervals that may overlap and vary in length. The literature presents many
applications of survivalmodels for interval-censored datawith respect to theWeibull family of distributions (Lawless, 2003).
This family is very suitable for situations inwhich the failure rate function is constant ormonotone.However, it is not suitable
in situations inwhich the failure rate function presents a bathtub or unimodal shape. For example, according to Zimmer et al.
(1998) and Silva et al. (2008), the failure rate function of the Burr XII distribution can be decreased or unimodal. To cope
with these situations, several distributions derived from the Weibull distribution that exhibit bathtub-shaped or unimodal
failure rate functions were developed, one of which is the exponentiatedWeibull (EW) distribution proposed byMudholkar
et al. (1995).
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In some situations, the times of the events of interest T may be only known to have occurred within an interval of time
[U, V ], where U ≤ T ≤ V . This may occur in a clinical trial, for example, when patients are only assessed at pre-scheduled
visits. If the event T has not been observed to have occurred at the time of one visit at time U but has occurred by the
following visit at time V . Thus, it is only known that T lies at some point within the interval [U, V ]. Thus, this is an example
of interval-censored data. Note that exactly observed, right- and left-censored data are all special cases of interval-censored
data. Note that U = V for exactly observed data; V = ∞ for right-censored data; and U = 0 for left-censored data.
This paper examines aspects of statistical inference for modeling interval-censored data by using the log-exponentiated

Weibull (LEW) regression model. The inferential component was carried out using the asymptotic distribution of the
maximum likelihood estimators; this is useful, because in situations inwhich the sample size is small, normality is difficult to
justify as an assumption. As an alternative to frequentist analysis, we explored the use ofMarkov chainMonte Carlo (MCMC)
techniques to develop a Bayesian inference and jackknife estimator for the LEW regressionmodel for interval-censored data.
A punctual and interval estimation method based on bootstrap re-sampling is also proposed.
After modeling, it is important to check the assumptions of the model and conduct robustness checks to detect possible

influential or extreme observations that may distort the results of the analysis. In this paper, we discuss the influence
diagnostic based on case deletion (Cook, 1977) in which the influence of the ith observation on the parameter estimates
is evaluated by removing cases from the analysis. We propose diagnostic measures based on case deletion for the LEW
regressionmodels for interval-censored data to determine which data points are influential in the analysis. This method has
been applied in various statistical models. See, for instance, Christensen et al. (1992), Davison and Tsai (1992) and Xie and
Wei (2007a).
Nevertheless, when case deletion is used, all information on a single data point is deleted at once, and therefore, it is

difficult to determine whether that data point has some influence on a specific aspect of themodel. A solution for the earlier
problem (case deletion) can be found using the local influence approach in which one again investigates how the results of
an analysis change under small perturbations in the model or data. Cook (1986) proposed a general framework to detect
the influence of observations in order to evaluate how sensitive the analysis is to small perturbations that are provoked
within the data or model. Some authors have investigated the evaluation of local influences in survival analysis models: for
instance, Pettitt and Bin Daud (1989) investigated local influences in proportional hazard regression models; Escobar and
Meeker (1992) adapted local influence methods to regression analysis with censoring; and Ortega et al. (2003) considered
the problem of evaluating local influences in generalized log-gamma regression models with censored observations. More
recently, Magnus and Vasnev (2007) analyzed sensitivity analysis using diagnostic testing, which resulted in applications
in econometrics. Xie and Wei (2007b) developed an application of influence diagnostics in censored generalized Poisson
regression models based on the case-deletion method and local influence analysis. In addition, Ortega et al. (2009) derived
curvature calculations under various perturbation schemes in regression models with cure fraction, and Fachini et al.
(2008) adapted local influence methods to polyhazard models in the context of explanatory variables. Carrasco et al. (2008)
investigated influence diagnostics in log-modified Weibull regression models with censored data, and Silva et al. (2008)
adapted global and local influence methods using log-Burr XII regression models with censored data. We propose a similar
methodological approach to detect influential data points in LEW regression models for interval-censored data.
The paper is organized as follows. In Section 2, we discuss an LEW regression model for interval-censored data in

addition to maximum likelihood estimators, Bayesian inference and the jackknife estimator. Score functions and observed
information matrix are derived, while the process for estimating the regression coefficients and the remaining parameters
is discussed. In Section 3, we use several diagnostic measures to consider case deletion, and the normal curvatures of local
influences are derived under various perturbation schemes in the context of the proposed LEW regression model with
interval-censored data. In Section 4, a deviance residual is proposed to assess departures from the LEW error assumption
as well as outlying observations. In addition, we present and analyze results from various simulation studies, including
graphic displays to further illustrate our findings. In Section 5, a real data set is analyzed; finally the last section presents
some concluding remarks.

2. The log-exponentiated Weibull regression models for interval-censored data

We assume that the random variable T follows an EW distribution with parameters (α, γ , λ)T . The probability density
function for the EW distribution is given by

f (t;α, γ , λ) =
αλ

γ

{
1− exp

[
−

(
t
γ

)α]}λ−1
exp

[
−

(
t
γ

)α]( t
γ

)α−1
. (1)

The survival function reduces to

S(t;α, γ , λ) = 1−

{
1− exp

[
−

(
t
γ

)α]}λ
. (2)

Note that t > 0, α > 0, λ > 0 are shape parameters, and γ > 0 is a scale parameter. The hazard function is given by
h(t;α, γ , λ) = f (t;α, γ , λ)/S(t;α, γ , λ). The great flexibility of this model to fit lifetime data is due to the different forms
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Fig. 1. Probability density function graphs of the Z variable for the indicated parameter.

that the hazard function can take. That is, (i) if α ≥ 1 and αλ ≥ 1, then the hazard function is monotonically increasing;
(ii) if α ≤ 1 and αλ ≤ 1, then the hazard function is monotonically decreasing; (iii) if α > 1 and αλ < 1, then the hazard
function is bathtub-shaped; and (iv) if α < 1 and αλ > 1, then the hazard function is unimodal.
Applications of the EWdistribution in the context of reliability and survival studies have been investigated byMudholkar

et al. (1995). Cancho et al. (1999) developed a Bayesian analysis for the EW distribution, while Cancho and Bolfarine (2001)
proposed an EWmixture model for the presence of a cure fraction in lifetime data. Some properties of this distribution have
been studied in more detail by Mudholkar and Hutson (1996) and Nassar and Eissa (2003).
Let T be a random variable following the EW density function (1). The random variable Y = log(T ) follows a LEW

distribution with density function parametrized in terms of α = 1/σ and µ = log(γ )

f (y; λ, σ , µ) =
λ

σ

{
1− exp

[
− exp

(
y− µ
σ

)]}λ−1
exp

[(
y− µ
σ

)
− exp

(
y− µ
σ

)]
. (3)

Note that−∞ < y <∞, λ > 0, σ > 0 and−∞ < µ <∞. The corresponding survival function reduces to

S(y; λ, σ , µ) = 1−
{
1− exp

[
− exp

(
y− µ
σ

)]}λ
.

The standardized random variable Z = (Y − µ)/σ has the density function

f (z) = λ
{
1− exp

[
− exp(z)

]}λ−1
exp

[
z − exp(z)

]
, ∞ < z <∞. (4)

The extreme-value standard distribution corresponds to the particular choice of λ = 1. Plots of the density function (4) for
some parameter values are given in Fig. 1.
We hardly need to emphasize the necessity and importance of moments in any statistical analysis, especially in applied

work. Some of the most important features and characteristics of a distribution can be studied through moments, including
statistical tendency, dispersion, skewness and kurtosis. In particular, we draw on the following theorem.

Theorem 1. For a random variable Z, the kth ordinary moment is

µ′k = E(Z
k) = λ0(λ)

∞∑
j=0

(−1)j

0(λ− j)j!
×
∂k[(j+ 1)−a0(a)]

∂ak

∣∣∣∣∣
a=1

.

Note that 0(·) is the gamma function; the proof given in Appendix B.
Inmany practical applications, lifetimes are affected by explanatory variables, such as cholesterol level or blood pressure.

Let x = (x1, . . . , xp)T be the explanatory variable vector associated with the response variable y. Based on the LEW density,
we construct a linear regression model linking the response variable yi and the explanatory variable vector xi as follows:

yi = xTi β + σ zi, i = 1, . . . , n. (5)

Note that the random error zi has the distribution (4), β = (β1, . . . , βp)
T , σ > 0 and λ > 0 are unknown parameters;

and xTi = (xi1, . . . , xip) is the explanatory variable vector that models the location parameter µi. Hence, the location
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parameter vector µ = (µ1, . . . , µn)
T of the LEW regression model can be expressed as a linear model µ = X β, where

X = (x1, . . . , xn)T is a known model matrix.
Using the log-linear model in (5), the survival function of Yi|x is given by

S(yi|x) = 1−

{
1− exp

[
− exp

(
yi − xTi β

σ

)]}λ
.

For interval-censored data, the observed data consist of an interval (log(ui), log(vi)) for each individual, and such
intervals are known to include yi = log(ti) with probability one. That is, P

[
log(ui) ≤ yi ≤ log(vi)

]
= 1; if log(vi) = ∞,

then it is a right-censored time for yi. This model is referred to as the LEW regression model for interval-censored data. It is
an extension of an accelerated failure time model using the EW distribution for interval-censored data.
If λ = 1 in model (5), then the log-Weibull (LW) regression model for interval-censored data results. Moreover, if σ = 1

also holds, then model (5) reduces to the log-exponential (LE) regression model for interval-censored data. If σ = 1/2,
then the log-generalized Rayleigh (LGR) regression for interval-censored data results. Finally, if σ = 1, then we obtain the
log-exponentiated exponential (LEE) (see Gupta and Kundu, 1999, 2001) regression models for interval-censored data.

2.1. Estimation by maximum likelihood

Let (log(u1), log(v1), x1), . . . , (log(un), log(vn), xn) be a set of n interval-censored observations and explanatory
variables, where (log(ui) and log(vi)) are the observed data; xi is the explanatory variable vector; and the observed full
log-likelihood function for the parameter vector θ = (λ, σ , βT )T is given by

l(θ) =
∑
i∈F

l1(λ, zui, zvi)+
∑
i∈C

l2(λ, zui), (6)

where

l1(λ, zui, zvi) = log

[{
1− exp

[
− exp(zvi)

]}λ
−

{
1− exp

[
− exp(zui)

]}λ]
and

l2(λ, zui) = log

[
1−

{
1− exp

[
− exp(zui)

]}λ]
.

Note that F represents the set of individuals with interval censoring, that is, yi ∈
(
log(ui), log(vi)]. In addition, C represents

the set of individualswith right censoring, that is, yi ∈
(
log(ui),+∞

)
, zui =

[
log(ui)−xTi β

]
/σ and zvi =

[
log(vi)−xTi β

]
/σ .

Themaximum likelihood estimates (MLEs) of the parameter vector θ can be obtained bymaximizing the likelihood function.
We use the software Ox (MAXBFGS subroutine) (Doornik, 2001) to compute theMLEs. The estimate of the covariancematrix
of theMLEs θ̂ can also be obtained through theHessianmatrix. Confidence intervals and hypothesis testing can be conducted
by employing a large sample distribution of theMLEs, which has amultivariate normal distributionwith a covariancematrix
given by the inverse of the information matrix since regularity conditions are satisfied. More specifically, the asymptotic
covariance matrix of θ̂ is given by I−1(θ)with I(θ) = E[L̈(θ)] such that L̈(θ) = − ∂2 l(θ)

∂θ∂θT
.

It is not possible to compute the Fisher informationmatrix I(θ) due to censored observations, as censoring is random and
non-informative. However, it is possible to use the negative of the matrix of the second derivatives of the log-likelihood,
−L̈(θ), evaluated at the MLE θ = θ̂, which is consistent. The asymptotic normal approximation for θ̂ may be expressed as
θ̂ ∼ N(p+2){θ;−L̈(θ)−1}, where L̈(θ) is the (p+ 2)(p+ 2) observed information matrix, expressed as

L̈(θ) =

Lλλ Lλσ Lλβj
. Lσσ Lσβj
. . Lβjβs


Note that j, s = 1, . . . , p; in addition, the sub-matrices are defined in Appendix A.
To test the adequacy of the LW regression model for interval-censored data, i.e., H0 : λ = 1, we consider the likelihood

ratio (LR) statistic, given by

Λn = −2[`(θ̃)− `(θ̂)]. (7)

Note that θ̂ is the MLE that is derived from maximizing the log-likelihood in (6), and θ̃ is the restricted MLE computed
assuming H0, that is, with λ = 1. For large samples, Λn approximately has a chi-square distribution with one degree of
freedom. For testing the adequacy of the LE regression model for interval-censored data, that is, H0 : (σ , λ)T = (1, 1)T , the
likelihood devianceΛn is as given in Eq. (7), but θ̃ is the restricted MLE computed under H0, that is, with σ = 1 and λ = 1.
In this case, for large samples,Λn approximately has chi-square distribution with two degrees of freedom.
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2.2. Jackknife estimator

Jackknifing involves transforming the problem of estimating a population parameter into the problem of estimating a
population mean. According to this method, a mean value is first estimated, although the approach estimation is unusual.
A framework for implementing the jackknife method is given by Lipsitz et al. (1990), who suggest an alternative robust
estimator of the covariance matrix based on jackknifing in order to analyze data from repeated measures studies. In this
paper, we use this method as an alternative to estimate the population parameters.
Suppose that T1, . . . , Tn is a random sample of n values and that T̄ =

∑n
i=1

Ti
n is the sample mean used to estimate the

mean of the population.
The sample mean calculated with the lth observation missing is

T̄−l =

n∑
i=1
Ti − Tl

n− 1
,

for which

Tl = nT̂ − (n− 1)T̄−l. (8)

Using a general example, let θ be a parameter estimated by Ê(T1, . . . , Tn). For ease of notation, we drop (T1, . . . , Tn).
Finally, Ê−l is calculated, which is obtained with the Tl observation missing. It follows from Eq. (8) that pseudo-values can
be calculated as follows:

Ê∗l = nÊ − (n− 1)Ê−l, l = 1, . . . , n.

The average of the pseudo-values is the jackknife estimate of θ given by

Ê∗ =

n∑
l=1
Ê∗l

n
.

Manly (1997) suggested that an approximate 100(1−α)% confidence interval for θ is given by Ê∗± tα/2,n−1s/
√
n, where

s is the standard deviation of the pseudo-values; and tα/2,n−1 is the upper (1− α/2) point of the t-distribution with (n− 1)
degrees of freedom, which has the effect of removing bias of order 1/n.
The jackknife estimation calculations for the LEW regressionmodel for interval-censored data are performed for λ, σ and

βj(j = 1, . . . , p), and confidence intervals are calculated separately for each parameter.

2.3. Bootstrap re-sampling methods

The bootstrap re-sampling method was proposed by Efron (1979). The method treats the observed sample as if it
represented the population. From the information obtained from such a sample, B bootstrap samples of similar size to that
of the observed sample are generated, from which it is possible to estimate various characteristics of the population, such
as mean, variance, percentiles and so on.
According to the literature, the re-sampling method may be non-parametric or parametric. In this study, the parametric

bootstrap method is addressed, according to which the distribution function F can be estimated by F̂θ from B bootstrap
samples generated by a parametric model.
Let (T1, . . . , Tn) be an observed random sample with which an estimator θ̂ = s(F̂) is calculated from a parameter of

interest θ = s(F). Given this supposition, (T ∗1 , . . . , T
∗

B ) samples are randomly generated through parametric bootstrap
sampling. For the B bootstrap samples generated, T ∗1 , . . . , T

∗

B , the bootstrap replication of the parameter of interest for the
bth sample is given by:

θ̂
∗

b = s(T
∗

b ).

That is, this is the value of θ̂ for sample T ∗b , b = 1, . . . , B.
The bootstrap estimator of the standard error (Efron and Tibshirani, 1993) is the standard deviation of these bootstrap

samples; it is denoted by ÊPB and obtained by the following expression

ÊPB =

[
1

(B− 1)

B∑
b=1

(
θ̂∗b − θ̄B

)2]1/2
,

in which θ̄B = 1
B

∑B
b=1 θ̂

∗

b . Note that B is the number of bootstrap samples generated. According to Efron and Tibshirani
(1993), assuming B ≥ 200, it is generally sufficient to present good results to determine the bootstrap estimations. However,
to achieve greater accuracy, a reasonably high B value must be considered. We describe the bias corrected and accelerated
(BCa) method for constructing approximated confidence intervals based on the bootstrap re-sampling method. For further
details on bootstrap intervals, see, Efron and Tibshirani (1993), DiCiccio and Efron (1996) and Davison and Hinkley (1997).
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BCa bootstrap interval
The bootstrap interval based on the BCa method assumes that the percentiles used in delimitating the bootstrap

confidence intervals depend on the corrections to tendency â and acceleration ẑ0.
The bias correction value ẑ0 is generated based on the proportion of estimations of bootstrap samples that are smaller

than the original estimation θ̂. The expression of ẑ0 is given by

ẑ0 = Φ−1
(
](θ̂
∗

b < θ̂)

B

)
, b = 1, . . . , B.

Note thatΦ−1(·) is the inverse of the accumulated standard normal distribution; B is the number of generated bootstrap
samples; θ̂ is the MLE of the observed sample; and θ̂

∗

b is the MLE of the bth bootstrap sample.
Let θ̂(i) be the MLE of the sample without the ith observation. Then â is given by

â =

n∑
i=1

[
θ̂(·) − θ̂(i)

]3
6
{
n∑
i=1

[
θ̂(·) − θ̂(i)

]2}3/2 .
Note that θ̂(·) =

∑n
i=1 θ̂(i)/n and n is the sample size.

Hence, the BCa bootstrap interval of coverage 100(1− 2α)% is given by[
θ̂
∗

(Bα1), θ̂
∗

(Bα2)

]
,

in which

α1 = Φ

{
ẑ0 +

ẑ0 + Φ−1(α)

1− â
[
ẑ0 + Φ−1(α)

]} and α2 = Φ

{
ẑ0 +

ẑ0 + Φ−1(1− α)

1− â
[
ẑ0 + Φ−1(1− α)

]} .
Note that α1 and α2 are corrections to the bootstrap percentiles; Φ(·) is an accumulated distribution function of the

standard normal distribution; and Φ−1(·) is the inverse of the accumulated distribution function of the standard normal
distribution. The percentile bootstrap interval is considered a particular case of the BCa bootstrap interval (Efron and
Tibshirani, 1993).

2.4. A Bayesian analysis of the model

The use of an alternative Bayesian method allows the incorporation of previous knowledge of the parameters through
informative priori densities. When this information is not available, one may consider non-informative priori densities.
In the Bayesian approach, the information that refers to model parameters is obtained through the posterior marginal
distribution. In this way, two difficulties arise. The first involves attaining the marginal posterior distribution, while the
second relates to the calculation of moments. In both cases, integral calculations that many times do not present analytical
solutions are necessary. We use MCMCmethod, such as the Gibbs sampler and Metropolis–Hasting algorithm, to overcome
these difficulties.
The LEW regression model (5) for interval-censored data and the likelihood function (6) for β0, β1, . . . , βp and σ are

considered here. For a Bayesian analysis, we assume the following priori densities for βj, σ and λ;

• βj ∼ N(µ0j, σ 20j), µ0j and σ
2
0j known, j = 1, . . . , p;

• σ ∼ IG(a, b), a and b known;
• λ ∼ G(a1, b1) a1 and b1 known.

Note that IG(a, b) denotes an inverse gamma distribution with a density function given by

f (ω; a, b) =
baω−(ai+1) exp(−b/ω)

0(a)
. (9)

In addition, G(a1, b1) denotes a gamma distribution with mean a1/b1 and variance a1/b21.
From the likelihood function L(β, λ, σ ) = exp

[
`(β, λ, σ )

]
and assuming independence among parameters βj, j =

0, . . . , p and σ , we can show that the joint posterior distribution for β = (β0, . . . , β1), σ and λ is given by

π(β, λ, σ |D) ∝
λa1−1

σ a+1
exp

{
−
1
2

p∑
j=1

(βj − µ0j)
2

σ0j
−
b
σ
+ b1λ

}
L(β, λ, σ ), (10)
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where

L(β, λ, σ ) =
∏
i∈F

[{
1− exp

[
− exp(zvi)

]}λ
−

{
1− exp

[
− exp(zui)

]}λ]∏
i∈C

[
1−

{
1− exp

[
− exp(zui)

]}λ]
,

is the likelihood function, zui =
[
log(ui)− xTi β

]
/σ and zvi =

[
log(vi)− xTi β

]
/σ .

The joint posterior density of (β, λ, σ ) in (10) is analytically problematic because the integration of the joint posterior
density is not easy to perform. An alternative is the Gibbs sampler algorithm, which is discussed next. In this regard, we first
obtain the conditional distributions of the parameters

π(β|λ, σ ,D) ∝ exp

{
−
1
2

p∑
j=1

(βj − µ0j)
2

σ0j
+ log[L(β, λ, σ )]

}
,

π(σ |β, λ,D) ∝
1

σ a+1
exp

{
−
b
σ
+ log

[
L(β, λ, σ )

]}
and

π(λ|β, σ ,D) ∝ λa1−1 exp
{
−b1λ+ log

[
L(β, λ, σ )

]}
.

Note that we must use the Metropolis–Hasting algorithm to generate variables β, λ and σ from the conditional posterior
densities.

3. Sensitivity analysis

3.1. Global influence

As previously stated, the first step involved in performing sensitivity analysis is to focus on global influences according
to case deletion (Cook, 1977). Case deletion is a common approach to study the effect of dropping the ith case from the data
set. Case deletion for model (5) is given by

Yl = xTl β + σ zl, l = 1, 2, . . . , n, l 6= i. (11)

In the following section, a quantity with subscript ‘‘(i)’’ indicates that the original data set with the ith observation deleted.
For model (11), the log-likelihood function is denoted by l(i)(θ).

Let θ̂(i) = (σ̂(i), β̂
T
(i))
T be the MLE based on θ obtained from maximizing l(i)(θ). To assess the influence of the ith

observation on the MLE θ̂ = (σ̂ , β̂
T
)T , we compare the difference between θ̂(i) and θ̂. If the deletion of an observation

seriously influences an estimates, more attention should be paid to that observation. Hence, if θ̂(i) is far from θ̂, then this
case is regarded as an influential observation. An initial measure of global influence is defined as the standardized norm of
θ̂(i) − θ̂ (i.e., generalized Cook distance):

GDi(θ) = (θ̂(i) − θ̂)T
{
−L̈(θ)

}
(θ̂(i) − θ̂).

Another alternative is to assess the values GDi( β) and GDi(σ ), which reveal the impact of the ith observation on the
estimates of β and σ , respectively. Another popular measure of the difference between θ̂(i) and θ̂ is the following likelihood
displacement:

LDi(θ) = 2
{
l(θ̂)− l(θ̂(i))

}
.

Furthermore, we can also compute βj − βj(i)(j = 1, 2, . . . , p) to calculate the difference between β̂ and β̂(i). Other global
influence measures are also possible. One might think of the behavior of a test statistic under a case-deletion scheme; such
statistics may include the Wald test for explanatory variables or censoring effects.
To avoid employing direct model estimation for all observations, we can use the following one-step approximation to

reduce the burden of calculation:

θ̂
1
(i) = θ̂ + L̈(θ̂)−1 l̇(i)(θ̂).

Note that l̇(i)(θ̂) =
∂ l(i)(θ)
∂θ
is evaluated at θ = θ̂ (Cook and Weisberg, 1982).

3.2. Local influence

Another approach suggested by Cook (1986) is to weight observations instead of removing then. The calculation of
local influences can be carried out for model (5). If the likelihood displacement LD(ω) = 2{l(θ̂) − l(θ̂ω)} is used, where
θ̂ω denotes MLE under the perturbed model, then the normal curvature for θ at direction d, ‖d‖ = 1, is given by
Cd(θ) = 2|dT1T

[
L̈(θ)

]−1
1d|, where1 is a (p + 2)× nmatrix that depends on the perturbation scheme. The elements of
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this scheme are given by ∆vi = ∂2l(θ|ω)/∂θv∂ωi, i = 1, 2, . . . , n and v = 1, 2, . . . , p + 2 evaluated at θ̂ and ω0; ω0 is the
no-perturbation vector. For the LEW regression model, the elements of L̈(θ) are given in Appendix A. We can also calculate
the normal curvatures Cd(λ), Cd(σ ) and Cd( β) to perform various index plots, including, for instance, the index plot of dmax,
the eigenvector corresponding to Cdmax , the largest eigenvalue of the matrix B = −1T

[
L̈(θ)

]−1
1, and the index plots of

Cdi(λ), Cdi(σ ) and Cdi( β), which are together denoted as the total local influence. See, for example, Lesaffre and Verbeke
(1998) in which di denotes an n× 1 vector of zeros with one at the ith position. Thus, the curvature at direction di assumes
the form Ci = 2|1Ti

[
L̈(θ)

]−1
1i|, where1Ti denotes the ith row of1. It is commonplace to point out cases in which Ci ≥ 2C̄ ,

where C̄ = 1
n

∑n
i=1 Ci.

Next, for five perturbation schemes, we calculate the following matrix:

1 = (1vi)(p+2)×n =

(
∂2l(θ|ω)
∂θi∂ωv

)
(p+2)×n

, v = 1, . . . , p+ 2 and i = 1, . . . , n.

We consider the model (5) and its log-likelihood function given by (6). Consider the vector of weights ω = (ω1, . . . , ωn)T .
• Case-weight perturbation

In this case, the log-likelihood function takes the form l(θ|ω) =
∑
i∈F ωil1(λ, zui, zvi) +

∑
i∈C ωil2(λ, zui), where

0 ≤ ωi ≤ 1 andω0 = (1, . . . , 1)T ; l1(·) and l2(·) is defined in (6). Thematrix1 = (1λ,1σ ,1 β)
T is given in Appendix C.

• Response perturbation (log(ui))
We here consider that each ui is perturbed as uiw = ui + ωiSu, where Su is a scale factor that may be equal to

the estimated standard deviation of U , ωi ∈ R. Here, the perturbed log-likelihood function becomes expressed as
l(θ|ω) =

∑
i∈F l1(λ, zu

∗

i , zvi) +
∑
i∈C l2(λ, zu

∗

i ). Note that (zu)
∗

i = [log(u
∗

i ) − xTi β̂]/σ̂ , u
∗

i = [log(ui) + ωiSu] and
ω0 = (0, . . . , 0)T ; l1(·) and l2(·) is defined in (6). The matrix1 = (1λ,1σ ,1 β)

T is given in Appendix D.
• Response perturbation (log(vi))

We now consider that each vi is perturbed as viw = vi + ωiSv , where Sv is a scale factor that may be equal to the
estimated standard deviation of V , ωi ∈ R.
Here, the perturbed log-likelihood function can be expressed as l(θ|ω) =

∑
i∈F l1(λ, zui, zv

∗

i )+
∑
i∈C l2(λ, zui),where

zv∗i = [log(v
∗

i ) − xTi β̂]/σ̂ , v
∗

i = [log(vi) + ωiSv] and ω0 = (0, . . . , 0)T ; l1(·) and l2(·) is defined in (6). The matrix
1 = (1λ,1σ ,1 β)

T is provided in Appendix E.
• Simultaneous response perturbation (log(ui), log(vi))

We now assume that each ui, vi is perturbed as uiw = ui + ωiSu, viw = vi + ωiSv , respectively, where Su and Sv are
scale factors that may be equal to the estimated standard deviations of U and V , ωi ∈ R.
Here, the perturbed log-likelihood function can be expressed as l(θ|ω) =

∑
i∈F l1(λ, zu

∗

i , zv
∗

i ) +
∑
i∈C l2(λ, zu

∗

i ),

where zu∗i = [log(u
∗

i )− xTi β̂]/σ̂ , log(u
∗

i ) = (log(ui)+ ωiSu), zv
∗

i = [log(v
∗

i )− xTi β̂]/σ̂ , log(v
∗

i ) = [log(vi)+ ωiSv] and
ω0 = (0, . . . , 0)T ; l1(·) and l2(·) are defined in (6). The matrix1 = (1λ,1σ ,1 β)

T is given in Appendix F.
• Explanatory variable perturbation

Consider an additive perturbation on a particular continuous explanatory variable, namely, Xt , by allowing xitω = xit+
ωiSx, where Sx is a scale factor, ωi ∈ R. This perturbation scheme leads to the following expression of the log-likelihood
function: l(θ|ω) =

∑
i∈F l1(λ, zu

∗∗

i , zv
∗∗

i )+
∑
i∈C l2(λ, zu

∗∗

i ),where zu
∗∗

i = [log(ui)− x∗Ti β]/σ , zv∗∗i = [vi − x∗Ti β]/σ ,
x∗Ti β = β1+β2xi2+· · ·+βt(xit +ωiSx)+· · ·+βpxip andω0 = (0, . . . , 0)T ; l1(·) and l2(·) are defined in (6). The matrix
1 = (1λ,1σ ,1 β)

T is given in Appendix G.

4. Residual analysis

An analysis of residuals may be carried out for a number of purposes after a statistical model is fitted to the data. These
purposes include checking the assumptions of themodel, checking the validity of the data, and examining the data to reveal
useful information. To study any departures from the error assumption as well as the presence of outliers, there are various
residual analysis proposed in the literature; see, for example, Collett (2003) and Ortega et al. (2008). Defining residuals
for interval-censored data is complicated by the fact that the observations are incomplete. Farrington (2000) developed
an analysis of residuals for proportional hazard models using interval-censored survival data. In this study, we extend the
residuals proposed by Farrington (2000) to the LEW regression model for interval-censored data.

4.1. Adjusted Cox–Snell residual

This residual for LEW regression models for interval-censored data takes the form

rCi =


(
1− âi

)λ̂ [1− λ̂ log (1− âi)]− (1− b̂i)λ̂ [1− λ̂ log (1− b̂i)](
1− b̂i

)λ̂
−
(
1− âi

)λ̂ if i ∈ F ,

1− λ̂ log
(
1− âi

)
if i ∈ C,
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where

âi = exp[− exp(ẑui)], b̂i = exp[− exp(ẑvi)],

ẑui = [log(ui)− xTi β̂]/σ̂ and ẑvi = [log(vi)− xTi β̂]/σ̂ .

4.2. Martingale residual

The martingale residual was introduced by Lagakos (1980); it is also referred to as the Lagakos residual. Thus, the
martingale residual for the LEW regression models for interval-censored data takes the form

rMi =


λ̂
[
(1− âi)λ̂ log(1− âi)− (1− b̂i)λ̂ log(1− b̂i)

]
(
1− b̂i

)λ̂
−
(
1− âi

)λ̂ if i ∈ F ,

λ̂ log
(
1− âi

)
if i ∈ C .

4.3. Modified deviance residual

The martingale residual is transformed in order to exhibit a new residual symmetrically distributed around zero. The
modified deviance applied to the LEW regression models for interval-censored data can be expressed as

rDi =


sgn(r̂Mi)

−2
 λ̂

[
(âi)λ − (b̂i)λ

]
(
1− b̂i

)λ̂
−
(
1− âi

)λ̂ + log
1−


λ̂
[
(âi)λ − (b̂i)λ

]
(
1− b̂i

)λ̂
−
(
1− âi

)λ̂




1/2

if i ∈ F ,

sgn(r̂Mi)
[
−2λ̂ log(1− âi)

]1/2
if i ∈ C .

Note that

(âi)λ = (1− âi)λ̂ log(1− âi), (b̂i)λ = (1− b̂i)λ̂ log(1− b̂i), âi = exp[− exp(ẑui)],

b̂i = exp[− exp(ẑvi)], ẑui = [log(ui)− xTi β̂]/σ̂ and ẑvi = [log(vi)− xTi β̂]/σ̂ .

4.4. Simulation studies

To investigate the empirical distributions of the residuals ri, rMi and rDi for the values n = 50, n = 100 and n = 200,
λ = 0.3 and 1.00, σ = 0.5, and censoring percentages 0, 0.10 and 0.30, we performed a small simulation study
described below. The log-lifetimes denoted by log(T1), . . . , log(Tn) were generated from the LEW distribution given in (4)
by considering the re-parametrization α = σ−1 and γ = exp(µ) and by assuming µi = β0 + β1xi, with xi generated from
a uniform distribution in the range [0, 1]. Note that β0 and β1 were fixed. The censoring times denoted by C1, . . . , Cn were
generated from a uniform distribution [0, τ ], where τ was adjusted until censoring percentages of 0, 0.10 or 0.30, were
reached. The lifetimes considered in each fit were calculated as yi = min{log(Ci), log(Ti)}, and log(ui) and log(vi) were
generated for the times with interval censoring such that yi ∈ (log(ui), log(vi))with probability one (Zhao, 2004).
For each configuration of n, λ, σ and censoring percentage, 1000 samples were generated, and each one was fitted under

the LEW regression model (5) for interval-censored data. For each fit, the residuals ri, rMi and rDi were calculated and stored.
We then performed normal probability plots between the mean quartiles of the residuals and the expected quartiles of the
standard normal distribution.
From Figs. 2 and 3, we note the following conclusions:

• We clearly observe that the empirical distribution of the modified deviance residual follows the standard normal
distribution.
• The empirical distributions of the adjusted Cox–Snell residuals and the martingale residuals exhibit similar behaviors.
• The empirical distributions of the adjusted Cox–Snell and the martingale residuals in general present accentuated
asymmetry.
• As censoring decreases, the empirical distribution of the modified deviance residual seems to approach the standard
normal distribution faster than the other two residuals considered in the analysis.
• As the sample size increases, the empirical distribution of the modified deviance residual seems to exhibit the best
alignment with the standard normal distribution.

Thus, we recommend the use of normal probability plots for rDi with a simulated envelope, as suggested by Atkinson
(1985).
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Fig. 2. Normal probability plots for adjusted Cox–Snell residuals (ri), martingale residual (rMi ) and modified deviance residual (rDi ). Sample sizes n = 50,
n = 100 and n = 200, percentage of right-censored= 30 and λ = 1.

5. Application

We provide an application of the results derived in the previous sections using real data. The required numerical
evaluations were implemented using the software program Ox (Doornik, 2001). We illustrate the proposedmodel using the
cancer data on n = 94 breast cancer patients, 48 of whomwere treated with radiation therapy and adjuvant chemotherapy
(xi1 = 1) and 46 of whom were treated with radiation therapy alone (xi1 = 0). The response variable (yi) is the log-time to
cosmetic deterioration, for all i = 1, 2, . . . , 94.

5.1. Estimation

5.1.1. Maximum likelihood and jackknife estimation
To obtain the MLEs of the parameters in the LEW regression model for interval-censored data, we used the subroutine

MAXBFGS in Ox; the results are given in Table 1. Additionally, in Table 1, we report the jackknife estimates. We can observe
that the explanatory variable x1 is significant at the level of 5%. FromTable 1, we can observe that the variable x1 is significant
(at 5%) for the log-survival time. Note that estimates from the two methods seem to be very similar.

5.1.2. Bootstrap re-sampling method
We considered B = 5000 bootstrap samples of the LEW regression model with interval-censored data. By using the

bootstrap method described in Section 2.3, we found the estimated bootstrap and the BCa confidence intervals, which are
presented in Table 2.
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Fig. 3. Normal probability plots for adjusted Cox–Snell residuals (ri), martingale residual (rMi ) and modified deviance residual (rDi ). Sample sizes n = 50,
n = 100 and n = 200, percentage of right-censored= 30 and λ = 0.5.

Table 1
Maximum likelihood and jackknife estimates for the parameters of the LEW regression model for interval-censored data fitted to cancer data.

θ MLEs Jackknife estimates
Estimate S.E. p-value Estimate S.E. 95% C.I.

λ 0.451 0.349 – 0.383 0.355 (0.000; 1.080)
σ 0.341 0.216 – 0.341 0.220 (0.000; 0.773)
β0 4.187 0.233 <0.001 4.245 0.226 (3.802; 4.688)
β1 −0.569 0.169 <0.001 −0.577 0.160 (−0.891;−0.263)

Table 2
Parametric bootstrap estimate and confidence intervals based on the parametric bootstrap re-sampling method using cancer data.

θ Estimate S.E. 95% C.I. (BCA)

λ 0.705 1.536 (0.000; 1.548)
σ 0.455 0.272 (0.153; 0.826)
β0 4.079 0.616 (2.113; 4.555)
β1 −0.592 0.040 (−0.613;−0.485)

5.1.3. Bayesian analysis
We considered the LEW regression model (5) for interval-censored data by considering the prior densities βj ∼

N(0, 1000)λ ∼ G(1, 0.01) and σ ∼ IG(1, 0.01). We generated two parallel independent runs of the Gibbs sampler chain
with size 50,000, discarding the first 10,000 iterations for each parameter. To eliminate the effect of initial values and to
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Table 3
Posterior summaries of the LEW regression model for interval-censored data fitted to cancer data.

Parameters Mean S.D 95% Credible interval R̂

λ 0.422 0.384 (0.083; 1.601) 1.008
σ 0.301 0.208 (0.083; 0.861) 1.007
β0 4.230 0.254 (3.608; 4.683) 1.015
β1 −0.557 0.177 (−0.946;−0.249) 1.001

Table 4
Posterior summaries of the LEW regression model with ridge shrinkage priors for interval-censored data fitted to cancer data.

Parameters Mean S.D 95% Credible interval R̂

λ 0.735 0.392 (0.094; 1.731) 1.000
σ 0.443 0.221 (0.086; 0.901) 1.000
β0 3.946 0.212 (3.511; 4.482) 1.001
β1 −0.352 0.164 (−0.740;−0.239) 1.001

Table 5
Results of Monte Carlo simulation based on 500 simulated samples of model in (12). MC mean, MC SD and RMSE are the posterior mean average, standard
deviation average and the square root of the mean square error of the estimates, respectively.

Parameter Vague prior Ridge shrinkage prior
Mean SD REQM Mean SD REQM

λ 1.489 0.620 0.823 1.357 0.577 0.678
σ 0.382 0.119 0.424 0.358 0.110 0.180
β0 4.058 0.207 0.502 4.190 0.166 0.252
β1 0.897 0.332 0.438 0.882 0.191 0.192

avoid correlation problems, we considered a spacing of size 10, thereby obtaining a sample of size 8,000 from each chain.
Wemonitored the convergence of the Gibbs samples using the Gelman and Rubin (1992) method, which uses an analysis of
variance technique if further iterations are needed. In Table 2, we report the posterior summaries for the parameters. Also,
in Table 3, we present the estimated potential scale reduction R̂ (Gelman and Rubin, 1992), which is an index to check the
convergence of the algorithm. Since R̂ < 1.1 for all parameters, it seems that the chains converge. To evaluate the robustness
of the models with regard to the choice of the hyper-parameters of the prior distributions, a small sensitivity analysis was
undertaken with larger standard deviations for the prior distributions. The posterior summaries of the parameters do not
present remarkable differences and do not influence the results in Table 3.
For comparison, we implemented a Bayesian analysis with βj ∼ N(0, τ 2j ) where τj ∼ IG(1, 0.001), j = 0, 1. This prior

distribution induces a ridge shrinkage prior (Park and Casella, 2008). MCMC computations were done similar to those as
described above. The posterior summaries in Table 4 show that the posteriormean is different to Table 3with less variability
for β0 and β1, but for θ and λ, standard deviations are very close to those in Table 3.

Simulation
A Monte Carlo simulation was carried out in order to compare the Bayesian estimates with vague prior and ridge

shrinkage prior. We took the following regression model:

log Ti = β0 + β1xi + σ zi, i = 1, . . . , 100. (12)

Note that the random error zi has the distribution (4), and β0 = 4, β = 1, σ = 0.5 and λ = 1, with xi are generated
from a uniform distribution on the range [0, 1]. The censoring times denoted by C1, . . . , Cn were generated from a uniform
distribution [0, τ ], where τ was adjusted until the censoring percentage 10%, was reached. The log of lifetimes considered
in the fit was calculated as yi = min{log(Ci), log(Ti)}, and log(ui) and log(vi) were generated for the times with interval
censoring such that yi ∈ (log(ui), log(vi))with probability one. In each simulation, 500Monte Carlo sampleswere generated
from the Section 4.4 and were fitted via the strategies outlined in the previous section and considering the same prior
distribution of our application. Table 5 shows the results of this analysis; we observe from the table that the posterior mean
under a vague prior is close to the true value, but the variability is not highwhen comparedwith those obtainedwith a ridge
shrinkage prior.
The estimates from the four methods seem to be very similar. The MLEs appear more conservative with large standard

errors. Therefore, since normality for the jackknife estimator is expected for this sample size (n = 94), one may also expect
some symmetric distribution with heavy tails for the MLEs. We continue this analysis by using the MLEs and considering
LEW regression models.
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Fig. 4. Index plot of GDi(θ) (Generalized Cook’s distance) (Fig. 2(a)). Index plot of LDi(θ) (Likelihood distance) (Fig. 2(b)).

Fig. 5. (a) Index plot of dmax for θ (case-weight perturbation) and (b) total local influence for θ (case-weight perturbation) based on the fit of the model to
the cancer data.

5.2. Global influence analysis

In this section, we use the Ox software to compute the case-deletionmeasuresGDi(θ) and LDi(θ) presented in Section 3.1.
The results of such influence measures index plots are displayed in Fig. 4. From this figure, we note that cases ]48 and ]81
are possible influential observations.

5.3. Local and total influence analysis

In this section,we analyze local influenceswith respect to the cancer data set using the LEWregressionmodel for interval-
censored data.
Case-weight perturbation
By applying the local influence framework developed in Section 3.2 in which case-weight perturbation is used, the value

Cdmax = 1.17 was obtained as a maximum curvature. In Fig. 5(a), the plot of the eigenvector corresponding to dmax is
presented, and the total influence Ci is shown in Fig. 5(b). Observations ]48 and ]81 are very distinguished in relation to the
others.
Response variable perturbation
Next, the influence of perturbations on the observed survival times is analyzed (i.e., simultaneous response perturbation

(log(Ui), log(Vi))). The value for the maximum curvature calculated was Cdmax = 137.51. Fig. 6(a) provides the plot for dmax
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Fig. 6. (a) Index plot of dmax for θ (simultaneous response perturbation) and (b) total local influence for θ (simultaneous response perturbation) based on
the model fitted to the cancer data.

Fig. 7. (a) Index plot of the deviance residual rDi and (b) normal probability plot for the deviance residual rDi with envelopes.

versus the observation index that shows observations ]15 and ]48 to be more salient in relation to others. Fig. 6(b) presents
plots for the total local influence (Ci), according to which observations ]15 and ]48 again stand out.

5.4. Residual analysis

Todetect possible outlying observations in fitting the LEWregressionmodels for interval-censored data, Fig. 7(a) provides
the index plot of rDi .
By analyzing the modified deviance residual plot, few observations appear as possible outliers (]48 and ]81), indicating

that the model is well-fitted.

5.5. Impact of the detected influential observations

Hence, the diagnostic analysis (including an analysis of global influence and local influence as well as residual analysis)
detected two observations ]48 and ]81 as potentially influential. Observation ]48 represents a censored observation to
the right and presents the interval of time [48,+∞). Observation ]81, represents an interval-censored whose length is
the smallest interval. In order to reveal the impact of these two observations on the parameter estimates, we refitted the
model under some situations. First, we individually eliminated each one of these two cases. Next, we removed the totality
of potentially influential observations from the set ‘‘A’’, that is, the original data set.
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Table 6
Relative changes [-RC-in %], estimates and the corresponding p-values in parentheses for the regression coefficients to explain the log-survival time.

Set{I} λ σ β0 β1

A – – – –
0.451 0.341 4.187 −0.569
(–) (–) (0.000) (0.001)

A-{]48} [47] [44] [3] [−2]
0.241 0.191 4.257 −0.588
(–) (–) (0.000) (0.001)

A-{]81} [30] [17] [2] [−2]
0.584 0.400 4.122 −0.582
(–) (–) (0.000) (0.001)

A-{]48 and ]81 } [32] [34] [−1] [6]
0.307 0.226 4.228 −0.601
(–) (–) (0.000) (0.001)

In Table 6,we present the relative changes (in percentage) of each parameter estimate defined byRCθj =
[
(θ̂j−θ̂j(I))/θ̂j

]
×

100, parameter estimates and the corresponding p-values, where α̂j(I) denotes the MLE of θj after the set ‘‘I ’’ of observations
was removed. From Table 6, we note that the MLEs from the LEW regression model for interval-censored data are highly
robust under the deletion of outstanding observations. In general, the significance of the parameter estimates does not
change at the level of 1% after removing set I . Therefore, we do not have inferential changes after removing the observations
identified in the diagnostic plots.

5.6. Goodness-of-fit

To detect possible departures from the assumptions of distribution errors made for model (5) as well as outlying
observations, we present in Fig. 7(b) the normal probability plot for the modified deviance residual with the generated
envelope, as suggested by Atkinson (1985). As we can see, the plot in Fig. 7(b) indicates that the LEW regression model for
interval-censored data does not seem unsuitable to fit the data. Also, no observation appears as a possible outlier.

6. Concluding remarks

In this paper, an LEW regression model for interval-censored data is proposed. We used the Quasi-Newton algorithm to
obtain themaximum likelihood estimates, and asymptotic testswere performed for the parameters based on the asymptotic
distribution of theMLEs. However, as an alternative analysis, the paper discusses the use of Bayesian inference, the jackknife
estimator and parametric bootstrapping for the LEW regression model for interval-censored data. In addition, various
simulation studies developed in this work indicate that the distribution of a modified deviance residual presents high
agreement with the standard normal distribution. The necessarymatrices for application of these techniques were obtained
by taking into account some usual perturbation in the model and data. By applying the procedures to a medical data set, we
were able to assess the sensitivity aspects of the MLEs under the perturbation schemes as well as check the goodness-of-fit
of the postulated model. Although the diagnostic plots detected some possible influential observations, their deletion did
not cause substantial changes in the results.
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Appendix A. Matrix of second derivatives L̈(θ)

Here we derive the necessary formulas to obtain the second-order partial derivatives of the log-likelihood function. After
some algebraic manipulations, we obtain

Lλλ =
∑
i∈F

{
(bi)λ log(1− bi)− (ai)λ log(1− ai)

(1− bi)λ − (1− ai)λ
−

[
(bi)λ − (ai)λ

(1− bi)λ − (1− ai)λ

]2}

−

∑
i∈C

{
(ai)λ log(1− ai)
1− (1− ai)λ

+

[
(ai)λ

1− (1− ai)λ

]2}
,
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Lλσ =
∑
i∈F

{
σ−1 (zuigipi − zvihiqi)
(1− bi)λ − (1− ai)λ

−

[[
λσ−1((ai)λ − (bi)λ)(zuigi − zvihi)

]
[(1− bi)λ − (1− ai)λ]2

]}

+

∑
i∈C

{
σ−1zuigi

1− (1− ai)λ

[
pi +

λ(1− ai)λ−1 log(1− ai)
1− (1− ai)λ

]}
,

Lλβj =
∑
i∈F

{
σ−1xij [gipi − hiqi]
(1− bi)λ − (1− ai)λ

−

[
λσ−1xij((ai)λ − (bi)λ)(gi − hi)
[(1− bi)λ − (1− ai)λ]2

]}
+

∑
i∈C

{
σ−1xijgi

1− (1− ai)λ

[
pi +

λ(1− ai)λ−1 log(1− ai)
1− (1− ai)λ

]}
,

Lσσ =
∑
i∈F

{
λσ−2 [zvihi(bi)σ − zuigi(ai)σ ]

(1− bi)λ − (1− ai)λ
−

[
λσ−1(zuigi − zvihi)
(1− bi)λ − (1− ai)λ

]2}

−

∑
i∈C

{
λσ−2zuigi
1− (1− ai)λ

[
(ai)σ +

λzuigi
1− (1− ai)λ

]}
,

Lσβj =
∑
i∈F

{
λσ−2xij

[
hi(bi)σβ − gi(ai)σβ

]
(1− bi)λ − (1− ai)λ

−

[
λ2σ−2xij(zuigi − zvihi)(gi − hi)
[(1− bi)λ − (1− ai)λ]2

]}

−

∑
i∈C

{
λσ−2xijgi
1− (1− ai)λ

[
(ai)σβ +

λzuigi
1− (1− ai)λ

]}

Lβjβs =
∑
i∈F

{
λσ−2xijxis

[
hi(bi)β − gi(ai)β

]
(1− bi)λ − (1− ai)λ

−

[
xijxis

(
λσ−1(gi − hi)

(1− bi)λ − (1− ai)λ

)2]}

−

∑
i∈C

{
λσ−2xijxisgi
1− (1− ai)λ

[
(ai)β +

λgi
1− (1− ai)λ

]}
.

Note that

zui = [log(ui)− xTi β]/σ , zvi = [log(vi)− xTi β]/σ , ai = exp[− exp(zui)],

bi = exp[− exp(zvi)], (ai)λ = (1− ai)λ log(1− ai), (bi)λ = (1− bi)λ log(1− bi),
gi = (1− ai)λ−1ai exp(zui), hi = (1− bi)λ−1bi exp(zvi), pi = λ log(1− ai)+ 1,
qi = λ log(1− bi)+ 1, (ai)σ = 2+ (1− ai)−1zuiai exp(zui)[λ− 1] + zui[1− exp(zui)],
(bi)σ = 2+ (1− bi)−1zvibi exp(zvi)[λ− 1] + zvi[1− exp(zvi)],
(ai)σβ = 1+ (1− ai)−1zuiai exp(zui)[λ− 1] + zui[1− exp(zui)],

(bi)σβ = 1+ (1− bi)−1zvibi exp(zvi)[λ− 1] + zvi[1− exp(zvi)],

(ai)β = 1+ (1− ai)−1ai exp(zui)[λ− 1] − exp(zui),

(bi)β = 1+ (1− bi)−1bi exp(zvi)[λ− 1] − exp(zvi).

Appendix B. Proof of Theorem 1

We now derive an infinite sum representation for the kth ordinary moment of the distribution f (z) given in (4), that is,
µ′k = E(Z

k). We have

µ′k =

∫
∞

−∞

zkλ
{
1− exp

[
− exp(z)

]}λ−1
exp

[
z − exp(z)

]
dz. (B.1)

We use the series representation

(1+ x)a =
∞∑
j=0

0(a+ 1)xj

0(a− j+ 1)j!
. (B.2)

Substituting u = exp(z) and using the representation (B.2), (B.1) can be further expanded as

µ′k = λ0(λ)

∞∑
j=0

(−1)j

0(λ− j)j!

∫
∞

0

[
log(u)

]k
exp

[
−u(j+ 1)

]
du. (B.3)
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The integral in (B.3) follows from Prudnikov et al. (1986) and Nadarajah (2006); it can be calculated as∫
∞

0

[
log(u)

]k
exp

[
−u(j+ 1)

]
du =

∂k[(j+ 1)−a0(a)]
∂ak

∣∣∣∣
a=1
. (B.4)

Finally, inserting (B.4) in (B.3), the kth moment of Z can be expressed as

µ′k = λ0(λ)

∞∑
j=0

(−1)j

0(λ− j)j!
∂k[(j+ 1)−a0(a)]

∂ak

∣∣∣∣∣
a=1

. (B.5)

Appendix C. The case-weight perturbation scheme

Here, we provide the elements necessary to consider the case-weight perturbation scheme. The elements of the matrix
1 = (1λ,1σ ,1 β)

T are expressed as

∆i =


(b̂i)λ − (âi)λ

(1− b̂i)λ̂ − (1− âi)λ̂
if i ∈ F ,

(âi)λ
1− (1− âi)λ̂

if i ∈ C .

∆i =


λ̂σ̂−1(ẑuiĝi − ẑviĥi)

(1− b̂i)λ̂ − (1− âi)λ̂
if i ∈ F ,

λ̂σ̂−1ẑuiĝi
1− (1− âi)λ̂

if i ∈ C .

For j = 1, . . . , p+ 2.

∆ji =


λ̂σ̂−1xij(ĝi − ĥi)

(1− b̂i)λ̂ − (1− âi)λ̂
if i ∈ F ,

λ̂σ̂−1xijĝi
1− (1− âi)λ̂

if i ∈ C .

Appendix D. Response perturbation (log(ui))

Here we provide the elements 1ji considering the response variable perturbation scheme. The elements of matrix
1 = (1λ,1σ ,1 β)

T are expressed as

∆i =


−Suσ̂−1ĝip̂i

(1− b̂i)λ̂ − (1− âi)λ̂
+
[(b̂i)λ − (âi)λ](λ̂σ̂−1Suĝi)

[(1− b̂i)λ̂ − (1− âi)λ̂]2
if i ∈ F ,

−σ̂−1Suĝi
1− (1− âi)λ̂

[
p̂i +

λ̂(âi)λ
1− (1− âi)λ̂

]
if i ∈ C .

∆i =


λ̂σ̂−2Suĝi(âi)σβ

(1− b̂i)λ̂ − (1− âi)λ̂
+
λ̂2σ̂−2Suĝi(ẑuiĝi − ẑviĥi)

[(1− b̂i)λ̂ − (1− âi)λ̂]2
if i ∈ F ,

λ̂σ̂−2Suĝi
1− (1− âi)λ̂

[
(âi)σβ +

λ̂ẑuiĝi
1− (1− âi)λ̂

]
if i ∈ C .

For j = 1, . . . , p+ 2.

∆ji =


λ̂σ̂−2xijSuĝi(âi)β

(1− b̂i)λ̂ − (1− âi)λ̂
+

λ̂2σ̂−2xijSuĝi(ĝi − ĥi)

[(1− b̂i)λ̂ − (1− âi)λ̂]2
if i ∈ F ,

λ̂σ̂−2xijSuĝi
1− (1− âi)λ̂

[
(âi)β +

λ̂ĝi
1− (1− âi)λ̂

]
if i ∈ C .
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Appendix E. Response perturbation (log(vi))

Here we provide the elements1ji necessary to consider the response variable perturbation scheme. The elements of the
matrix1 = (1λ,1σ ,1 β)

T are expressed as

∆i =


Svσ̂−1ĥiq̂i

(1− b̂i)λ̂ − (1− âi)λ̂
−
λ̂σ̂−1Sv ĥi[(b̂i)λ − (âi)λ]

[(1− b̂i)λ̂ − (1− âi)λ̂]2
if i ∈ F ,

0 if i ∈ C .

∆i =


−λ̂σ̂−2Sv ĥi(b̂i)σβ

(1− b̂i)λ̂ − (1− âi)λ̂
−
λ̂2σ̂−2Sv ĥi(ẑuiĝi − ẑviĥi)

[(1− b̂i)λ̂ − (1− âi)λ̂]2
if i ∈ F ,

0 if i ∈ C .

For j = 1, . . . , p+ 2.

∆ji =


−λ̂σ̂−2xijSv ĥi(b̂i)β
(1− b̂i)λ̂ − (1− âi)λ̂

−
λ̂2σ̂−2xijSv ĥi(ĝi − ĥi)

[(1− b̂i)λ̂ − (1− âi)λ̂]2
if i ∈ F ,

0 if i ∈ C .

Appendix F. Response perturbation with simultaneous (log(ui), log(vi))

Here we provide the elements1ji necessary to consider the response variable perturbation scheme. The elements of the
matrix1 = (1λ,1σ ,1 β)

T are expressed as

∆i =


σ̂−1(Sv ĥiq̂i − Suĝip̂i)

(1− b̂i)λ̂ − (1− âi)λ̂
−
λ̂σ̂−1[(b̂i)λ − (âi)λ](Sv ĥi − Suĝi)

[(1− b̂i)λ̂ − (1− âi)λ̂]2
if i ∈ F ,

−σ̂−1Suĝi
1− (1− âi)λ̂

[
p̂i +

λ̂(âi)λ
1− (1− âi)λ̂

]
if i ∈ C .

∆i =


λ̂σ̂−2[Suĝi(âi)σβ − Sv ĥi(b̂i)σβ ]

(1− b̂i)λ̂ − (1− âi)λ̂
−
λ̂2σ̂−2(ẑuiĝi − ẑviĥi)(Sv ĥi − Suĝi)

[(1− b̂i)λ̂ − (1− âi)λ̂]2
if i ∈ F ,

λ̂σ̂−2Suĝi
1− (1− âi)λ̂

[
(âi)σβ +

λ̂ẑuiĝi
1− (1− âi)λ̂

]
if i ∈ C .

For j = 1, . . . , p+ 2.

∆ji =


λ̂σ̂−2xij[Suĝi(âi)β − Sv ĥi(b̂i)β ]

(1− b̂i)λ̂ − (1− âi)λ̂
−
λ̂2σ̂−2xij(ĝi − ĥi)(Sv ĥi − Suĝi)

[(1− b̂i)λ̂ − (1− âi)λ̂]2
if i ∈ F ,

λ̂σ̂−2xijSuĝi
1− (1− âi)λ̂

[
(âi)β +

λ̂ĝi
1− (1− âi)λ̂

]
if i ∈ C .

Appendix G. Explanatory variable perturbation

Here we provide the elements1ji necessary to consider the explanatory variable perturbation scheme. The elements of
the matrix1 = (1λ,1σ ,1 β)

T are expressed as

∆i =


σ̂−1β̂tSx[ĝip̂i − ĥiq̂i]

(1− b̂i)λ̂ − (1− âi)λ̂
−
λ̂σ̂−1β̂tSx[(b̂i)λ − (âi)λ](ĝi − ĥi)

[(1− b̂i)λ̂ − (1− âi)λ̂]2
if i ∈ F ,

σ̂−1β̂tSxĝi
1− (1− âi)λ̂

[
p̂i +

λ̂(âi)λ
1− (1− âi)λ̂

]
if i ∈ C .

∆i =


λ̂σ̂−2β̂tSx[(ĥ)i(b̂i)σβ − ĝi(âi)σβ ]

(1− b̂i)λ̂ − (1− âi)λ̂
−
λ̂2σ̂−2β̂tSx(ẑuiĝi − ẑviĥi)(ĝi − ĥi)

[(1− b̂i)λ̂ − (1− âi)λ̂]2
if i ∈ F ,

−λ̂σ̂−2β̂tSxĝi
1− (1− âi)λ̂

[
(âi)σβ −

ẑuiĝi
1− (1− âi)λ̂

]
if i ∈ C .
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For t 6= j and j = 1, . . . , p+ 2.

∆ji =


λ̂σ̂−2xijSxβ̂t [ĥi(b̂i)β − ĝi(âi)β ]

(1− b̂i)λ̂ − (1− âi)λ̂
−

λ̂2σ̂−2xijβ̂tSx(ĝi − ĥi)2

[(1− b̂i)λ̂ − (1− âi)λ̂]2
if i ∈ F ,

−λ̂σ̂−2xijβ̂tSxĝi
1− (1− âi)λ̂

[
(âi)β +

λ̂ĝi
1− (1− âi)λ̂

]
if i ∈ C .

For t = j

∆ti =


λ̂σ̂−1Sx[ĥi(b̂i)ω − ĝi(âi)ω]

(1− b̂i)λ̂ − (1− âi)λ̂
−

λ̂2σ̂−2xit β̂tSx(ĝi − ĥi)2

[(1− b̂i)λ̂ − (1− âi)λ̂]2
if i ∈ F ,

−λ̂σ̂−1ĝiSx
1− (1− âi)λ̂

[
(âi)ω +

λ̂σ̂−1xit β̂t ĝi
1− (1− âi)λ̂

]
if i ∈ C,

where
(âi)ω = (1− âi)−1σ̂−1xit exp(ẑui)âiβ̂t(λ̂− 1)+ σ̂−1xit β̂t [1− exp(ẑui)],

(b̂i)ω = (1− b̂i)−1σ̂−1xit exp(ẑvi)b̂iβ̂t(λ̂− 1)+ σ̂−1xit β̂t [1− exp(ẑvi)].

Expressions, ẑui, ẑvi, âi, b̂i, (âi)λ̂, (b̂i)λ, ĝi, ĥi, p̂i, q̂i, (âi)σ , (b̂i)σ , (âi)σβ , (b̂i)σβ , (âi)β , (bi)β are defined in Appendix A.
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