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a b s t r a c t

In many data sets from clinical studies there are patients insusceptible to the occurrence of

the event of interest. Survival models which ignore this fact are generally inadequate. The

main goal of this paper is to describe an application of the generalized additive models for

location, scale, and shape (GAMLSS) framework to the fitting of long-term survival models.

In this work the number of competing causes of the event of interest follows the negative

binomial distribution. In this way, some well known models found in the literature are

characterized as particular cases of our proposal. The model is conveniently parameterized

in terms of the cured fraction, which is then linked to covariates. We explore the use of

the gamlss package in R as a powerful tool for inference in long-term survival models. The

procedure is illustrated with a numerical example.

© 2009 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Nowadays, due to advances in medical treatment and health
care, in many data sets from clinical studies there are patients
insusceptible to the occurrence of the event of interest (relapse
of cancer or death, for instance), which can occur because of
different competing causes. The proportion of such patients
is termed the cured fraction. Models for survival data with a
surviving fraction (also known as long-term survival models
or cure rate models) occupy an outstanding place in reliability
and survival analysis. The literature on the subject is by now
vast and growing rapidly. The books by Maller and Zhou [1]
and Ibrahim et al. [2], as well as the review article by Tsodikov
et al. [3] and the article by Cooner et al. [4] could be mentioned
as some key references.

∗ Corresponding author. Tel.: +55 16 33739567; fax: +55 16 33739751.
E-mail address: mcastro@icmc.usp.br (M. de Castro).

In our paper the number of competing causes is modeled
by the negative binomial distribution, leading to a formu-
lation that encompasses some standard models found in
the literature. Recently, studying cure rate models in the
context of infectious diseases, Tournoud and Ecochard [5] pro-
posed the negative binomial distribution for representing the
number of competing causes. Distinct from these authors,
we envision the long-term survival model with the negative
binomial distribution as a general model encompassing the
mixture cure model [6,7] and the promotion time cure model
[8].

Another distinguishing facet of our work is the so-called
Fisher’s parameterization for the negative binomial distri-
bution [9], meaning that the cured fraction plays a role of
parameter in the model. Consequently, irrespective of the
model, a unique expression relates the cured fraction to
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covariates. Previously this was never the case, for covari-
ates are traditionally used to model the expectation of
the number of competing causes (�, say). The cured frac-
tion is a function of � and the relationship depends on
the specific model. We argue that this uniqueness can be
relevant in practice, since in many applications the cured
fraction is the main quantity of interest and the practi-
tioner would like to fit different models to the data with
the same interpretation for the parameters of the mod-
els.

In order to put these concepts to work in practice we
need a flexible modeling structure. Rigby and Stasinopoulos
[10] presented a very broad class of models for a uni-
variate response model, which they called GAMLSS. This
acronym stands for generalized additive model for loca-
tion, scale, and shape, represented by four parameters
labeled as �, �, �, and �. The reader is referred to Rigby
and Stasinopoulos [10] for a full account of the GAMLSS
framework. Stasinopoulos and Rigby [11] described the
implementation of GAMLSS in R [12]. We formulate our
long-term survival model as an element in the GAMLSS
class in order to take benefit of the gamlss package fea-
tures.

In a spirit similar to our paper, Corbiére and Joly [13]
proposed a SAS macro for parametric and semi-parametric
mixture cure models. Our main contribution to the literature
is twofold. First, the parametric model in the present paper
is more general than the mixture cure model. Second, our
computational platform makes use of software freely avail-
able.

The plan of the foregoing sections of the paper is as follows.
Section 2 is dedicated to model formulation and parameter
inference. Some details of the R functions are discussed in
Section 3. Specifications and availability of the programs con-
stitute the Sections 5 and 6. Results of an application to a real
dataset are reported in Section 4. In Section 7 we end up with
some general remarks.

2. Computational methods and theory

2.1. Model

The time to event for the j-th cause is denoted by Zj, j =
1, . . . , M, for M ≥ 1, where M ≥ 0 denotes the unobservable
number of competing causes that can produce the event of
interest. We assume that, conditional on M, the Zj are i.i.d.
with cumulative distribution function F(t) and S(t) = 1 − F(t).
We assume also that M is independent of Z1, Z2,. . . The observ-
able time to event is defined as T = min{Z1, . . . , ZM}, for M ≥ 1,
and T = ∞ if M = 0. Exponential, piecewise exponential [14],
and Weibull distributions, for instance, can be used to repre-
sent Zj. The i.i.d. assumption about Z1, Z2, . . . is surely a strong
one, as remarked by Yakovlev and Tsodikov [8]. This option
favors simplicity and analytical tractability at the expense of
a more general formulation. Notwithstanding this limitation,
such models have proven to be useful in many real-world
applications. Under this setup, the survival function and the
probability density function for the population are given,

respectively, by

Spop(t) = P(M = 0) +
∞∑

m=1

P(Z1 > t, . . . , ZM > t|M = m)P(M = m)

=
∞∑

m=0

S(t)m P(M = m) (1)

and

fpop(t) = −S′
pop(t) =

∞∑
m=0

mS(t)m−1f (t)P(M = m),

where f (t) = −S′(t) denotes the (proper) density function of the
time to event Z in (1). Tsodikov et al. [3] and Rodrigues et al. [15],
among others, proved that Spop(t) = Ap(S(t)), where Ap(·) is the
probability generating function of the number of competing
causes.

As in Tournoud and Ecochard [5], we suppose that the
number of competing causes follows a negative binomial dis-
tribution with parameters � and ˛ [16,17], with probability
function

P(M = m; �, ˛) = � (˛−1 + m)
m!� (˛−1)

(
˛ �

1 + ˛ �

)m

(1 + ˛�)−1/˛, (2)

m = 0, 1, 2, . . ., for � > 0, ˛ ≥ −1, and 1 + ˛� > 0. Negative values
of ˛, −1 ≤ ˛ < 0, lead to a range for m from 0 to the largest
integer less than −1/˛ [9]. The expected value and the variance
of M are

E(M) = � and var(M) = �(1 + ˛�). (3)

The probability generating function is given by

Ap(s) =
∞∑

m=0

P(M = m; �, ˛) sm = {1 + ˛ �(1 − s)}−1/˛,

0 ≤ s ≤ 1, so that the improper survival and density functions
are given, respectively, by

Spop(t) = Ap(S(t)) =
{

{1 + ˛�F(t)}−1/˛, for ˛ > −1/�, ˛ /= 0,

exp{−�F(t)}, for ˛ = 0,
(4)

and

fpop(t) = −S′
pop(t)

=
{

{1 + ˛�F(t)}−1/˛−1 �f (t), for ˛ > −1/�, ˛ /= 0,

�f (t) exp{−�F(t)}, for ˛ = 0.
(5)

The cured fraction is determined by p0 = limt→∞Spop(t). From
(2) or (4), p0 = (1 + ˛�)−1/˛, for ˛ > −1/�, ˛ /= 0, and p0 = exp(−�),
for ˛ = 0.

Besides the good fitting capabilities of the negative bino-
mial model, its parameters have biological interpretations [5].
In (3) � is the mean number of competing causes, whereas
˛ accounts for the inter-individual variance of the number
of causes. Additionally, the negative binomial distribution
enabled de Castro et al. [18] to provide a probabilistic justi-
fication for the transformation introduced by Yin and Ibrahim
[19].
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As ˛ → 0, we obtain the Poisson’s distribution in (2) and
Spop(t) in (4) gives rise to the promotion time cure model
[8]. Regarding negative values of ˛ in the [−1, 0) interval,
the negative binomial distribution still furnishes meaningful
probabilities when 0 < −˛� < 1 [9,16]. In particular, if ˛ = −1,
Spop(t) in (4) becomes Spop(t) = 1 − � F(t), corresponding to the
mixture cure model [6,7]. From (3) it follows that if −1/� < ˛ <

0, there is under-dispersion from the Poisson’s model. On the
other side, if ˛ > 0 the counts are over-dispersed.

2.2. Inference

From now on we suppose that the time to event is not com-
pletely observed and may be subject to right censoring. Let
Ci denote the censoring time. We observe Yi = min{Ti, Ci} and
ıi = I(Ti ≤ Ci) is such that ıi = 1 if Ti is a time to event and ıi = 0
if it is right censored, i = 1, . . . , n. Let � denote the parameter
vector of the distribution of the time to event Z in (1). From
n pairs of times and censoring indicators (y1, ı1), . . . , (yn, ın),
the corresponding likelihood function under uninformative
censoring is

L(�, �, ˛; y, ı) ∝
n∏

i=1

f (yi, ıi; �, �, ˛), (6)

where y = (y1, . . . , yn)	 and

f (yi, ıi; �, �, ˛) =
∞∑

mi=0

S(yi; �)mi−ıi {mi f (yi; �)}ıi P(M = mi; �, ˛).

After some manipulations the likelihood function (6) can be
written as

L(�, �, ˛; y, ı) ∝
n∏

i=1

fpop(yi; �, �, ˛)ıi Spop(yi; �, �, ˛)1−ıi . (7)

Undoubtedly, in many instances the chiefest purpose of the
analysis is the estimation of the cured fraction. With this con-
cern in mind, we resort to the Fisher’s parameterization of
the negative binomial [9] in order to put the cured fraction p0

in the expression of the likelihood function in (7). For ˛ ≥ −1,
we define � = (p−˛

0 − 1)/˛, if ˛ /= 0, and � = − log(p0), if ˛ = 0.

Completing our model, we propose relate the cured fraction
to covariates xi by the logistic link, i.e.,

log
(

p0i

1 − p0i

)
= x	

i ˇ or p0i = 1
1 + exp(−x	

i
ˇ)

, (8)

i = 1, . . . , n, where ˇ stands for the vector of regression coeffi-
cients. This parameterization is advantageous, for it enables
one to think in the role of the covariates acting directly on
the cured fraction within a familiar structure provided by the
logistic link. Of course, probit and complement log–log link
functions could also be mentioned and are available in the
gamlss package.

From (3), var(Mi) = E(Mi) p−˛
0i

. Thus, extra variability in the
number of competing causes due to omitted covariates is gov-
erned by the dispersion parameter ˛.

The improper functions in (4) and (5) are rewritten as

Spop(yi; �, ˇ, ˛) =
{

{1 + (p−˛
0i

− 1)F(yi; �)}−1/˛
, for ˛ ≥ −1, ˛ /= 0,

pF(yi ;�)
0i

, for ˛ = 0,
(9)

and

fpop(yi; �, ˇ, ˛) =

⎧⎨
⎩

p−˛
0i

− 1

˛
{1 + (p−˛

0i
− 1)F(yi; �)}−1/˛−1

f (yi; �), for ˛ ≥ −1, ˛ /= 0,

− log(p0i) pF(yi;�)
0i

f (yi; �), for ˛ = 0.

(10)

Based on the negative binomial distribution, from (8), (9), and
(10), the likelihood function in (7) is expressed by

L(�, ˇ, ˛; y, ı) ∝

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n∏
i=1

{
p−˛

0i
− 1

˛
f (yi; �)

}ıi{
1 + (p−˛

0i
− 1)F(yi; �)

}−ıi−1/˛
, for ˛ ≥ −1, ˛ /= 0,

n∏
i=1

{
− log(p0i)f (yi; �)

}ıi pF(yi;�)
0i , for ˛ = 0.

(11)

Henceforth we assume a Weibull distribution for the time
to event Z in (1). In our notation, F(z; �) = 1 − exp(−z�1 e�2 ) and
f (z; �) = �1z�1−1 exp(�2 − z�1 e�2 ), for �1 > 0 and �2 ∈R. In the
absence of random effects, as in (8), parameter estimation
is done through the maximum likelihood method applied to
(11). The gamlss package requires the cumulative distribution
function Fpop = 1 − Spop and the probability density function
of the model, as in (9) and (10), and it does not matter whether
they are proper or not.

2.2.1. Model identifiability
Identifiability of long-term survival models has attracted the
attention of many researchers (e.g. [20,21,5]). Summing up
the findings of these authors we conclude that our model is
identifiable. Furthermore, following the steps in the proof of
Theorem 6.2 in Tournoud and Ecochard [5], we conclude that if
covariates are linked to the parameter � = ˛ too, identifiability
is preserved.

3. Program description

Our approach consists of an application of the gamlss func-
tion, which is fully documented in the gamlss package [11].
The cure rate models described in Section 2.2, specified by
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Eqs. (9) and (10), are fitted using the NBWEI4 and POWEI4 func-
tions. Many details about the gamlss function will be omitted
from our presentation. The arguments of this function control
the parameter estimation process. For instance, in the mix-
ture cure model we have � = ˛ = −1. In a call to the gamlss

function, this is passed as tau.start = −1 and tau.fix = TRUE.
The promotion time cure model (POWEI4 function) can also
be fitted calling the NBWEI4 function with tau.start=0 and
tau.fix = TRUE.

The long-term survival models we developed in Section 2
are implemented as a suite of R functions supplied in a text file
(models-cmpb.R). This is the main file and contains the link
function for the dispersion parameter ˛ (remembering that
˛ ≥ −1), the improper functions (9) and (10), the log-likelihood
function corresponding to (11), default starting values for the
parameters, and a function for construction of a confidence
interval for the cured fraction. The structure of the gamlss

function is familiar to readers used to the R (or S-Plus) syntax
(the glm function, in particular).

4. Application

In this section we describe an example illustrating some tools
we have developed with the gamlss package. This applica-
tion was worked out by means of R commands stored in a
text file (example-cmpb.R). The dataset includes 205 patients
observed after operation for removal of malignant melanoma
in the period 1962–1977. The patients were followed until 1977.
These data are available in the timereg package [22]. The
observed time (Y) ranges from 10 to 5565 days (from 0.0274 to
15.25 years, with mean=5.9 and standard deviation=3.1 years)
and refers to the time until the patient’s death or the censor-
ing time. Patients dead from other causes, as well as patients
still alive at the end of the study are censored observations
(72%). The covariates are as follows: xi1: ulceration (absent,
n = 115; present, n = 90), xi2: sex (female, n = 126; male, n =
79), and xi3: tumor thickness (in mm, mean=2.92 and standard
deviation=2.96), i = 1, . . . , 205. For illustrative purposes, tumor
thickness is categorized into two groups adopting 2 mm as cut
point (median=1.94 mm). We are interested in the effect of the
tumor thickness on the cured fraction. The parameterization
of the Weibull distribution in Section 2.2 is named WEI4 in our
program.

As an example, the negative binomial WEI4 model is fitted
issuing the command

Table 1 – Statistics from the adjusted models.

Model Statistic

Global deviance AIC SBC

Negative binomial 414.4 424.4 441.0
Promotion time cure (˛ = 0) 421.0 429.0 442.3
Mixture cure (˛ = −1) 423.8 431.8 445.1

The Surv function applied to the observed time (days) and
the censoring indicator (status) returns the censored times
marked with a plus sign. In the R code the NBWEI4 function
encapsulates the elements of the model, which depends on
the improper functions in (9) and (10). With the cens func-
tion in the gamlss.cens package we create a censored version
of the distribution of the response variable, whose likeli-
hood function is given by (11). The cured fraction (� = p0) is
linked to the categorized tumor thickness (thickness.le.2

and thickness.gt.2) by the nu.formula specification using
the logistic link in (8) by default. For the promotion time cure
model the function is POWEI4.

The fitted models can be compared employing the log-
likelihood function at its maximum (global deviance in the
GAMLSS terminology, expressed by −2 max log L), the Akaike
information criterion (AIC), and the Schwartz Bayesian crite-
rion (SBC). Table 1 displays these statistics in increasing order
of AIC. Negative binomial model yields the best fitting accord-
ing to these criteria.

The worm plots (wp function) of the quantile residuals
in Fig. 1 suggest that the negative binomial WEI4 is accept-
able. Fig. 2 shows the Kaplan–Meier estimates of the survival
function (solid lines) and estimates obtained from different
parametric models. Kaplan–Meier curves level off above 0.8
and 0.4. Fig. 2(a) and (b) shows that the mixture cure and the
promotion time cure models do not afford satisfactory fittings.

Taking into account the results in Table 1, Figs. 1 and 2, from
this point on we select the negative binomial WEI4 model (m4,
say) as our working model. Parameter estimates are obtained
with the summary(m4) command, whose output is listed in
Appendix A. All the coefficients are significant at a 1% level.
The estimate of the shape parameter of the Weibull distri-
bution (WEI4) is e0.8716 = 2.4 (�̂ = �̂1 =m4$mu.fv). Comparing
patients from tumor thickness categories “≤ 2 mm” and “> 2
mm”, the odds ratio of the cured fraction (� = p0) is estimated
as exp(m4$nu.coef[1] − m4$nu.coeff[2]) = e1.609 = 5.0. This esti-
mate comes straightforwardly from the printout in Appendix
A thanks to the parameterization in (11). For the negative

Table 2 – Estimates of the cured fraction and approximate confidence intervals from the negative binomial WEI4 model.

Tumor thickness category Cured fraction 95% confidence interval

Asymptotic Bootstrap Deviance

≤ 2 mm 0.803 (0.649, 0.900) (0.592, 0.838) (0.010, 0.890)
> 2 mm 0.450 (0.327, 0.579) (0.372, 0.584) (0.010, 0.567)
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Fig. 1 – Worm plots of the quantile residuals: (a) mixture cure model, (b) promotion time cure model, and (c) negative
binomial model.

binomial dispersion parameter (� = ˛), the own link means that
in our program the logarithm function was shifted to ensure
that � = ˛ ≥ −1. In this example, ˆ̨ =m4$tau.fv= e1.739 − 1 =
4.7, since � has a shifted log link function log(� + 1), which
represents an evidence against the mixture cure and the pro-
motion time cure models.

We end up our application dealing with the estimation
of the cured fraction. Estimates of the cured fraction of
patients stratified by tumor thickness category (and approx-
imate 95% confidence intervals) are in Table 2. Asymptotic
intervals are obtained from the output in Appendix A. In
the computation of the intervals we used the vcov function

(see the example-cmpb.R file). Bootstrap percentile intervals
are based on 500 replicates with stratified case re-sampling
adopting tumor thickness categories as strata. Bootstrap com-
putations were performed using the censboot and boot.ci

functions [23]. We notice that the differences between the
intervals from these two methods are not so strong and
the intervals for the patients of the two categories do not
overlap. The thicker is the tumor, the lower is the cured
fraction.

As a referee pointed out, a confidence interval for the
cured fraction can also be obtained from a profile deviance
curve. The confidence intervals for the parameter (ˇ) in (8) por-
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Fig. 2 – Kaplan–Meier curves stratified by tumor thickness category (“≤ 2 mm” and “> 2 mm”, from top to bottom) and
estimates of the survival function according to different WEI4 models: (a) mixture cure model, (b) promotion time cure
model, and (c) negative binomial model.

trayed in Figs. 3 and 4 (patients with tumor thickness ≤ 2 and
> 2 mm, respectively) were constructed with the prof.term

function kindly supplied by an anonymous referee. Next, by
applying the second expression in (8) the intervals for the
cured fraction were calculated. In the last column of Table 2
the resulting intervals are very wide, suggesting confound-
ing between the heaviness of the tail of the improper density
function in (10) and the probability of a patient being cured.
Hence, a more stable quantity of interest is the proportion of
people who survived beyond a certain fixed time. For illustra-

Fig. 3 – Profile deviance plot and 95% confidence interval for
the parameter of the cured fraction – tumor thickness
≤ 2 mm.

Fig. 4 – Profile deviance plot and 95% confidence interval for
the parameter of the cured fraction – tumor thickness
> 2 mm.

tion, we choose 5 years. This proportion is estimated from (9)
as Ŝpop(5) = Spop(5; �̂, ˆ̌ , ˆ̨ ). Estimates of Spop(5) (and 95% boot-
strap percentile confidence intervals) are 0.919 (0.825, 0.931)
and 0.586 (0.562, 0.695) for tumor thickness ≤ 2 and > 2 mm,
respectively. The density plots (density function) in Fig. 5
indicate that the effect of tumor thickness is more unambigu-
ous on the proportion of patients who survived beyond 5 years
than on the cured fraction.

More complex models can be readily fitted. For instance,
by running the commands
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Fig. 5 – Density functions of bootstrap estimates of the cured fraction and the proportion of patients who survived more
than 5 years together with 95% percentile confidence intervals (in red). (a) and (c) tumor thickness ≤ 2 mm, (b) and (d) tumor
thickness > 2 mm. (For interpretation of the references to color in the figure caption, the reader is referred to the web version
of the article.)

the negative binomial parameters (� = p0 and � = ˛) are linked
to (ulceration, tumor thickness, and sex) and ulceration,

respectively. Stepwise model selection can be done with the
stepGAIC function.
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5. Hardware and software specifications

The example in Section 4 was developed in a PC workstation
under Microsoft Windows XP® and Ubuntu Linux operating
systems.

6. Mode of availability

Computational codes of the long-term survival models
and the example in Section 4 can be downloaded from
http://www.icmc.usp.br/∼mcastro/download.html.

The R system, the gamlss, gamlss.cens, boot, and
timereg packages, as well as information about the GAMLSS
framework are freely available from Internet servers around
the world. They are reachable at http://www.R-project.org and
http://www.gamlss.com.

7. Conclusion

Under the negative binomial distribution for the number of
competing causes, we present a unifying formulation of a
long-term survival model. The parameterization in terms of
the cured fraction distinguishes our paper from the usual pro-
posals (e.g. [3,19,5]). Whichever the model, particularized by ˛

in (9), covariates are related to the cure rate through the logistic
link in (8). This issue can be attractive to practitioners.

Our example illustrated the possibility of trying out differ-
ent models. Plots like the ones in Figs. 1 and 2 are a valuable
tool for the model comparison task. Moreover, the GAMLSS
framework is a powerful environment for the development of
models not covered in this paper.
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Appendix A.

Summary of the fitting of model m4 in Section 4:
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