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Abstract

For the first time, we formulate a flexible density function from the selection

mechanism viewpoint (see, for example, Bayarri & DeGroot (1992) and Arellano-

Valle et al. (2006)) which possesses nice biological and physical interpretations. The

new density function contains as special cases many models that have been proposed

recently in the literature. In our model, we assume that the number of competing

causes of the event of interest has a general discrete distribution characterized by its

probability generating function. This function has an important role in the selection

procedure as well as in computing the conditional personal cure rate. We illustrate

how various models can be deduced as special cases of the proposed model.
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1 Introduction

Recently, there has been a great interest among statisticians and applied researchers in

constructing flexible distributions to facilitate better modeling of data. Consequently, a

significant progress has been made toward the generalization of some well-known lifetime

distributions and their successful application to problems in areas such as engineering, en-

vironmetrics, economics and biomedical sciences. The purpose of this note is to formulate

a unified procedure with a biological and physical interpretation that includes as special

cases many of these lifetime distributions. For formulating this procedure, we choose

the selection approach discussed by Bayarri & DeGroot (1992) and Arellano-Valle et al.

(2006). This selection approach is useful for obtaining flexible distributions from the ori-

ginal model based on the occurrence of some related selection random variable. Moreover,

we introduce a new notion, called the conditional personal non-cure rate, for which we

give an interpretation in terms of selection or weight function. Another related measure

is the conditional personal cure rate which is of interest when, for example, successfully

treated cancer patients may die from a cause other than the diagnosed cancer.

The rest of the article is organized as follows. In Section 2, the unified model is de-

veloped from the selection mechanism viewpoint and the idea of the conditional personal

probability is introduced. In Section 3, many of the recently introduced lifetime distri-

butions are obtained as special cases from the proposed unified model, and some new

interpretations from a biological viewpoint are given to them. Section 4 deals with some

mathematical properties of the unified model. Two applications of some distributions,

discussed in Section 3, are given in Section 5. Finally, Section 6 offers some concluding

remarks.
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2 A unified selection distribution

Selection mechanisms arise when a random sample from the entire population might

be too difficult or too expensive to secure and so flexible models must be developed to

incorporate this constraint on the observations. We formulate the selection distributions

here within a biological context, where the population is restricted to patients not cured

from an event of interest such as disease or tumor. By biological context we mean that the

damaged cells are competing to produce detectable tumors. The time for the jth damaged

cell (clonogens) to transform into a detectable tumor (promotion time) is denoted by Xj,

j = 1, . . . , N , where N denotes the unobservable number of damaged cells that can

produce the event of interest. In the sequel, we suppose that N has its probability mass

function (pmf) given by

pn = P (N = n), n = 0, 1, . . . (1)

Let AN(s) =
∑∞

n=0 pn sn be the corresponding probability generating function (pgf) for

0 < s < 1, and p0 the cure rate. We assume that, conditional on N , that the Xj’s

are i.i.d. having density function g(x) and survival function S(x) = 1 − G(x). Usually,

exponential, piecewise exponential (Chen & Ibrahim, 2001) and Weibull distributions are

used to represent g(x).

Given N = n and the lifetime T = t, let Zj, j = 1, . . . , n, be independent random

variables, independently of N , following a Bernoulli distribution with success probability

G(t) indicating the presence of the jth competing cause (or clonogens) at time t. The

discrete variable Nt, representing the total number of competing causes among the N

initial competing causes that are present at time t, is then given by

Nt =





Z1 + Z2 + · · ·+ ZN , if N > 0,

0, if N = 0.
(2)

It follows from the fundamental formula for conditional probabilities that

P (Nt = j) =
∞∑

n=j

pn

Binomial(n,G(t))︷ ︸︸ ︷
P (Nt = j|N = n),

and its corresponding pgf (Feller, 1968) is

ANt(s) = AN [1− (1− s)G(t)]. (3)
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The long-term survival function (Rodrigues et al., 2008) can be obtained from (3) as

SPop(t) = P (T ≥ t)= P (Nt = 0) =ANt(0) = AN [S(t)], (4)

where AN(.) is the pgf of the discrete random variable N .

Motivated by the work of Arellano-Valle et al. (2006), we start with a definition of a

selection distribution and its association with the pgf ANt(s) and density function g(x) of

the promotion time random variable X. First, we assume that the population is divided

into two sub-populations of cured and non-cured patients defined by the following binary

random variable for any time t:

Ut =





1, if Nt ≥ 1,

0, if Nt = 0,
(5)

where P (Ut = 1) = 1− P (Nt = 0) = 1− p0.

Definition 2.1 (Selection distribution)

Let T be a non-negative lifetime random variable and X the promotion time with

probability density function (pdf) g(x). We define the selection distribution of T as the

conditional distribution of X given Ut = 1.

This definition simply states that the selection probability distribution of T is the proba-

bility distribution of X, truncated by non-cured patients. We show that this viewpoint

is quite useful to obtain new classes of flexible lifetime distributions and to unify many

models proposed recently in the literature.

Indeed, if X in Definition 2.1 has pdf g(x), then T has a pdf fT (t) given by

fT (t) =
g(t) P (Ut = 1 | X ≤ t)

P (Ut = 1)
=

g(t) P (Ut = 1 | X ≤ t)

1− p0

. (6)

In fact, (6) can be expressed as a weighted distribution (Bayarri & DeGroot, 1992)

fT (t) =
w(t) g(t)

E[w(X)]
, (7)

where the weight function w(t) is precisely

w(t) = P (Ut = 1 | X ≤ t), (8)

and E[w(X)] is the mean of w(X) with respect to g(t).
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Definition 2.2 The lifetime T is under the first-activation at time t if Nt = 1 or T =

min{X1, . . . , XN}.

Definition 2.3 The lifetime T is under the last-activation at time t if Nt = N or T =

max{X1, . . . , XN}.

The first-activation at time t means that the cancer patient died from a specific clonogen in

the presence of other clonogens and P (Nt = 1) is called the crude cumulative probability

or cumulative incidence function (CIF) (Yu et al., 2010). On the other hand, the last-

activation at time t means that all clonogens are activate at time t and P (Nt = N) is

the so-called net survival at time t (Yu et al., 2010) and it is a measure of survival if all

causes of death other than the cancer of interest were to be eliminated. As mentioned

by Yu et al. (2010), the net survival is a desirable measure for evaluating the progress of

cancer treatment and control efforts since the interpretation of excess mortality due to

cancer is not affected by changes in mortality due to other diseases.

Theorem 2.4 The crude cumulative distribution and the net survival at time t are given

by

P (Nt = 1) =
G(t) dAN(s)

ds

∣∣∣∣
s=S(t)

, (9)

P (Nt = N) = AN [G(t)],

respectively.

Proof. The crude cumulative distribution simply follows from (3) and the net survival is

obtained from the following result:

P (Nt = N) =
∞∑

n=0

pn P (Nt = n | N = n) =
∞∑

n=0

pn G(t)n.

¤

Definition 2.5 (Conditional personal non-cure rate under the first-activation) Let T be

the lifetime of some treated cancer patient under the first-activation process and X the

promotion time with pdf g(x). The conditional probability of the patient dying from the
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damaged or initiated cells (clonogens), given that X ≤ t, called the “conditional personal

non-cure rate”, is defined as

γnp(t) = P (Ut = 1 | X ≤ t). (10)

Indeed, we can show from (9) that

γnp(t) =
P (Nt = 1)

G(t)
=

dAN(s)

ds

∣∣∣∣
s=S(t)

, (11)

and from (6) the selection distribution of T is given by

fT (t) =
g(t)

1− p0

{
dAN(s)

ds

∣∣∣∣
s=S(t)

}
. (12)

The corresponding proportion of patients dying from causes other than the diagnosed

cancer γp = 1 − γnp, given that X ≤ t, is defined as the conditional personal cure rate.

This measure will be of natural interest since it corresponds to successfully treated cancer

patients who may not die from cancer during the time t. Analogously, the selection

distribution of T under the last-activation at time t is given by

fT (t) =
g(t)

1− p0

{
dAN(s)

ds

∣∣∣∣
s=G(t)

}
. (13)

We had not chosen any r-activation that is between the first-activation and last-activation,

since from Cooner et al. (2007), r | N ∼ DiscreteUnif(1, N) and P (N = 0) = 0 jointly

imply w(t) = 1, i.e., we do not select any distribution, or simply fT (y) = g(t).

Equations (12) and (13) are important since they show how the pgf works as a se-

lection mechanism and how it unifies in a simple way many of the distributions recently

proposed in the literature. It also enables the calculation of the personal cure rate, which

is a measure that is of interest in the treatment of cancer patients, for example. The

weight function w(t) in (8) is concerned with selected patients at risks, and this assists in

obtaining the conditional personal cure rate. These results are summarized in Table 1.

3 Some special models

In this section, we demonstrate how many existing models can be deduced as special

cases of the proposed unified model. In addition, this viewpoint also results in a biological

interpretation for these cases.
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Table 1: Selection mechanisms and personal cure rates.

Selection distribution First-activation Last-activation

fT (t)
g(t)
1−p0

{
dAN (s)

ds

∣∣
s=S(t)

}
g(t)
1−p0

{
dAN (s)

ds

∣∣
s=G(t)

}

ST (t)
AN [S(t)]−p0

1−p0

1−AN [G(t)]
1−p0

hT (t)
g(t)

{
dAN (s)

ds

∣∣
s=S(t)

}

AN [S(t)]−p0

g(t)

{
dAN (s)

ds

∣∣
s=G(t)

}

1−AN [G(t)]

γp(t) 1− dAN (s)
ds

∣∣
s=S(t)

1− dAN (s)
ds

∣∣
s=G(t)

• Generalized exponential Poisson (GEP) distribution

Barreto-Souza & Cribari-Neto (2009) introduced the GEP distribution with two

parameters α and λ and they showed that it has a desirable physical interpretation.

That is, if there are n components in a parallel system and the lifetimes of the

components are independently and identically distributed as exponential Poisson

(EP) (Kuş, 2007), then the system lifetime follows the GEP law. Here, we give a

different characterization for the GEP distribution from our unified model. Consider

a sequence of independent Bernoulli trials, where the kth trial has probability of

success α/k, for k = 1, 2, . . ., 0 < α < 1. The trial number X for which the

first success occurs follows the so-called Sibuya distribution with parameter α, say

Sibuya(α) (Christoph & Schreiber, 2000; Devroye, 1993), given by P (X = r) =

(−1)r−1α(α− 1) . . . (α− r + 1)/r!. The pgf of X (Pillai & Jayakumar, 1995) is

AX(s) = 1− (1− s)α. (14)

Now, define M ∼ Sibuya(α) and Xi ∼ P(λ), and

N =





X1 + . . . + XM : if M > 1

0 : if M = 0.

Then, we have

AN(s) = 1− [1− exp{−λ(1− s)}]α. (15)

From the first-activation mechanism in equation (15) by taking S(x) = exp(−βx),

we obtain the GEP distribution

fT (t; θ) =
αλβ

(1− e−λ)α
{1− e−λ+λ exp(−βt)}α−1e−λ−βt+λ exp(−βt), (16)
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where θ = (α, β, λ). Further, if α = 1, we have the EP distribution (Kuş, 2007).

Various properties and inferential methods for this two-parameter distribution with

decreasing failure rate are discussed by Kuş (2007).

• Classical Lehmann alternative distributions

There has been several attempts at modeling failure time data by the the clas-

sical Lehmann type I and II alternatives given by FT (t) = G(t)α and FT (t) =

1 − [1 − G(t)]α, respectively, where G(t) is the parent cumulative function and α

is a positive real number. Recently, the first form has also been refereed to as the

exponentiated-G (Exp-G) distributions. Some examples, discussed by Nadarajah &

Kotz (2006), are the exponentiated exponential (EE), exponentiated gamma, expo-

nentiated Weibull, exponentiated Gumbel and exponentiated Fréchet distributions,

which extend the exponential, gamma, Weibull, Gumbel and Fréchet distributions,

respectively. The advantage of this approach lies in its flexibility to model both

monotonic as well as non-monotonic failure rates even though the baseline failure

rate may be monotonic. Lehmann type I and II models are easily obtained from

the Sibuya generating function (14) under the first-activation and last-activation

mechanisms in Table 1 by setting p0 = 0.

We give a simple example. Assuming S(x) = e−βx, from (14), we obtain, under the

first-activation mechanism in Table 1, the EE (also called generalized exponential)

distribution (Gupta & Kundu, 1999). Its density function is

fT (t, θ) = α β e−βt (1− e−βt)α−1, (17)

where θ = (α, β). The EE cumulative function has closed-form and so its inference

based on censored data can be handled more easily than with the gamma distribution

(Gupta & Kundu, 1999). Here, we provide a nice biological interpretation for it

through the first-activation selection.

• The Weibull-geometric (WG) distribution

Barreto-Souza et al. (2010) proposed the WG distribution (with decreasing fai-

lure rate), which generalizes the exponential geometric (EG) distribution due to
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Adamidis & Loukas (1998). Taking the pgf as A(s) = 1−p
1−ps

, corresponding to a

geometric distribution with parameter p, and the cumulative Weibull distribution

S(t) = exp{−(βt)α}, we obtain, under first-activation mechanism in Table 1, the

WG density function

fT (t, θ) = αβα(1− p)tα−1 exp{−(βt)α}[1− p exp{−(βt)α}]−2,

where θ = (α, β).

• Exponential Conway-Maxwell Poisson (ECOMP) distribution

The Conway-Maxwell Poisson distribution (COM-Poisson), first introduced by Con-

way & Maxwell (1961), was revived recently by Shmueli et al. (2005). The COM-

Poisson distribution generalizes the Poisson distribution in an elegant and flexible

way, allowing for under-dispersion as well as over-dispersion. This distribution was

also discussed by Kadane et al. (2006) from a Bayesian viewpoint and an elici-

tation program to find the hyper-parameters from the predictive distribution was

discussed there as well; see also Kokonendji et al. (2008) for more details on the

COM-Poisson distribution. This distribution can be expressed in the exponential

form and can then be viewed as a weighted Poisson distribution with weight func-

tion w(m; φ) = (m!)1−φ (Kokonendji et al., 2008; Rodrigues et al., 2009). The pmf

of the COM-Poisson distribution for a discrete variable M is given by

P (M = m; η, φ) =
1

Z(η, φ)

ηm

(m!)φ
, m = 0, 1, 2, . . . , (18)

where Z(η, φ) =
∑∞

j=0
ηj

(j!)φ . Therefore, the cure fraction turns out to be

p0 = P (M = 0; η, φ) =
1

Z(η, φ)
. (19)

The corresponding pgf is

A(s) =
Z(ηs, φ)

Z(η, φ)
. (20)

Now, by applying the first-activation mechanism, we obtain the ECOMP distribu-

tion (Cordeiro et al., 2010a) with pdf

fT (t; θ) =
β

Z(λ, φ)− 1

∞∑
j=1

jλj

(j!)φ
exp(−jβt), y > 0, (21)

where θ = (β, λ, φ)T .
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• The exponentiated Weibull (EW) distribution

The EW distribution (Nassar & Eissa, 2004) is an extension of the well-known

Weibull distribution. The EW family contains distributions with non-monotone

failure rates in addition to a broad class of monotone failure rates. Practically, many

lifetimes in practical situations have bathtub shape or upside-down bathtub shape

failure rates and so the EW distribution provides a more realistic model than those

with monotone failure rates. Taking the Weibull survival function S(x) = exp(−xβ)

with scalar parameter equal to one and shape parameter β, we obtain from (14),

for 0 < α ≤ 1 and under the first-activation mechanism in Table 1, the EW density

function given by

fT (t; θ) = α β tβ−1 exp(−tβ) {1− exp(−tβ)}α−1, (22)

where θ = (α, β). For this restricted parameter space, the selection mechanism

gives a new biological interpretation for the EW distribution.

• The Kumaraswamy G family of distributions

Consider starting from a parent continuous distribution function G(t). A natural

way of generating families of distributions on some other support is to apply the

quantile function to a family of distributions on the interval (0, 1). Based on the

Kumaraswamy’s distribution on this interval, Cordeiro & de Castro (2010) defined

the Kumaraswamy G (Kw-G) family of distributions by

FT (t) = 1− {1−G(t)a}b, (23)

where a > 0 and b > 0 are two additional parameters to control skewness through the

relative tail weights. They presented some examples of (23) such as the Kw-normal,

Kw-gamma, Kw-Weibull, Kw-Gumbel and Kw-inverse Gaussian distributions. Be-

cause of its tractable distribution function (23), the Kw-G family of distributions

can be used quite effectively even if the data are censored. Equation (23) is easily

obtained (for b < 1) from the Sibuya(b) pgf (14), under the last-activation mecha-

nism in Table 1, by considering the Exp-G(a) distribution as the parent distribution

and p0 = 0. In a different way, the Kw-G distribution can be derived by two mecha-

nisms applied in sequence, which hold only for a < 1 and b < 1: the Sibuya(a) pgf
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under the first-activation mechanism applied to G(t) gives H(t) = G(t)a and then

the Sibuya(b) pgf under the last-activation mechanism applied to H(t) yields (23),

both cases with p0 = 0. We have

G → Sibuya+first mechanism → Exp-G(a) → Sibuya+last mechanism → Kw-G.

• The Kumaraswamy Weibull (KwW) distribution

Cordeiro et al. (2010b) introduced the KwW distribution that contains as special

sub-models the exponentiated Weibull, exponentiated Rayleigh, exponentiated ex-

ponential, Kumaraswamy exponential (KwE) and Weibull distributions. Taking

G(x) = [1− exp{−(λx)c}]a, from (15) under the last-activation mechanism in Table

1, it follows the KwW density function (for t > 0)

fT (t; θ) = a b c λc tc−1 exp{−(λt)c} [1− exp{−(λt)c}]a−1{1− [1− exp{−(λt)c]a}b−1,

(24)

where θ = (a, b, c, λ) and 0 < b < 1.

In view of the selection mechanism considered here, we have a new biological in-

terpretation for the KwW distribution, which is quite different from the physical

interpretation given by Cordeiro et al. (2010b).

• A generalized modified Weibull (GMW) distribution

Carrasco et al. (2008) proposed a four parameter generalization of the Weibull dis-

tribution, which is capable of modeling a bathtub shaped hazard rate function. This

distribution has a number of well-known lifetime distributions as special cases in-

cluding Weibull, extreme value, exponentiated Weibull, generalized Rayleigh and

modified Weibull distributions. Now, by taking S(x) = exp{−αyγ exp(λy)}, from

(14) and under the first-activation mechanism in Table 1, we obtain the generalized

modified Weibull density function

fT (t; θ) = αβtγ−1(γ + λt) exp{λt− αytγ exp(λt)}[1− exp{−αtγ exp(λt)]β−1, (25)

where θ = (α, β, γ, λ) and 0 < β < 1. The selection mechanism then provides

a new biological interpretation for the GMW distribution from the first-activation

viewpoint.
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• The exponential power series (EPS) distribution

Chahkandi & Ganjali (2009) introduced a new lifetime family of distributions (with

decreasing failure rate) by combining a truncated at zero power series with some

exponential distributions. Consequently, we consider S(t) = exp(−βt) and the

power series mass function

pn(α) = P (N = n; α) =
an αn

A(α)
, n = 0, 1, . . . , (26)

where an > 0, A(α) =
∑

n an αn and α > 0. The family (26) of distributions

includes as special cases the binomial, Poisson, negative binomial and logarithmic

distributions, among others. The corresponding pgf is AN(s; α) = A(αs)
A(α)

and p0 =

a0

A(α)
. Under the first-activation mechanism given in Table 1, we obtain the density

function

fT (t; θ) =
αβ exp(−βt)dAN (s;α)

ds
|s=exp(−βt)

A(α)− a0

, (27)

where θ = (α, β). Estimation of these parameters by maximum likelihood procedure

and its related EM algorithm can be found in Chahkandi & Ganjali (2009).

• Beta generalized (BG) distribution

Given a parent distribution G(t; θ) with parameter vector θ and density function

g(t; θ), the BG distribution may be characterized by the density function

fBG(t; θ, a, b) = B(a, b)−1 g(t; θ) G(t; θ)a−1 [1−G(t; θ)]b−1, (28)

where B(a, b) = Γ(a)Γ(b)/Γ(a + b) denotes the beta function, Γ(·) the gamma func-

tion and a > 0 and b > 0 are additional shape parameters to those in τ . If T is a

random variable with pdf (28), we write T ∼ BG(G; θ, a, b). The density function

fBG(t; θ, a, b) will be most tractable when both functions G(t; θ) and g(t; θ) have

simple analytic expressions. Except for some special choices of these functions,

fBG(t; θ, a, b) could be complicated to deal with in full generality. Some BG dis-

tributions were discussed in recent literature. For example, Eugene et al. (2002),

Nadarajah & Kotz (2004) and Nadarajah & Gupta (2004) defined the beta normal,

beta Gumbel and beta Fréchet distributions by taking G(t) to be the cdf of the

normal, Gumbel and Fréchet distributions, respectively, and studied some of their
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properties. More than twenty BG distributions have been developed by several au-

thors from 2002 to now. It should be emphasized that for a and b positive integers,

(28) reduces to the density function of the ath order statistic from the G distribution

in a sample of size a+ b− 1. Here, we provide a simple interpretation when b is real

less than one and a is any positive real.

The random variable T admits the simple stochastic representation T = G−1(V ),

where V follows a beta distribution with parameters a and b. Using this transfor-

mation, the cdf corresponding to (28) can be expressed as

FBG(t; θ, a, b) = IG(t;θ)(a, b) = B(a, b)−1

∫ G(t;θ)

0

ωa−1 (1− ω)b−1dω, (29)

where Ix(a, b) denotes the incomplete beta ratio function.

For 0 < s ≤ 1, the well-known power series expansion for the incomplete beta ratio

function holds

Is(a, b) =
∞∑

n=0

dn sa+n,

whose coefficients dn are positive for b < 1. They are given by

dn =
Γ(1− b + n)

(a + n) n! Γ(1− b) B(a, b)
.

Clearly,
∑∞

n=0 dn = 1 since I1(a, b) = 1. From the above expansion, let a discrete

random variable M be defined by the probabilities dn for n = 0, 1, . . . The generating

function of M is given by AM(s) =
∑∞

n=0 dn sn. We define the constant random

variable K such that P (K = a) = 1 and the random variable N = K + M , where

K and M are assumed independent. Exploring the combination of the pgf of N

with the last-activation mechanism in Table 1 yields the BG distribution by setting

p0 = 0, i.e., AN(G(t)) = AK(G(t)) AM(G(t)) =
∑∞

n=0 dn G(t)a+n = FBG(t; θ, a, b).

4 Some Properties

For an arbitrary baseline cdf G(t) and a discrete random variable N defined by the

pgf AN(s), the unified cumulative distribution of T under the first-activation and last-
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activation mechanisms can be expressed from Table 1 by

FT (t) =
1− AN [1−G(t)]

1− p0

and FT (t) =
AN [G(t)]− p0

1− p0

,

respectively. From now on, a random variable Za is said to have the exponentiated-G

distribution with parameter a > 0, say Za ∼Exp-G(a), if its pdf and cdf are given by

ha(x) = a g(x) Ga−1(x) and Ha(x) = Ga(x),

respectively. Here, we demonstrate that fT (t) can be written as a mixture of exponentiated-

G densities under the last-activation mechanism and a linear combination of exponentiated-

G densities under the first-activation mechanism. In both cases, the weighted coefficients

depend only on the probabilities of N . Under the last-activation mechanism, we have

FT (t) =
AN [G(t)]− p0

1− p0

=
∞∑

r=1

pr

1− p0

G(t)r

and then

fT (t) =
∞∑

r=0

vr hr(t), (30)

where v0 = 0 and vr = r pr/(1− p0) for r = 1, 2, . . .

By expanding the binomial in the first-activation mechanism, we obtain

FT (t) =
1− AN [1−G(t)]

1− p0

=
1

1− p0

−
∞∑
i=0

i∑
r=0

(−1)r
(

i
r

)
pi

1− p0

G(t)r.

By substituting
∑∞

i=0

∑i
r=0 by

∑∞
r=0

∑∞
i=r, we can write

FT (t) =
∞∑

r=1

qr G(t)r,

where qr =
∑∞

i=r

(−1)r+1 (i
r) pi

1−p0
for r = 1, 2, . . . Hence,

fT (t) =
∞∑

r=0

wr hr(t), (31)

where wr = (r + 1)qr+1 for r = 0, 1, . . . Equation (31) has the same form of (30) but with

different weighted coefficients.

14



So, some mathematical quantities (such as ordinary and incomplete moments, gene-

rating function, mean deviations) of the unified distribution of T in both mechanisms

can be obtained by knowing those quantities of the exponentiated-G distribution. The

mathematical properties of the exponentiated distributions have been studied by many

authors in recent years (Nadarajah & Kotz, 2006). Now, we obtain the moments and

generating function of T from (31) since they are similar from (30). The sth moment of

T is given by

E(T s) =
∞∑

r=0

wr E(Zs
r ),

where Zr ∼Exp-G(r). The moments of Zr can be derived from the quantile function of

G, say Q(u) = G−1(u), as E(Zs
r ) = r

∫ 1

0
Q(u)s ur−1du. The generating function of T can

be expressed as

MT (w) =
∞∑

r=0

wr MZr(w),

where MZr(w) = r
∫ 1

0
exp{w Q(u)}ur−1du is the generating function of Zr.

5 Examples

In this section, we work out two examples. The first data set was presented by

Proschan (1963) which consists of the interval in hours between successive failures of

the air conditioning system in a fleet of Boeing 720 airplanes. The data set contains

213 observations and was also analyzed by Adamidis & Loukas (1998), Kuş (2007) and

Chahkandi & Ganjali (2009), among others. The second data set, presented by Cox &

Lewis (1966) and employed by Adamidis & Loukas (1998), comprises 109 observations

on the number of days between successive coal-mining disasters. The computations were

performed in R language (R Development Core Team, 2011). Computational code is

available from the first author on request.

Table 2 lists the parameter estimates and the results of the formal goodness-of-fit tests.

We apply the modified Cramér-von Mises (W ∗) and Anderson-Darling (A∗) statistics

proposed by Chen & Balakrishnan (1995). In general, the smaller the values of these

15



Table 2: Parameter estimates and goodness of fit statistics for the fitted distributions

(ordered according to A∗).

Data set Distribution Estimates W ∗ A∗

Boeing data ECOMP (7.37× 10−3, 1.37, 0.983) 0.068 0.449

(n = 213) EG (7.99× 10−3, 0.429) 0.074 0.484

EP (7.49× 10−3, 1.34) 0.070 0.461

Exponential 1.07× 10−2 0.165 1.018

Disasters data ECOMP (1.55× 10−3, 3.90, 1.08) 0.067 0.432

(n = 109) EP (1.65× 10−3, 3.26) 0.068 0.439

EG (2.36× 10−3, 0.619) 0.068 0.480

Exponential 4.15× 10−3 0.070 0.658

statistics, the better the fit to the data. For both data sets, Table 2 lists the values of

W ∗ and A∗, which indicate that the ECOMP, EG and EP distributions yield similar fits

to these data. The fitted survival functions of these distributions superimposed to the

empirical survival function in Figure 1 and reinforce this claim. For the GEP distribution,

the estimates of the parameter α in both examples are close to one, supporting the EP

distribution.

6 Concluding Remarks

In this note, we have used the selection mechanism proposed by Arellano-Valle et al.

(2006) to formulate a very flexible distribution, where some structural properties are pre-

sented in details. This unified distribution contains many of the recently proposed lifetime

models as special cases and also facilitates in giving a biological interpretation for them.

Also, the idea of personal probability presented gives an important interpretation for the

weight function, which we feel will be of interest in survival analysis. However, much more

research needs to be carried out to investigate unexplored aspects of this mechanism, es-

pecially in inference problems. We hope to motivate many important applications of this
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Figure 1: Empirical survival function and some fitted distributions. (a) Boeing data. (b)

Coal-mining disasters data.
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selection lifetime distribution in the future.
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