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Abstract

The β-Birnbaum–Saunders (Cordeiro and Lemonte, 2011) and Birnbaum–Saunders (Birnbaum
and Saunders, 1969a) distributions have been used quite effectively to model failure times for ma-
terials subject to fatigue and lifetime data. We define the log-β-Birnbaum–Saunders distribution
by the logarithm of the β-Birnbaum–Saunders distribution. Explicit expressions for its generating
function and moments are derived. We propose a new log-β-Birnbaum–Saunders regression model
that can be applied to censored data and be used more effectively in survival analysis. We ob-
tain the maximum likelihood estimates of the model parameters for censored data and investigate
influence diagnostics. The new location-scale regression model is modified for the possibility that
long-term survivors may be presented in the data. Its usefulness is illustrated by means of two real
data sets.

Keywords: Birnbaum–Saunders distribution; Censored data; Cure fraction; Generating function;
Lifetime data; Maximum likelihood estimation; Regression model.

1 Introduction

The fatigue is a structural damage that occurs when a material is exposed to stress and tension
fluctuations. Statistical models allow to study the random variation of the failure time associated to
materials exposed to fatigue as a result of different cyclical patterns and strengths. The most popular
model for describing the lifetime process under fatigue is the Birnbaum–Saunders (BS) distribution
(Birnbaum and Saunders, 1969a,b). The crack growth caused by vibrations in commercial aircrafts
motivated these authors to develop this new family of two-parameter distributions for modeling the
failure time due to fatigue under cyclic loading. Relaxing some assumptions made by Birnbaum and
Saunders (1969a), Desmond (1985) presented a more general derivation of the BS distribution under
a biological framework. The relationship between the BS and inverse Gaussian distributions was
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explored by Desmond (1986) who demonstrated that the BS distribution is an equal-weight mixture
of an inverse Gaussian distribution and its complementary reciprocal. The two-parameter BS model
is also known as the fatigue life distribution. It is an attractive alternative distribution to the Weibull,
gamma and log-normal models, since its derivation considers the basic characteristics of the fatigue
process. Furthermore, it has the appealing feature of providing satisfactory tail fitting due to the
physical justification that originated it, whereas the Weibull, gamma and log-normal models typically
provide a satisfactory fit in the middle portion of the data, but oftentimes fail to deliver a good fit at
the tails, where only a few observations are generally available.

In many medical problems, for example, the lifetimes are affected by explanatory variables such
as the cholesterol level, blood pressure, weight and many others. Parametric models to estimate
univariate survival functions for censored data regression problems are widely used. Different forms
of regression models have been proposed in survival analysis. Among them, the location-scale re-
gression model (Lawless, 2003) is distinguished since it is frequently used in clinical trials. Recently,
the location-scale regression model has been applied in several research areas such as engineering,
hydrology and survival analysis. Lawless (2003) also discussed the generalized log-gamma regression
model for censored data. Xie and Wei (2007) developed the censored generalized Poisson regres-
sion models, Barros et al. (2008) proposed a new class of lifetime regression models when the errors
have the generalized BS distribution, Carrasco et al. (2008) introduced a modified Weibull regression
model, Silva et al. (2008) studied a location-scale regression model using the Burr XII distribution and
Silva et al. (2009) worked with a location-scale regression model suitable for fitting censored survival
times with bathtub-shaped hazard rates. Ortega et al. (2009a,b) proposed a modified generalized
log-gamma regression model to allow the possibility that long-term survivors may be presented in the
data, Hashimoto et al. (2010) developed the log-exponentiated Weibull regression model for interval-
censored data and Silva et al. (2010) discussed a regression model considering the Weibull extended
distribution.

For the first time, we define a location-scale regression model for censored observations, based on
the β-Birnbaum–Saunders (βBS for short) introduced by Cordeiro and Lemonte (2011), referred to
as the log-βBS (LβBS) regression model. The proposed regression model is much more flexible than
the log-BS regression model proposed by Rieck and Nedelman (1991). Further, some useful properties
of the proposed model to study asymptotic inference are investigated. For some recent references
about the log-BS linear regression model the reader is refereed to Lemonte et al. (2010), Lemonte and
Ferrari (2011a,b,c), Lemonte (2011) and references therein. A log-BS nonlinear regression model was
proposed by Lemonte and Cordeiro (2009); see also Lemonte and Cordeiro (2010) and Lemonte and
Patriota (2011).

Another issue tackled is when in a sample of censored survival times, the presence of an immune
proportion of individuals who are not subject to death, failure or relapse may be indicated by a
relatively high number of individuals with large censored survival times. In this note, the log-βBS
model is modified for the possible presence of long-term survivors in the data. The models attempt to
estimate the effects of covariates on the acceleration/deceleration of the timing of a given event and
the surviving fraction, that is, the proportion of the population for which the event never occurs. The
logistic function is used to define the regression model for the surviving fraction.
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The article is organized as follows. In Section 2, we define the LβBS distribution. In Section 3, we
provide expansions for its moment generating function (mgf) and moments. In Section 4, we propose
a LβBS regression model and estimate the model parameters by maximum likelihood. We derive the
observed information matrix. Local influence is discussed in Section 5. In Section 6, we propose a
LβBS mixture model for survival data with long-term survivors. In Section 7, we show the flexibility,
practical relevance and applicability of our regression model by means of two real data sets. Section
8 ends with some concluding remarks.

2 The LβBS Distribution

The BS distribution is a very popular model that has been extensively used over the past decades for
modeling failure times of fatiguing materials and lifetime data in reliability, engineering and biological
studies. Birnbaum and Saunders (1969a,b) define a random variable T having a BS distribution with
shape parameter α > 0 and scale parameter β > 0, T ∼ BS(α, β) say, by T = β[αZ/2 + {(αZ/2)2 +
1}1/2]2, where Z is a standard normal random variable. Its cumulative distribution function (cdf)
is defined by G(t) = Φ(v), for t > 0, where v = α−1ρ(t/β), ρ(z) = z1/2 − z−1/2 and Φ(·) is the
standard normal distribution function. Since G(β) = Φ(0) = 1/2, the parameter β is the median of
the distribution. For any k > 0, k T ∼BS (α, kβ). The probability density function (pdf) of T is then
g(t) = κ(α, β) t−3/2 (t + β) exp{−τ(t/β)/(2α2)}, for t > 0, where κ(α, β) = exp(α−2)/(2α

√
2πβ) and

τ(z) = z + z−1. The fractional moments of T are E(T p) = βp I(p, α), where

I(p, α) =
Kp+1/2(α−2) + Kp−1/2(α−2)

2K1/2(α−2)
(1)

and the function Kν(z) denotes the modified Bessel function of the third kind with ν representing its
order and z the argument (see Watson, 1995). Kundu et al. (2008) studied the shape of its hazard
function. Results on improved statistical inference for this model are discussed by Wu and Wong
(2004) and Lemonte et al. (2007, 2008). Dı́az–Garćıa and Leiva (2005) proposed a new family of
generalized BS distributions based on contoured elliptical distributions, whereas Guiraud et al. (2009)
introduced a non-central version of the BS distribution.

The βBS distribution (Cordeiro and Lemonte, 2011), with four parameters α > 0, β > 0, a > 0
and b > 0, extends the BS distribution and provides more flexibility to fit various types of lifetime
data. Its cdf is given by F (t) = IΦ(v)(a, b), where B(a, b) = Γ(a)Γ(b)/Γ(a + b) is the beta function,
Γ(·) is the gamma function, Iy(a, b) = By(a, b)/B(a, b) is the incomplete beta function ratio and
By(a, b) =

∫ y
0 ωa−1 (1 − ω)b−1dω is the incomplete beta function. The density function of T has the

form (for t > 0)

fT (t) =
κ(α, β)
B(a, b)

t−3/2 (t + β) exp
{−τ(t/β)/(2α2)

}
Φ(v)a−1 {1− Φ(v)}b−1. (2)

The βBS distribution contains, as special sub-models, the exponentiated BS (EBS), Lehmann type-II
BS (LeBS) and BS distributions when b = 1, a = 1 and a = b = 1, respectively. If T is a random
variable with density function (2), we write T ∼ βBS(α, β, a, b). The βBS distribution is easily
simulated as follows: if V has a beta distribution with parameters a and b, then β{αΦ−1(V )/2 +
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[1 + α2Φ(−1)(V )2/4]1/2}2 has the βBS(α, β, a, b) distribution. For some structural properties of this
distribution, the reader is referred to Cordeiro and Lemonte (2011).

Let T be a random variable having the βBS density function (2). The random variable W = log(T )
has a LβBS distribution. After some algebra, the density function of W , parameterized in terms of
µ = log(β), can be expressed as fW (w) = ξ01 exp(−ξ2

02/2)Φ(ξ02)a−1 [1 − Φ(ξ02)]b−1/{2√2π B(a, b)},
w ∈ R, where ξ01 = 2α−1 cosh((w − µ)/2) and ξ02 = 2α−1 sinh((w − µ)/2). The parameter µ ∈ R is a
location parameter and a, b and α are positive shape parameters. The standardized random variable
Z = (W − µ)/2 has density function πZ(z) = 2fW (2z + µ) given by

πZ(z) =
2 cosh(z)√
2π B(a, b) α

exp
{
− 2

α2
sinh2(z)

}
Φ

(
2
α

sinh(z)
)a−1 [

1− Φ
(

2
α

sinh(z)
)]b−1

, (3)

where −∞ < z < ∞. Let Y = µ + σZ, whose density function takes the form

fY (y) =
ξ1 exp(−ξ2

2/2)Φ(ξ2)a−1 [1− Φ(ξ2)]b−1

√
2π σ B(a, b)

, y ∈ R, (4)

where
ξ1 =

2
α

cosh
(

y − µ

σ

)
and ξ2 =

2
α

sinh
(

y − µ

σ

)
.

Here, σ > 0 acts as a scale parameter. The cdf, survival function and hazard rate function corres-
ponding to (4) (for y ∈ R) are F (y) = IΦ(ξ2)(a, b),

S(y) = 1− IΦ(ξ2)(a, b) (5)

and r(y) = ξ1 exp(−ξ2
2/2)Φ(ξ2)a−1[1 − Φ(ξ2)]b−1/{√2π σ B(a, b) [1 − IΦ(ξ2)(a, b)]}, respectively. If Y

is a random variable having density function (4), we write Y ∼ LβBS(a, b, α, µ, σ). Thus, if T ∼
βBS(a, b, α, β), then Y = µ+σ[log(T )−µ]/2 ∼ LβBS(a, b, α, µ, σ). The special case b = 1 corresponds
to the log-EBS (LEBS) distribution, whereas a = 1 gives the log-LeBS (LLeBS) distribution. The basic
exemplar is the log-BS (LBS) distribution (Rieck and Nedelman, 1991) when σ = 2 and a = b = 1.

Plots of the density function (4) for selected parameter values are given in Figure 1. These plots
show great flexibility of the new distribution for different values of the shape parameters a, b and α.
So, the density function (4) allows for great flexibility and hence it can be very useful in many more
practical situations. In fact, it can be symmetric, asymmetric and it can also exhibit bi-modality.
The new model is easily simulated as follows: if V is a beta random variable with parameters a and
b, then Y = µ + σ arcsinh(α Φ−1(V )/2) has the LβBS(a, b, α, µ, σ) distribution. This expression can
be rewritten in the form Y = µ + σ log

(
αΦ−1(V )/2 + [1 + α2Φ−1(V )2/4]1/2

)
. This scheme is useful

because of the existence of fast generators for beta random variables and the standard normal quantile
function is available in most statistical packages.

3 Generating Function and Moments

We shall obtain the mgf of the standardized LβBS random variable Z = (W −µ)/2, MZ(s) say, having
density function (3). We have the theorem.
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Figure 1: Plots of the density function (4) for some parameter values: µ = 0 and σ = 1.
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Theorem. If Z ∼ LβBS(a, b, α), then the mgf of Z is given by

MZ(s) =
∞∑

i,r=0

pi,r Nr(s, α),

whose coefficients are

pi,r = pi,r(a, b, α) =
(−1)i 2

(
b−1

i

)
sr(i + a− 1)√

2π α B(a, b)

and

Nr(s, α) = exp(α−2)
∞∑

m=0

em,r

2m+2

2m+1∑

j=0

(−1)j

(
2m + 1

j

) [
K−(m+1−j+s/2)(1/α2) + K−(m−j+s/2)(1/α2)

]
.

Proof. See Appendix A.

We now derive an expansion for the rth moment of Y . First, the ith moments of T for a real is
(Cordeiro and Lemonte, 2011)

µ′i = E(T i) =
1

B(a, b)

∞∑

r=0

(r + 1) tr+1 τi,r. (6)

Here, tr =
∑∞

m=0(−1)m
(
b−1
m

)
(a + m)−1 sr(a + m) and

τi,r =
βi

2r

r∑

j=0

(
r

j

) ∞∑

k1,...,kj=0

A(k1, ..., kj)
2sj+j∑

m=0

(−1)m

(
2sj + j

m

)
I
(
i + (2sj + j − 2m)/2, α

)
,

where sj = k1 + · · · + kj , A(k1, . . . , kj) = α−2sj−j ak1 · · · akj , ak = (−1)k 2(1−2k)/2 {√π (2k + 1) k!}−1

and I(i + (2sj + j − 2m)/2, α) can be computed from (1) in terms of the modified Bessel function of
the third kind.

From a Taylor series expansion of H(T ) = [log(T )]r around µ′1, we can write

E(W r) = [log(µ′1)]
r +

∞∑

i=2

H(i)(µ′1) µi

i!
,

where H(µ′1) = [log(µ′1)]
r, H(i)(µ′1) = ∂i H(µ′1)/∂ µ′i1 and µi =

∑i
k=0 (−1)k

(
i
k

)
µ′ ki µ′ ki−k is the ith

central moment of T determined from (6). The ordinary moments of Y are easily obtained from the
moments of W by E(Y r) =

∑r
i,j=0(−1)r−i2−jµ2r−i−jσj

(
r
i

)(
r
j

)
E(W i).

The skewness and kurtosis measures can be calculated from the ordinary moments using well-
known relationships. Plots of the skewness and kurtosis of Y for selected values of b as function of a,
and for selected values of a as function of b, holding µ = −1.1, σ = 1.5 and α = 5 fixed, are shown in
Figures 2 and 3, respectively. These plots immediately reveal that the skewness and kurtosis curves,
respectively, as functions of a (b fixed) first decrease and then increase, whereas as functions of b (a
fixed), the skewness curve decreases and the kurtosis curve first decreases and then increases, holding
the other parameters fixed. Note that both skewness and kurtosis can be quite pronounced.
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Figure 2: Skewness and kurtosis of Y in (4) as a function of a for some values of b.
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Figure 3: Skewness and kurtosis of Y in (4) as a function of b for some values of a.

4 The LβBS Regression Model

In many practical applications, the lifetimes are affected by explanatory variables such as the choles-
terol level, blood pressure and many others. Parametric models to estimate univariate survival func-
tions and for censored data regression problems are widely used. A parametric model that provides
a good fit to lifetime data tends to yield more precise estimates for the quantities of interest. Based
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on the LβBS distribution, we propose a linear location-scale regression model or log-linear regression
model in the form

yi = µi + σzi, i = 1, . . . , n, (7)

where yi follows the density function (4), µi = x>i β is the location of yi, xi = (xi1, . . . , xip)> is a
vector of known explanatory variables associated with yi and β = (β1, . . . , βp)> is a p-vector (p < n)
of unknown regression parameters. The location parameter vector µ = (µ1, . . . , µn)> of the LβBS
model has a linear structure µ = Xβ, where X = (x1, . . . ,xn)> is a known model matrix of full rank,
i.e. rank(X) = p. The regression model (7) opens new possibilities for fitting many different types of
data. It is referred to as the LβBS regression model for censored data, which is an extension of an
accelerated failure time model based on the BS distribution for censored data. If σ = 2 and a = 1 in
addition to b = 1, it coincides with the log-BS regression model for censored data (Leiva et al., 2007).

Let (y1,x1), . . . , (yn, xn) be a sample of n independent observations, where the response variable
yi corresponds to the observed log-lifetime or log-censoring time for the ith individual. We consider
non-informative censoring and that the observed lifetimes and censoring times are independent. Let
D and C be the sets of individuals for which yi is the log-lifetime or log-censoring, respectively. The
log-likelihood function for the vector of parameters θ = (a, b, α, σ,β>)> from model (7) takes the form
`(θ) =

∑
i∈D `i(θ) +

∑
i∈C `

(c)
i (θ), where `i(θ) = log[f(yi)], `

(c)
i (θ) = log[S(yi)], f(yi) is the density

function (4) and S(yi) is the survival function (5). The total log-likelihood function for the model
parameters θ = (a, b, α, σ,β>)> can be expressed as

`(θ) = q log
[

(2π)−1/2

B(a, b)σ

]
+

∑

i∈D

log(ξi1)− 1
2

∑

i∈D

ξ2
i2 + (a− 1)

∑

i∈D

log
[
Φ(ξi2)

]

+ (b− 1)
∑

i∈D

log
[
1− Φ(ξi2)

]
+

∑

i∈C

log
[
1− IΦ(ξi2)(a, b)

]
,

where q is the observed number of failures and

ξi1 = ξi1(θ) =
2
α

cosh
(

yi − µi

σ

)
, ξi2 = ξi2(θ) =

2
α

sinh
(

yi − µi

σ

)
,

for i = 1, . . . , n. The score functions for the parameters a, b, α, σ and β are given by

Ua(θ) = q[ψ(a + b)− ψ(a)] +
∑

i∈D

log[Φ(ξi2)]−
∑

i∈C

[İΦ(ξi2)(a, b)]a
1− IΦ(ξi2)(a, b)

,

Ub(θ) = q[ψ(a + b)− ψ(b)] +
∑

i∈D

log[1− Φ(ξi2)]−
∑

i∈C

[İΦ(ξi2)(a, b)]b
1− IΦ(ξi2)(a, b)

,

Uα(θ) = − q

α
+

1
α

∑

i∈D

ξ2
i2 −

(a− 1)
α

∑

i∈D

ξi2φ(ξi2)
Φ(ξi2)

+
(b− 1)

α

∑

i∈D

ξi2φ(ξi2)
1− Φ(ξi2)

−
∑

i∈C

[İΦ(ξi2)(a, b)]α
1− IΦ(ξi2)(a, b)

,

Uσ(θ) = − q

σ
− 1

σ

∑

i∈D

zi ξi2

ξi1
+

1
σ

∑

i∈D

zi ξi1ξi2 − (a− 1)
σ

∑

i∈D

zi ξi1φ(ξi2)
Φ(ξi2)

+
(b− 1)

σ

∑

i∈D

zi ξi1φ(ξi2)
1− Φ(ξi2)

−
∑

i∈C

[İΦ(ξi2)(a, b)]σ
1− IΦ(ξi2)(a, b)
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and Uβ(θ) = X>s, respectively, where s = (s1, . . . , sn)> and

si =





− ξi2

σ ξi1
+

ξi1ξi2

σ
− (a− 1)

σ

ξi1φ(ξi2)
Φ(ξi2)

+
(b− 1)

σ

ξi1φ(ξi2)
[1− Φ(ξi2)]

, i ∈ D,

ξi1φ(ξi2)Φ(ξi2)a−1[1− Φ(ξi2)]b−1

σ B(a, b) [1− IΦ(ξi2)(a, b)]
, i ∈ C,

ψ(·) is the digamma function, zi = (yi − µi)/σ,

[İΦ(ξi2)(a, b)]a = Ī
(0)
Φ(ξi2)(a, b)− [ψ(a)− ψ(a + b)]IΦ(ξi2)(a, b),

[İΦ(ξi2)(a, b)]b = Ī
(1)
Φ(ξi2)(a, b)− [ψ(b)− ψ(a + b)]IΦ(ξi2)(a, b),

[İΦ(ξi2)(a, b)]α = −ξi2φ(ξi2)Φ(ξi2)a−1[1− Φ(ξi2)]b−1

α B(a, b)
,

[İΦ(ξi2)(a, b)]σ = −zi ξi1φ(ξi2)Φ(ξi2)a−1[1− Φ(ξi2)]b−1

σ B(a, b)
,

and

Ī
(k)
Φ(ξi2)(a, b) =

1
B(a, b)

∫ Φ(ξi2)

0
[log(w)]1−k[log(1− w)]kwa−1(1− w)b−1dw, k = 0, 1.

The maximum likelihood estimate (MLE) θ̂ = (â, b̂, α̂, σ̂, β̂>)> of θ = (a, b, α, σ,β>)> can be obtained
by solving simultaneously the nonlinear equations Ua(θ) = 0, Ub(θ) = 0, Uα(θ) = 0, Uσ(θ) = 0 and
and Uβ(θ) = 0. These equations cannot be solved analytically and require iterative techniques such
as the Newton-Raphson algorithm. After fitting the model (7), the survival function for yi can be
readily estimated by Ŝ(yi) = 1− I

Φ(ξ̂2i)
(â, b̂), where ξ̂2i = ξi2(θ̂), for i = 1, . . . , n.

The normal approximation for the MLE of θ can be used for constructing approximate confidence
intervals and for testing hypotheses on the parameters a, b, α, σ and β. Under conditions that are
fulfilled for the parameters in the interior of the parameter space, we obtain

√
n(θ̂−θ) A∼ Np+4(0, K−1

θ ),
where A∼ means approximately distributed and Kθ is the unit expected information matrix. The
asymptotic result Kθ = limn→∞ n−1[−L̈(θ)] holds, where −L̈(θ) is the (p + 4) × (p + 4) observed
information matrix. The average matrix evaluated at θ̂, say −n−1L̈(θ̂), can estimate Kθ. The
elements of the matrix L̈(θ) = ∂2`(θ)/∂θ∂θ> are given in the Appendix B.

The likelihood ratio (LR) statistic can be used to discriminate between the LβBS and LEBS
regression models, since they are nested models, by testing the null hypothesis H0 : b = 1 against the
alternative hypothesis H1 : b 6= 1. In this case, the LR statistic is equal to w = 2{`(θ̂)− `(θ̃)}, where
θ̃ = (ã, 1, α̃, σ̃, β̃>)> is the MLE of θ = (a, b, α, σ,β>)> under H0. The null hypothesis is rejected if
w > χ2

1−η(1), where χ2
1−η(1) is the quantile of the chi-square distribution with one degree of freedom

and η is the significance level.

5 Local Influence

Since regression models are sensitive to the underlying model assumptions, generally performing a
sensitivity analysis is strongly advisable. Cook (1986) used this idea to motivate his assessment of
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influence analysis. He suggested that more confidence can be put in a model which is relatively stable
under small modifications. The first technique developed to assess the individual impact of cases
on the estimation process is based on case-deletion (see, for example, Cook and Weisberg, 1982) in
which the effects are studied after removing some observations from the analysis. This is a global
influence analysis, since the effect of the case is evaluated by dropping it from the data. The local
influence method is recommended when the concern is related to investigate the model sensibility
under some minor perturbations in the model. In survival analysis, several authors have investigated
the assessment of local influence as, for instance, Pettit and Bin Daud (1989), Escobar and Meeker
(1992) and Ortega et al. (2003), among others. Considering the likelihood function for assessing
the curvature for influence analysis, other techniques have been proposed to deal with non-standard
situations and for various models; see, for example, Fung and Kwan (1997), Kwan and Fung (1998)
and Tanaka et al. (2003), among others.

The local influence method is recommended when the concern is related to investigate the model
sensitivity under some minor perturbations in the model (or data). Let ω be a k-dimensional vector of
perturbations restricted to some open subset Ω of Rk. The perturbed log-likelihood function is denoted
by `(θ|ω). We consider that exists a no perturbation vector ω0 ∈ Ω such that `(θ|ω0) = `(θ), for
all θ. The influence of minor perturbations on the MLE θ̂ can be assessed by using the likelihood
displacement LDω = 2{`(θ̂)− `(θ̂ω)}, where θ̂ω denotes the maximizer of `(θ|ω).

The idea for assessing local influence as advocated by Cook (1986) is essentially the analysis of
the local behavior of LDω around ω0 by evaluating the curvature of the plot of LDω0+ad against a,
where a ∈ R and d is a unit direction. One of the measures of particular interest is the direction dmax

corresponding to the largest curvature Cdmax . The index plot of dmax may evidence those observations
that have considerable influence on LDω under minor perturbations. Also, plots of dmax against
covariate values may be helpful for identifying atypical patterns. Cook (1986) showed that the normal
curvature at the direction d is given by Cd(θ) = 2|d>∆>L̈(θ)−1∆d|, where ∆ = ∂2`(θ|ω)/∂θ∂ω>,
both ∆ and L̈(θ) are evaluated at θ = θ̂ and ω = ω0. Moreover, Cdmax is twice the largest eigenvalue
of B = −∆>L̈(θ)−1∆ and dmax is the corresponding eigenvector. The index plot of dmax may reveal
how to perturb the model (or data) to obtain large changes in the estimate of θ.

Assume that the parameter vector θ is partitioned as θ = (θ>1 , θ>2 )>. The dimensions of θ1 and
θ2 are p1 and p− p1, respectively. Let

L̈(θ) =

[
L̈θ1θ1 L̈θ1θ2

L̈>θ1θ2
L̈θ2θ2

]
,

where L̈θ1θ1 = ∂2`(θ)/∂θ1∂θ>1 , L̈θ1θ2 = ∂2`(θ)/∂θ1∂θ>2 and L̈θ2θ2 = ∂2`(θ)/∂θ2∂θ>2 . If the interest
lies on θ1, the normal curvature in the direction of the vector d is Cd;θ1(θ) = 2|d>∆>(L̈(θ)−1 −
L̈22)∆d|, where

L̈22 =

[
0 0
0 L̈−1

θ2θ2

]

and dmax;θ1 here is the eigenvector corresponding to the largest eigenvalue of B1 = −∆>(L̈(θ)−1 −
L̈22)∆. The index plot of the dmax;θ1 may reveal those influential elements on θ̂1.
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In what follows, we derive for three perturbation schemes, the matrix

∆ =
∂2`(θ|ω)
∂θ∂ω>

∣∣∣∣
θ=θ̂,ω=ω0

=
[
∆>

a ∆>
b ∆>

α ∆>
σ ∆>

β

]>
.

The quantities evaluated at θ̂ are written with a circumflex.

Case weight perturbation

A perturbed log-likelihood function, allowing different weights for different observations, can be defined
in the form `(θ|ω) =

∑
i∈D ωi `i(θ) +

∑
i∈C ωi `

(c)
i (θ), where ω = (ω1, . . . , ωn)> is a n-dimensional

vector of weights from the contributions of the components of the log-likelihood function. Also, let
ω0 = (1, . . . , 1)> be the vector of no perturbation such that `(θ|ω0) = `(θ). After some algebra, we
have

∆a = (k̂11, . . . , k̂1n), ∆b = (k̂21, . . . , k̂2n), ∆α = (k̂31, . . . , k̂3n),

∆σ = (k̂41, . . . , k̂4n), ∆β = X>Ŝ,

where S = diag{s1, . . . , sn},

k1i =





ψ(a + b)− ψ(a) + log[Φ(ξi2)], i ∈ D,

−Ī
(0)
Φ(ξi2)(a, b) + [ψ(a)− ψ(a + b)]IΦ(ξi2)(a, b)

1− IΦ(ξi2)(a, b)
, i ∈ C,

k2i =





ψ(a + b)− ψ(b) + log[1− Φ(ξi2)], i ∈ D,

−Ī
(1)
Φ(ξi2)(a, b) + [ψ(b)− ψ(a + b)]IΦ(ξi2)(a, b)

1− IΦ(ξi2)(a, b)
, i ∈ C,

k3i =





− 1
α

+
ξ2
i2

α
− (a− 1)

α

ξi2φ(ξi2)
Φ(ξi2)

+
(b− 1)

α

ξi2φ(ξi2)
[1− Φ(ξi2)]

, i ∈ D,

ξi2φ(ξi2)Φ(ξi2)a−1[1− Φ(ξi2)]b−1

α B(a, b) [1− IΦ(ξi2)(a, b)]
, i ∈ C,

k4i =





− 1
σ
− zi ξi2

σ ξi1
+

zi ξi1ξi2

σ
− (a− 1)

σ

zi ξi1φ(ξi2)
Φ(ξi2)

+
(b− 1)

σ

zi ξi1φ(ξi2)
[1− Φ(ξi2)]

, i ∈ D,

zi ξi1φ(ξi2)Φ(ξi2)a−1[1− Φ(ξi2)]b−1

σ B(a, b) [1− IΦ(ξi2)(a, b)]
, i ∈ C.

Response perturbation

We shall consider here that each yi is perturbed as yiω = yi + ωisy, where sy is a scale factor that
may be estimated by the standard deviation of y. Let ξi1ω1 = ξi1ω1(θ) = 2α−1 cosh([yiω − µi]/σ),
ξi2ω1 = ξi2ω1(θ) = 2α−1 sinh([yiω − µi]/σ) and ziω1 = (yiw − µi)/σ. Also, let ω0 = (0, . . . , 0)> be the
vector of no perturbations. In this case, we have

∆a = (m̂11, . . . , m̂1n), ∆b = (m̂21, . . . , m̂2n), ∆α = (m̂31, . . . , m̂3n),

∆σ = (m̂41, . . . , m̂4n), ∆β = X>N̂ ,
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where N = diag{N1, . . . , Nn},

m1i =





syξi1φ(ξi2)
σΦ(ξi2)

, i ∈ D,

− ∂

∂ωi

[
Ī

(0)
Φ(ξi2ω1

)(a, b)− [ψ(a)− ψ(a + b)]IΦ(ξi2ω1
)(a, b)

1− IΦ(ξi2ω1
)

]

ωi=0

, i ∈ C,

m2i =





− syξi1φ(ξi2)
σ[1− Φ(ξi2)]

, i ∈ D,

− ∂

∂ωi

[
Ī

(1)
Φ(ξi2ω1

)(a, b)− [ψ(b)− ψ(a + b)]IΦ(ξi2ω1
)(a, b)

1− IΦ(ξi2ω1
)

]

ωi=0

, i ∈ C,

m3i =





2syξi1ξi2

ασ
+

sy(a− 1)ξi1φ(ξi2)
ασΦ(ξi2)

[
ξ2
i2 − 1 +

ξi2φ(ξi2)
Φ(ξi2)

]

+
sy(b− 1)ξi1φ(ξi2)

ασ[1− Φ(ξi2)]

[
1− ξ2

i2 +
ξi2φ(ξi2)

[1− Φ(ξi2)]

] , i ∈ D,

∂

∂ωi

[
ξi2ω1φ(ξi2ω1)Φ(ξi2ω1)

a−1[1− Φ(ξi2ω1)]
b−1

α B(a, b)[1− IΦ(ξi2ω1
)]

]

ωi=0

, i ∈ C,

m4i =





−syzi

σ2
− syξi2

σ2ξi1
+

syziξ
2
i2

σ2ξ2
i1

+
syziξ

2
i1

σ2
+

syziξ
2
i2

σ2
+

syziξi1ξi2

σ2

+
sy(a− 1)φ(ξi2)

σ2Φ(ξi2)

[
ziξ

2
i1ξi2 − ziξi2 − ξi1 +

ziξ
2
i1φ(ξi2)
Φ(ξi2)

]

+
sy(b− 1)φ(ξi2)
σ2[1− Φ(ξi2)]

[
ziξi2 + ξi1 − ziξ

2
i1ξi2 +

ziξ
2
i1φ(ξi2)

[1− Φ(ξi2)]

]
, i ∈ D,

∂

∂ωi

[
ziω1 ξi1ω1φ(ξi2ω1)Φ(ξi2ω1)

a−1[1− Φ(ξi2ω1)]
b−1

σ B(a, b)[1− IΦ(ξi2ω1
)]

]

ωi=0

, i ∈ C,

Ni =





− sy

σ2
+

syξ
2
i2

σ2ξ2
i1

+
syξ

2
i1

σ2
+

syξ
2
i2

σ2

+
sy(a− 1)φ(ξi2)

σ2Φ(ξi2)

[
ξi2 + ξ2

i1ξi2 +
ξ2
i1φ(ξi2)
Φ(ξi2)

]

+
sy(a− 1)φ(ξi2)
σ2[1− Φ(ξi2)]

[
ξi2 − ξ2

i1ξi2 +
ξ2
i1φ(ξi2)

[1− Φ(ξi2)]

]
, i ∈ D,

− ∂

∂ωi

[
ξi1ω1φ(ξi2ω1)Φ(ξi2ω1)

a−1[1− Φ(ξi2ω1)]
b−1

σ B(a, b) [1− IΦ(ξi2ω1
)(a, b)]

]

ωi=0

, i ∈ C.

Explanatory variable perturbation

Now, consider an additive perturbation on a particular continuous explanatory variable, say xt, by
setting xitω = xit + ωisx, where sx is a scale factor that may be estimated by the standard deviation
of xt. Let ξi1ω2 = ξi1ω2(θ) = 2α−1 cosh([yi − µi − βtωisx]/σ), ξi2ω2 = ξi2ω2(θ) = 2α−1 sinh([yi − µi −
βtωisx]/σ) and ziω2 = (yi − µi − βtωisx)/σ. Here, ω0 = (0, . . . , 0)> is the vector of no perturbations.
Under this perturbation scheme, we have

∆a = (ê11, . . . , ê1n), ∆b = (ê21, . . . , ê2n), ∆α = (ê31, . . . , ê3n), ∆σ = (ê41, . . . , ê4n),
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where

e1i =





−sxβtξi1φ(ξi2)
σΦ(ξi2)

, i ∈ D,

− ∂

∂ωi

[
Ī

(0)
Φ(ξi2ω2

)(a, b)− [ψ(a)− ψ(a + b)]IΦ(ξi2ω2
)(a, b)

1− IΦ(ξi2ω2
)

]

ωi=0

, i ∈ C,

e2i =





sxβtξi1φ(ξi2)
σ[1− Φ(ξi2)]

, i ∈ D,

− ∂

∂ωi

[
Ī

(1)
Φ(ξi2ω2

)(a, b)− [ψ(b)− ψ(a + b)]IΦ(ξi2ω2
)(a, b)

1− IΦ(ξi2ω2
)

]

ωi=0

, i ∈ C,

e3i =





−2sxβtξi1ξi2

ασ
+

sx(a− 1)βtξi1φ(ξi2)
ασΦ(ξi2)

[
1− ξ2

i2 −
ξi2φ(ξi2)
Φ(ξi2)

]

+
sx(b− 1)βtξi1φ(ξi2)

ασ[1− Φ(ξi2)]

[
ξ2
i2 − 1− ξi2φ(ξi2)

[1− Φ(ξi2)]

] , i ∈ D,

∂

∂ωi

[
ξi2ω2φ(ξi2ω2)Φ(ξi2ω2)

a−1[1− Φ(ξi2ω2)]
b−1

α B(a, b)[1− IΦ(ξi2ω2
)]

]

ωi=0

, i ∈ C,

e4i =





sxziβt

σ2
+

sxβtξi2

σ2ξi1
− sxziβtξ

2
i2

σ2ξ2
i1

− sxziβtξ
2
i1

σ2
− sxziβtξ

2
i2

σ2
− sxziβtξi1ξi2

σ2

+
sx(a− 1)βtφ(ξi2)

σ2Φ(ξi2)

[
ziξi2 + ξi1 − ziξ

2
i1ξi2 − ziξ

2
i1φ(ξi2)
Φ(ξi2)

]

+
sx(b− 1)βtφ(ξi2)
σ2[1− Φ(ξi2)]

[
ziξ

2
i1ξi2 − ziξi2 − ξi1 − ziξ

2
i1φ(ξi2)

[1− Φ(ξi2)]

]
, i ∈ D,

∂

∂ωi

[
ziω2 ξi1ω2φ(ξi2ω2)Φ(ξi2ω2)

a−1[1− Φ(ξi2ω2)]
b−1

σ B(a, b)[1− IΦ(ξi2ω2
)]

]

ωi=0

, i ∈ C.

The matrix ∆β = {δ̂ji} of dimension p× n (j = 1, . . . , p and i = 1, . . . , n) has elements when j 6= t in
the form

δji =





sxβtxij

σ2
− sxβtxijξ

2
i2

σ2ξ2
i1

− sxβtxijξ
2
i1

σ2
− sxβtxijξ

2
i2

σ2

+
sx(a− 1)βtxijφ(ξi2)

σ2Φ(ξi2)

[
ξi2 − ξ2

i1ξi2 − ξ2
i1φ(ξi2)
Φ(ξi2)

]

+
sx(a− 1)βtxijφ(ξi2)

σ2[1− Φ(ξi2)]

[
ξ2
i1ξi2 − ξi2 − ξ2

i1φ(ξi2)
[1− Φ(ξi2)]

]
, i ∈ D,

− ∂

∂ωi

[
ξi1ω1φ(ξi2ω1)Φ(ξi2ω1)

a−1[1− Φ(ξi2ω1)]
b−1

σ B(a, b) [1− IΦ(ξi2ω1
)(a, b)]

]

ωi=0

, i ∈ C.
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For j = t, we have

δti =





sxβtxit

σ2
− sxβtxitξ

2
i2

σ2ξ2
i1

− sxβtxitξ
2
i1

σ2
− sxβtxitξ

2
i2

σ2

−sxξi2

σξi1
+

sxξi1ξi2

σ
− sx(a− 1)ξi1φ(ξi2)

σΦ(ξi2)
+

sx(b− 1)ξi1φ(ξi2)
σ[1− Φ(ξi2)]

+
sx(a− 1)φ(ξi2)

σ2Φ(ξi2)

[
ξi2 − ξ2

i1ξi2 − ξ2
i1φ(ξi2)
Φ(ξi2)

]

+
sx(a− 1)βtxitφ(ξi2)

σ2[1− Φ(ξi2)]

[
ξ2
i1ξi2 − ξi2 − ξ2

i1φ(ξi2)
[1− Φ(ξi2)]

]

, i ∈ D,

− ∂

∂ωi

[
ξi1ω1φ(ξi2ω1)Φ(ξi2ω1)

a−1[1− Φ(ξi2ω1)]
b−1

σ B(a, b) [1− IΦ(ξi2ω1
)(a, b)]

]

ωi=0

−sxξi1φ(ξi2)Φ(ξi2)a−1[1− Φ(ξi2)]b−1

σ B(a, b)

, i ∈ C.

6 The LβBS Mixture Model for Cure Fraction

In population-based cancer studies, cure is said to occur when mortality in the group of cancer pa-
tients returns to the same level as that expected in the general population. The cure fraction is of
interest to patients as well as a useful measure when analyzing trends in cancer patients survival.
Models for survival analysis typically assume that every subject in the study population is susceptible
to the event under study and will eventually experience such event if follow-up is sufficiently long.
However, there are situations when a fraction of individuals are not expected to experience the event
of interest, that is, those individuals are cured or not susceptible. Cure rate models have been used
for modeling time-to-event data for various types of cancers, including breast cancer, non-Hodgkins
lymphoma, leukemia, prostate cancer and melanoma. Perhaps, the most popular cure rate models are
the mixture models (MMs) introduced by Boag (1949), Berkson and Gage (1952) and Farewell (1982).
Additionally, MMs allow both the cure fraction and the survival function of uncured patients (la-
tency distribution) to depend on covariates. Further, Longini et al. (1996) and Price and Manatunga
(2001) have introduced frailty to MMs for individual survival data. Recently, Peng and Dear (2000)
investigated a nonparametric mixture model for cure estimation, Sy and Taylor (2000) considered
estimation in a proportional hazard cure model, Yu and Peng (2008) have extended MMs to bivariate
survival data by modeling marginal distributions and Ortega et al. (2009c) proposed the generalized
log-gamma mixture model with covariates. Benerjee and Carlin (2004) extended multivariate cure
rate models to allow for spatial correlation as well as interval censoring and used a Bayesian approach,
where posterior summaries are obtained via the hybrid Markov Chain Monte Carlo algorithm. Li et
al. (2005) considered MMs in the presence of dependent censoring, from the perspective of competing
risks and model the dependence between the censoring time and the survival time using a class of
Archimedean copula models and Zeng et al. (2006) proposed a class of transformation models for
survival data with a cure fraction. This class of transformation models was motivated by biological
considerations, and it includes both the proportional hazards and proportional odds cure models as
two special cases.

To formulate the LβBS mixture (LβBSM) model, we consider that the studied population is a
mixture of susceptible (uncured) individuals, who may experience the event of interest, and non-
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susceptible (cured) individuals, who will experience it (Maller and Zhou, 1996). This approach allows
to estimate simultaneously whether the event of interest will occur, which is called incidence, and
when it will occur, given that it can occur, which is called latency. Let Ni (i = 1, . . . , n) be the
indicator denoting that the ith individual is susceptible (Ni = 1) or non-susceptible (Ni = 0). The
mixture model is given by

Spop(yi|xi) = π(xi) +
[
1− π(xi)

]
S(yi|Ni = 1), (8)

where Spop(yi|xi) is the unconditional survival function of yi for the entire population, S(yi|Ni = 1)
is the survival function for susceptible individuals and π(xi) = P (Ni = 0|xi) is the probability of cure
variation from individual to individual given a covariates vector x>i = (xi1, . . . , xip). We shall use a
logistic link to the covariates, so that the probability that individual i is cured is modeled by

π(xi) =
exp

(
x>i γ

)

1 + exp
(
x>i γ

) , (9)

where γ = (γ1, . . . , γp)> indicates the long-term effects. The LβBSM model is defined assuming that
the survival function for susceptible individuals in (8) is given by S(yi|Ni = 1) = 1−IΦ(ξ2)(a, b), where
ξ2 is defined in Section 2. For this model, the parameters of interest are θ = (a, b, α, µ, σ,γ>)>. The
LβBSM model, when π(xi) = 0 for all xi, a = b = 1 and σ = 2 reduces to the log-BS regression model.
The identifiability between the parameters in the cure fraction and those in the latency distribution
for the mixture model has been discussed by Li et al. (2005). The mixture model is not identifiable
when the cure fraction π(x) is a constant π, but is identifiable when π(x) is modeled by a logistic
regression with non-constant covariates (Li et al., 2005). So, it is necessary to include some covariates
in the cure fraction to ensure identifiability. The LβBSM model contains, as special sub-models, the
log-exponentiated BS mixture (LEBSM) model and log-BS mixture (LBSM) model when b = 1 and
a = b = 1, respectively.

Consider data in the form (yi,xi), where the response variable yi corresponds to the observed log-
lifetime or log-censoring time for the ith individual and xi is a covariate vector, for i = 1, . . . , n. Under
this assumption, the contribution of an individual that failed at yi to the likelihood function is

[
1 −

π(xi)
]
ξ∗i1 exp(−ξ∗2i2 /2)Φ(ξ∗i2)

a−1 [1− Φ(ξ∗i2)]
b−1/{√2π σ B(a, b)} and the contribution of an individual

that is at risk at yi is π(xi) + [1− π(xi)][1− IΦ(ξ∗i2)(a, b)], where

ξ∗i1 = ξ∗i1(θ) =
2
α

cosh
(

yi − µ

σ

)
and ξ∗i2 = ξ∗i2(θ) =

2
α

sinh
(

yi − µ

σ

)
.

The total log-likelihood function for the parameter vector θ = (a, b, α, σ, µ,γ>)> is given by

`(θ) = q log
[

(2π)−1/2

σ B(a, b)

]
+

∑

i∈D

log(ξ∗i1)−
1
2

∑

i∈D

ξ∗2i2 + (a− 1)
∑

i∈D

log
[
Φ(ξ∗i2)

]

+ (b− 1)
∑

i∈D

log
[
1− Φ(ξ∗i2)

]
+

∑

i∈D

log[1− π(xi)]

+
∑

i∈C

log
{

π(xi) +
[
1− π(xi)

][
1− IΦ(ξ∗i2)(a, b)

]}
,
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where q is the observed number of failures and D and C denote the sets of individuals corresponding
to the log-lifetime and log-censoring time, respectively. The score functions for the parameters a, b,
α, σ, µ and γ are given by

Ua(θ) = q[ψ(a + b)− ψ(a)] +
∑

i∈D

log[Φ(ξ∗i2)]−
∑

i∈C

[İΦ(ξ∗i2)(a, b)]∗a,

Ub(θ) = q[ψ(a + b)− ψ(b)] +
∑

i∈D

log[1− Φ(ξ∗i2)]−
∑

i∈C

[İΦ(ξ∗i2)(a, b)]∗b ,

Uα(θ) = − q

α
+

1
α

∑

i∈D

ξ∗2i2 −
(a− 1)

α

∑

i∈D

ξ∗i2Φ(ξ∗i2)
Φ(ξ∗i2)

+
(b− 1)

α

∑

i∈D

ξ∗i2Φ(ξ∗i2)
1− Φ(ξ∗i2)

+
∑

i∈C

[İΦ(ξ∗i2)(a, b)]∗α,

Uσ(θ) = − q

σ
− 1

σ

∑

i∈D

z∗i ξ∗i2
ξ∗i1

+
1
σ

∑

i∈D

z∗i ξ∗i1ξ
∗
i2 −

(a− 1)
σ

∑

i∈D

z∗i ξ∗i1Φ(ξ∗i2)
Φ(ξ∗i2)

+
(b− 1)

σ

∑

i∈D

z∗i ξ∗i1Φ(ξ∗i2)
1− Φ(ξ∗i2)

+
∑

i∈C

[İΦ(ξ∗i2)(a, b)]∗σ,

Uµ(θ) = − 1
σ

∑

i∈D

ξ∗i2
ξ∗i1

+
1
σ

∑

i∈D

ξ∗i1ξ
∗
i2 −

(a− 1)
σ

∑

i∈D

ξ∗i1Φ(ξ∗i2)
Φ(ξ∗i2)

+
(b− 1)

σ

∑

i∈D

ξ∗i1Φ(ξ∗i2)
1− Φ(ξ∗i2)

+
∑

i∈C

[İΦ(ξ∗i2)(a, b)]∗µ

and Uγ(θ) = X>s∗, respectively. Here, z∗i = (yi − µ)/σ, s∗ = (s∗1, . . . , s
∗
n)> with

s∗i =




−π(xi) i ∈ D,

π(xi)[1−π(xi)]IΦ(ξ∗
i2

)(a,b)

π(xi)+[1−π(xi)][1−IΦ(ξ∗
i2

)(a,b)] , i ∈ C,

[İΦ(ξ∗i2)(a, b)]∗a =
[1− π(xi)] Ī

(0)
Φ(ξ∗i2)(a, b)− [ψ(a)− ψ(a + b)]IΦ(ξ∗i2)(a, b)

π(xi) + [1− π(xi)][1− IΦ(ξ∗i2)(a, b)]
,

[İΦ(ξ∗i2)(a, b)]b =
[1− π(xi)] Ī

(1)
Φ(ξ∗i2)(a, b)− [ψ(b)− ψ(a + b)]IΦ(ξ∗i2)(a, b)

π(xi) + [1− π(xi)][1− IΦ(ξ∗i2)(a, b)]
,

[İΦ(ξ∗i2)(a, b)]∗α =
[1− π(xi)] ξ∗i2Φ(ξ∗i2)Φ(ξ∗i2)

a−1[1− Φ(ξ∗i2)]
b−1

α B(a, b) {π(xi) + [1− π(xi)][1− IΦ(ξ∗i2)(a, b)]} ,

[İΦ(ξ∗i2)(a, b)]∗σ =
[1− π(xi)] z∗i ξ∗i1Φ(ξ∗i2)Φ(ξ∗i2)

a−1[1− Φ(ξ∗i2)]
b−1

σ B(a, b) {π(xi) + [1− π(xi)][1− IΦ(ξ∗i2)(a, b)]} ,

[İΦ(ξ∗i2)(a, b)]∗µ =
[1− π(xi)] ξ∗i1Φ(ξ∗i2)Φ(ξ∗i2)

a−1[1− Φ(ξ∗i2)]
b−1

σ B(a, b) {π(xi) + [1− π(xi)][1− IΦ(ξ∗i2)(a, b)]} ,

and

Ī
(k)
Φ(ξ∗i2)(a, b) =

1
B(a, b)

∫ Φ(ξ∗i2)

0
[log(w)]1−k[log(1− w)]kwa−1(1− w)b−1dw, k = 0, 1.
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The MLEs of the parameters in θ can be obtained by solving simultaneously the nonlinear equations
Ua(θ) = 0, Ub(θ) = 0, Uα(θ) = 0, Uσ(θ) = 0, Uµ(θ) = 0 and Uγ(θ) = 0. The covariances of the
MLEs in θ̂ can also be obtained using the Hessian matrix. Under standard regularity conditions,
confidence intervals and hypothesis tests can be conducted based on the large sample distribution of
the MLE, which is multivariate normal with covariance matrix given by the inverse of the expected
information matrix, i.e. θ̂ ∼ Np+5(θ,Σ(θ)−1), where the asymptotic covariance matrix is given by
Σ(θ)−1, Σ(θ) = −E(L̈θθ) and L̈θθ = ∂2`(θ)/∂θ∂θ>. Since it is not possible to compute the expected
information matrix Σ(θ) due to the censored observations (censoring is random and noninformative),
we can use the matrix of second derivatives −L̈θθ evaluated at θ = θ̂ to estimate Σ(θ).

More recently, several authors have adopted only a regression structure for the cure probability
in long-term survivor models. See, for example, de Castro et al. (2009, 2010) and Rodrigues et al.
(2011), among others. Here, we consider the same approach for the LβBS regression model with cure
fractions. However, as suggested by a referee, a future research can be conducted to include covariates
for the cure probability, i.e. π(xi) = exp(x>i γ)/{1 + exp(x>i γ)}, and possibly other covariates and a
vector of new parameters, say ζ, for the logarithm of the survival time such as

ξ∗i1 = ξ∗i1(θ) =
2
α

cosh
(

yi − z>i ζ

σ

)
and ξ∗i2 = ξ∗i2(θ) =

2
α

sinh
(

yi − z>i ζ

σ

)
.

7 Applications

7.1 First Application: the LβBS Regression Model

In this section, we use a real data set to show the flexibility and applicability of the LβBS regression
model. We compare the results from the fits of the LβBS, LEBS, LLeBS and LBS regression models.
All the computations were done using the Ox matrix programming language (Doornik, 2006). The Ox

program is freely distributed for academic purposes and available at http://www.doornik.com.
We shall consider the real data set given by Hirose (1993) as the results of an accelerated life-test on

polyethylene terephthalate (PET) film (used in electrical insulation) in SF6 gas insulated transformers.
The accelerated life test was performed at four levels of voltage: v = 5, 7, 10 and 15, with 10, 15, 10
and 9 observations for each level, respectively. Three censored values were observed at v = 5. The
data are listed in Table 1. They have also been considered by Wang and Kececioglu (2000) as an
illustration of the log-linear Weibull model to accelerated life-test.

The aim of the study is to relate the resistance times of insulating films (t) with the levels of
voltage (v). We consider the following regression model:

yi = β0 + β1vi + σzi,

where yi has the LβBS distribution (4), for i = 1, . . . , 44. Table 2 lists the MLEs (standard errors in
parentheses) of the model parameters of the LβBS, LEBS, LLeBS and LBS regression models fitted to
the data and the statistics: AIC (Akaike Information Criterion), BIC (Bayesian Information Criterion)
and HQIC (Hannan–Quinn Information Criterion). Notice that the MLEs of σ, β0 and β1 (and their
respective standard errors) are approximately the same for all the models. Also, note that the MLEs
of α (and the standard errors) are very different for these models. Although the MLEs of a and b are
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Table 1: Resistance times of insulating films.
Voltage (kV) Failure or censoring time (hours)

5 7131 8482 8559 8762 9026 9034
9104 9104.25+ 9104.25+ 9104.25+

7 50.25 87.75 87.76 87.77 92.90 92.91
95.96 108.3 108.3 117.9 123.9 124.3
129.7 135.6 135.6

10 15.17 19.87 20.18 21.50 21.88 22.23
23.02 23.90 28.17 29.70

15 2.40 2.42 3.17 3.75 4.65 4.95
6.23 6.68 7.30

+ indicates censored data.

approximately equal to these models, their corresponding standard errors are different. The MLEs of
the parameters a, b and α are different for each model because they are shape parameters.

The figures in Table 2 indicate that the LLeBS (new) regression model has the lowest AIC, BIC
and HQIC values among those of the fitted models, and so it could be chosen as the best model. The
LβBS and LEBS regression models also outperform the LBS model according to these statistics. In
summary, the LβBS, LEBS and LLeBS regression models outperform the LBS model irrespective of
the criteria and they can be effectively used in the analysis of these data. For the fitted regression
models, note that β1 is marginally significant at the level of 1% and then there is a significant difference
among the levels of the voltage for the resistance times of insulating films.

Table 2: MLEs of the parameters (standard errors in parentheses and p-values in [ · ]) and the AIC,
BIC and HQIC measures.

Model a b α σ β0 β1 AIC BIC HQIC

LβBS 0.6614 1.4563 135.9833 0.4147 9.3643 −0.4077 91.68 102.38 95.65
(0.842) (1.414) (131.946) (0.055) (0.166) (0.017)

[< 0.01] [< 0.01]

LEBS 0.4143 102.9348 0.4165 9.3605 −0.4071 89.83 98.76 93.14
(0.131) (72.866) (0.053) (0.165) (0.016)

[< 0.01] [< 0.01]

LLeBS 1.9841 167.5896 0.4148 9.3623 −0.4080 89.77 98.69 93.08
(0.383) (115.231) (0.056) (0.158) (0.016)

[< 0.01] [< 0.01]

LBS 246.1849 0.3695 9.1815 −0.4051 98.72 105.86 101.37
(180.666) (0.046) (0.138) (0.016)

[< 0.01] [< 0.01]
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A comparison of the LβBS regression model with some of its sub-models using LR statistics
is performed in Table 3. The figures in this table, specially the p-values, indicate that the LβBS
regression model gives the same fit to the current data than those of the LEBS and LLeBS regression
models. Additionally, these models yield better fits to the data than the LBS regression model. A

Table 3: LR statistics.
Model Hypotheses w p-value

LβBS vs LEBS H0 : b = 1 vs H1 : b 6= 1 0.155 0.694
LβBS vs LLeBS H0 : a = 1 vs H1 : a 6= 1 0.094 0.760
LβBS vs LBS H0 : a = b = 1 vs H1 : H0 is false 11.039 0.004
LEBS vs LBS H0 : a = 1 vs H1 : a 6= 1 10.884 0.001
LLeBS vs LBS H0 : b = 1 vs H1 : b 6= 1 10.946 0.001

graphical comparison among the LβBS, LEBS, LLeBS and LBS models is explored in Figure 4. These
plots provide the Kaplan-Meier (KM) estimate and the estimated survival functions of the LβBS,
LEBS, LLeBS and LBS regression models. Based on these plots, it is evident that these models fit the
current data better than the LBS model. As expected, the curves for the LβBS model is very similar
to the curves of the LEBS and LLeBS models.

In what follows, we shall apply the local influence method for the purpose of identifying influential
observations in the LβBS, LEBS, LLeBS and LBS regression models fitted to the data. Figure 5 gives
the influence index plot for these models based on the case weight perturbation. An inspection of
these plots reveal that the cases #11 and #26 have more pronounced influence on the MLEs than
the other observations. They correspond to the smallest observations for the levels of voltage 7 and
10, respectively. Based on Figure 5, we eliminated those most influential observations and refitted the
LβBS, LEBS, LLeBS and LBS regression models. The relative change (RC), in percentage, of each
parameter estimate is used to evaluate the effect of the potentially influential case. The RC is defined
by RCθ(i) = |(θ̂− θ̂(i)/θ̂| × 100%, where θ̂(i) denotes the MLE of θ after removing the ith observation.
The results are listed in Table 4. This table indicates that the relative changes for the MLE of the

Table 4: Relative changes (%) dropping the labeled cases.
Dropping

#11 #26
Model â b̂ α̂ σ̂ β̂1 β̂2 â b̂ α̂ σ̂ β̂1 β̂2

LβBS 24.6 17.7 65.5 12.1 2.4 7.6 8.3 4.6 33.9 5.7 0.1 0.2
LEBS 0.6 44.4 11.8 2.5 7.7 2.3 29.4 5.7 0.1 0.2
LLeBS 0.0 48.1 12.1 2.4 7.5 1.2 28.7 5.7 0.1 0.2
LBS 36.2 10.2 2.7 7.6 28.3 5.1 0.1 0.2

parameter α for the four models are very pronounced, mainly for the observation #11. However, the
inferences do not change at the significance level of 1%, i.e., the significance of the covariable is not
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Figure 4: Estimated survival functions and the empirical survival: (a) LβBS regression model versus
KM; (b) LEBS regression model versus KM; (c) LLeBS regression model versus KM; (d) LBS regression
model versus KM.
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Figure 5: Influence index plots (case weight perturbation) for the LβBS (a), LEBS (b), LLeBS (c)
and LBS (d) models.
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influenced by these observations.
As pointed out by an anonymous referee, it would be interesting to investigate the effect of influ-

ential cases on the LR statistics. In Table 5, we present the LR statistics when the influential cases are
excluded. Note that we arrive at the same conclusion when all observations are considered; compare
the figures of this table with the figures in Table 3.

Table 5: LR statistics dropping the influential cases.
Dropping #11

Model Hypotheses w p-value

LβBS vs LEBS H0 : b = 1 vs H1 : b 6= 1 0.184 0.668
LβBS vs LLeBS H0 : a = 1 vs H1 : a 6= 1 0.016 0.898
LβBS vs LBS H0 : a = b = 1 vs H1 : H0 is false 10.850 0.004
LEBS vs LBS H0 : a = 1 vs H1 : a 6= 1 10.666 0.001
LLeBS vs LBS H0 : b = 1 vs H1 : b 6= 1 10.833 0.001

Dropping #26

Model Hypotheses w p-value

LβBS vs LEBS H0 : b = 1 vs H1 : b 6= 1 0.160 0.690
LβBS vs LLeBS H0 : a = 1 vs H1 : a 6= 1 0.053 0.818
LβBS vs LBS H0 : a = b = 1 vs H1 : H0 is false 10.381 0.006
LEBS vs LBS H0 : a = 1 vs H1 : a 6= 1 10.221 0.001
LLeBS vs LBS H0 : b = 1 vs H1 : b 6= 1 10.328 0.001

In summary, the proposed LβBS, LEBS and LLeBS regression models produce better fit for the
current data than the LBS regression model (Rieck and Nedelman, 1991). In this case, the LLeBS
regression model could be chosen since it has less parameters to be estimated and according to the
LR statistic (see Table 3), it presents a similar fit to that of the LβBS regression model. Also, this
regression model gives the lowest AIC, BIC and HQIC values (see Table 2). For example, we may
interpret the estimated coefficient of the LLeBS model as follows. The expected resistance time of
insulating films should decrease approximately 34% [(1 − e−0.4080) × 100%] as the level of voltage
increases one unity.

7.2 Second Application: the LβBS Mixture Model

The data are part of a study on cutaneous melanoma (a type of malignant cancer) for the evaluation
of postoperative treatment performance with a high dose of a certain drug (interferon alfa-2b) in
order to prevent recurrence. Patients were included in the study from 1991 to 1995, and follow-up was
conducted until 1998. The data are collected by Ibrahim et al. (2001) and represent the survival times,
T , as the time until the patient’s death. The original sample size was n = 427 patients, 10 of whom
did not present a value for explanatory variable tumor thickness. When such cases were removed, a
sample of size n = 417 patients was retained. The percentage of censored observations was 56%. The
following variables are associated with each participant (i = 1, . . . , 417): yi: observed time (in years);
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xi1: treatment (0: observation, 1: interferon); xi2: age (in years); xi3: nodule (nodule category: 1 to
4); xi4: sex (0: male, 1: female); xi5: p.s. (performance status-patient’s functional capacity scale as
regards his daily activities – 0: fully active, 1: other) and xi6: tumor (tumor thickness in mm).

Figure 6 shows the estimated survival curves for interferon and the observation groups. An obvious
plateau can be observed after about a 5 years’ follow-up, which offers empirical evidence for a cure
possibility in cutaneous melanoma data.
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Figure 6: Kaplan-Meier curves of high-dose interferon and observation groups in cutaneous melanoma
data.

Firstly, we consider the following LβBSM model described in Section 6

yi = µ + σzi, i = 1, . . . , 417,

where yi has the LβBS distribution (4) and

π(xi) =
exp(x>i γ)

1 + exp(x>i γ)
,

where x>i γ = γ0 + γ1xi1 + γ2xi2 + γ3xi3 + γ4xi4 + γ5xi5 + γ6xi6.
To obtain the MLEs of the parameters in the LβBSM model, we used the procedure NLMixed in

SAS, whose results are listed in Table 6. We note that the covariate nodule is significant (at 5%) for
the cure fraction. Further, the predictors age and tumor are significant for the cure fraction (at 10%).

A summary of the values of the AIC, CAIC and BIC statistics to compare the LβBSM model with
some of its sub-models is given in Table 7. The LβBSM model yields the best fit according to these
criteria.

A comparison of the LβBS regression model with some of its sub-models using LR statistics is
performed in Table 8. The figures in this table, specially the p-values, indicate that the LβBSM model
provides a better representation of the data than the LEBSM and LBSM models.
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Table 6: MLEs for the parameters of the LβBSM model with long-term survivors fitted to the cuta-
neous melanoma data set.

Parameter Estimate S.E. p-value

a 1.3587 0.3010 –
b 12.4847 0.1287 –
α 8.7935 3.9743 –
µ 9.5969 3.0135 < 0.001
σ 3.4191 0.3403 –
γ0 4.3551 1.7167 0.0115
γ1 −0.2245 0.3948 0.5700
γ2 −0.0281 0.0162 0.0831
γ3 −1.3671 0.5859 0.0201
γ4 0.2726 0.3919 0.4871
γ5 −0.0665 0.6053 0.9126
γ6 −0.2542 0.1371 0.0645

Table 7: Some statistics for comparing the LβBSM model with some of its sub-models.
Model AIC CAIC BIC

LβBSM 905.9 906.6 954.3
LEBSM 941.3 942.0 985.7
LBSM 943.5 944.0 983.8

Table 8: LR statistics.
Model Hypotheses w p-value

LβBSM vs LEBSM H0 : b = 1 vs H1 : b 6= 1 37.4 < 0.001
LβBSM vs LBSM H0 : a = b = 1 vs H1 : H0 is false 41.6 < 0.001

Next, we turn to a simplified model retaining only nodule category as an explanatory variable. The
estimates for the LβBSM regression model with long-term survivors fitted to the cutaneous melanoma
data are listed in Table 9.

Finally, we estimate the proportion of cured individuals, using equation (9), by

π̂i =
exp(1.1171− 0.4878xi3)

1 + exp(1.1171− 0.4878xi3)
and π̂ =

1
417

417∑

i=1

π̂i.

The mean cure fraction estimated was π̂ = 0.4955. Estimates of the cure rate patients stratified by
nodule category are π̂j , for j = 1, . . . , 4. The estimates of the surviving fraction of patients stratified
by nodule category from 1 to 4 are 0.6523, 0.5353, 0.4143 and 0.3028, respectively.
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Table 9: MLEs for the LβBSM model fitted to the cutaneous melanoma data.
Parameter Estimate S.E. p-value

a 1.6727 0.0402 –
b 191.78 0.3336 –
α 0.8169 0.0892 –
µ 8.2832 3.0057 0.006
σ 8.7371 4.3878 –
γ0 1.1171 0.2791 < 0.001
γ3 −0.4878 0.1105 < 0.001

8 Concluding Remarks

For the first time, we study the called log-β-Birnbaum–Saunders (LβBS) distribution. We derive
explicit expressions for the moment generating function and moments. Based on this distribution,
we propose a LβBS regression model very suitable for modeling censored and uncensored lifetime
data. The new regression model serves as a good alternative for lifetime data analysis and it is much
more flexible than the log-Birnbaum–Saunders regression model (Rieck and Nedelman, 1991) in many
practical situations. The parameter estimation is approached by maximum likelihood and the observed
information matrix is derived. We also discuss influence diagnostics in the LβBS regression model
fitted to censored data. We also propose a LβBS mixture model for survival data with long-term
survivors. The usefulness of the new regression model is illustrated by means of two real data sets.
Our formulas related with the LβBS regression model are manageable, and with the use of modern
computer resources with analytic and numerical capabilities, may turn into adequate tools comprising
the arsenal of applied statisticians. In other words, the proposed methodology can be implemented
straightforwardly and runs immediately in some statistical packages. We hope that the proposed
regression model may attract wider applications in survival analysis and fatigue life modeling.
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A Appendix

The proof of the theorem is as follows. First, if a is a positive real non-integer, we can expand Φ(v)a as

Φ(v)a =
∞∑

r=0

sr(a)Φ(v)r, (10)

where sr(x) =
∑∞

j=r(−1)r+j
(
x
j

) (
j
r

)
. We can write from the binomial expansion

Φ
(

2
α

sinh(z)
)a−1 [

1− Φ
(

2
α

sinh(z)
)]b−1

=
∞∑

i=0

(−1)i

(
b− 1

i

)
Φ

(
2
α

sinh(z)
)i+a−1
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and then using (10)

Φ
(

2
α

sinh(z)
)a−1 [

1− Φ
(

2
α

sinh(z)
)]b−1

=
∞∑

i,r=0

(−1)i

(
b− 1

i

)
sr(i + a− 1)Φ

(
2
α

sinh(z)
)r

.

Hence,

MZ(s) =
∞∑

i,r=0

pi,r

∫ ∞

−∞
exp(sz) cosh(z) exp{−2 sinh2(z)/α2}Φ

(
2
α

sinh(z)
)r

dz,

where pi,r = pi,r(a, b, α) is defined above.
We require the following results for the error function erf(·) to calculate the last integral, say Nr(s, α):

Φ(x) = [1 + erf(x/
√

2)]/2 and erf(x) = (2/
√

π)
∫ x

0
exp(−y2)dy. If bm = (−1)m[(2m + 1) 2m/2 m!

√
π]−1, we can

write the power series erf(x/
√

2) =
∑∞

m=0 bm x2m+1. We use the equation (
∑∞

i=0 ai xi)j =
∑∞

i=0 cj,i xi for a
power series raised to a positive integer j (Gradshteyn and Ryzhik, 2007, Section 0.314), whose coefficients cj,i

(for i = 1, 2, . . .) are determined from the recurrence equation

cj,i = (i a0)−1
i∑

m=1

(jm− i + m) am cj,i−m (11)

and cj,0 = aj
0. Hence, the coefficients cj,i can be calculated directly from cj,0, . . . , cj,i−1 and, therefore, from

a0, . . . , ai. We have

Φ
(

2
α

sinh(z)
)r

=
1
2r

{
1 +

∞∑
m=0

dm sinh(z)2m+1

}r

,

where dm = 22m+1 α−(2m+1) bm. Thus, using (11), we can obtain

Φ
(

2
α

sinh(z)
)r

=
1
2r

r∑

k=0

(
r

k

) ( ∞∑
m=0

dm sinh(z)2m+1

)k

=
∞∑

m=0

em,r sinh(z)2m+1,

where em,r = 2−r
∑r

k=0

(
r
k

)
gk,m, gk,0 = dj

0 and gk,m = (i d0)−1
∑m

`=1 (k`−m + `) d` gk,m−`. Further,

Nr(s, α) =
∞∑

m=0

em,r

∫ ∞

−∞
exp(s z) cosh(z) sinh(z)2m+1 exp{−2 sinh2(z)/α2} dz.

From the identity cosh(2z) = 2 sinh2(z)+1 and the definition of sinh(z) and cosh(z), by expanding the binomial
term, we obtain after some algebra

Nr(s, α) = exp(1/α2)
∞∑

m=0

em,r

2m+3

2m+1∑

j=0

(−1)j

(
2m + 1

j

)

×
∫ ∞

−∞
{exp[(m + 1− j + s/2)x] + exp[(m− j + s/2)x]} exp{− cosh(x)/α2}dx.

From the integral representation Kν(z) = 0.5
∫∞
−∞ exp{−z cosh(x)− ν x}dx, it follows that

Nr(s, α) = eα−2
∞∑

m=0

em,r

2m+2

2m+1∑

j=0

(−1)j

(
2m + 1

j

) [
K−(m+1−j+s/2)(1/α2) + K−(m−j+s/2)(1/α2)

]
. (12)

Hence, the LβBS generating function takes the form MZ(s) =
∑∞

i,r=0 pi,r Nr(s, α), where Nr(s, α) is calculated
from (12).
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B Appendix

The elements of the Hessian matrix

L̈(θ) =
∂2`(θ)
∂θ∂θ>

=




L̈aa L̈ab L̈aα L̈aσ L̈aβj

· L̈bb L̈bα L̈bσ L̈bβj

· · L̈αα L̈ασ L̈αβj

· · · L̈σσ L̈σβj

· · · · L̈βjβs




,

are determined. After extensive algebraic manipulations, we obtain

L̈aa = q[ψ′(a + b)− ψ′(a)] +
∑

i∈C

[
ÏΦ(ξi2)(a, b)

]
aa

,

L̈ab = qψ′(a + b) +
∑

i∈C

[
ÏΦ(ξi2)(a, b)

]
ab

,

L̈aα = − 1
α

∑

i∈D

ξi2φ(ξi2)
Φ(ξi2)

+
∑

i∈C

[
ÏΦ(ξi2)(a, b)

]
aα

,

L̈aσ = − 1
σ

∑

i∈D

zi ξi1φ(ξi2)
Φ(ξi2)

+
∑

i∈C

[
ÏΦ(ξi2)(a, b)

]
aσ

,

L̈aβj = − 1
σ

∑

i∈D

xij ξi1φ(ξi2)
Φ(ξi2)

+
∑

i∈C

[
ÏΦ(ξi2)(a, b)

]
aβj

,

L̈bb = q[ψ′(a + b)− ψ′(b)] +
∑

i∈C

[
ÏΦ(ξi2)(a, b)

]
bb

,

L̈bα =
1
α

∑

i∈D

ξi2φ(ξi2)
1− Φ(ξi2)

+
∑

i∈C

[
ÏΦ(ξi2)(a, b)

]
bα

,

L̈bσ =
1
σ

∑

i∈D

zi ξi1φ(ξi2)
1− Φ(ξi2)

+
∑

i∈C

[
ÏΦ(ξi2)(a, b)

]
bσ

,

L̈bβj =
1
σ

∑

i∈D

xij ξi1φ(ξi2)
1− Φ(ξi2)

+
∑

i∈C

[
ÏΦ(ξi2)(a, b)

]
bβj

,

L̈αα =
q

α2
− 3

α2

∑

i∈D

ξ2
i2 +

2(a− 1)
α2

∑

i∈D

ξi2φ(ξi2)
Φ(ξi2)

− (a− 1)
α2

∑

i∈D

ξ3
i2φ(ξi2)
Φ(ξi2)

− (a− 1)
α2

∑

i∈D

ξ2
i2φ(ξi2)2

Φ(ξi2)2

− 2(b− 1)
α2

∑

i∈D

ξi2φ(ξi2)
1− Φ(ξi2)

+
(b− 1)

α2

∑

i∈D

ξ3
i2φ(ξi2)

1− Φ(ξi2)

− (b− 1)
α2

∑

i∈D

ξ2
i2φ(ξi2)2

[1− Φ(ξi2)]2
+

∑

i∈C

[
ÏΦ(ξi2)(a, b)

]
αα

,
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L̈ασ = − 2
σα

∑

i∈D

zi ξi1ξi2 +
(a− 1)

σα

∑

i∈D

zi ξi1φ(ξi2)
Φ(ξi2)

− (a− 1)
σα

∑

i∈D

zi ξi1ξ
2
i2φ(ξi2)

Φ(ξi2)
− (a− 1)

σα

∑

i∈D

zi ξi1ξi2φ(ξi2)2

Φ(ξi2)2

− (b− 1)
σα

∑

i∈D

zi ξi1φ(ξi2)
1− Φ(ξi2)

+
(b− 1)

σα

∑

i∈D

zi ξi1ξ
2
i2φ(ξi2)

1− Φ(ξi2)

− (b− 1)
σα

∑

i∈D

zi ξi1ξ
2
i2φ(ξi2)2

[1− Φ(ξi2)]2
+

∑

i∈C

[
ÏΦ(ξi2)(a, b)

]
ασ

,

L̈αβj = − 2
σα

∑

i∈D

xij ξi1ξi2 +
(a− 1)

σα

∑

i∈D

xij ξi1φ(ξi2)
Φ(ξi2)

− (a− 1)
σα

∑

i∈D

xij ξi1ξ
2
i2φ(ξi2)

Φ(ξi2)
− (a− 1)

σα

∑

i∈D

xij ξi1ξi2φ(ξi2)2

Φ(ξi2)2

− (b− 1)
σα

∑

i∈D

xij ξi1φ(ξi2)
1− Φ(ξi2)

+
(b− 1)

σα

∑

i∈D

xij ξi1ξ
2
i2φ(ξi2)

1− Φ(ξi2)

− (b− 1)
σα

∑

i∈D

xij ξi1ξ
2
i2φ(ξi2)2

[1− Φ(ξi2)]2
+

∑

i∈C

[
ÏΦ(ξi2)(a, b)

]
αβj

,

L̈σσ =
q

σ2
+

1
σ2

∑

i∈D

z2
i +

2
σ2

∑

i∈D

zi ξi2

ξi1
− 1

σ2

∑

i∈D

z2
i ξ2

i2

ξ2
i1

− 1
σ2

∑

i∈D

z2
i ξ2

i1 −
1
σ2

∑

i∈D

z2
i ξ2

i2 −
2
σ2

∑

i∈D

zi ξi1ξi2

+
(a− 1)

σ2

∑

i∈D

z2
i ξi2φ(ξi2)
Φ(ξi2)

+
2(a− 1)

σ2

∑

i∈D

zi ξi1φ(ξi2)
Φ(ξi2)

− (a− 1)
σ2

∑

i∈D

z2
i ξ2

i1ξi2φ(ξi2)
Φ(ξi2)

− (a− 1)
σ2

∑

i∈D

z2
i ξ2

i1φ(ξi2)2

Φ(ξi2)2

− (b− 1)
σ2

∑

i∈D

z2
i ξi2φ(ξi2)
1− Φ(ξi2)

− 2(b− 1)
σ2

∑

i∈D

zi ξi1φ(ξi2)
1− Φ(ξi2)

+
(b− 1)

σ2

∑

i∈D

z2
i ξ2

i1ξi2φ(ξi2)
1− Φ(ξi2)

− (b− 1)
σ2

∑

i∈D

z2
i ξ2

i1φ(ξi2)2

[1− Φ(ξi2)]2

+
∑

i∈C

[
ÏΦ(ξi2)(a, b)

]
σσ

,
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L̈σβj =
1
σ2

∑

i∈D

zi xij +
1
σ2

∑

i∈D

xij ξi2

ξi1
− 1

σ2

∑

i∈D

zi xij ξ2
i2

ξ2
i1

− 1
σ2

∑

i∈D

zi xij ξ2
i1 −

1
σ2

∑

i∈D

zi xij ξ2
i2 −

1
σ2

∑

i∈D

xij ξi1ξi2

+
(a− 1)

σ2

∑

i∈D

zi xij ξi2φ(ξi2)
Φ(ξi2)

+
(a− 1)

σ2

∑

i∈D

xij ξi1φ(ξi2)
Φ(ξi2)

− (a− 1)
σ2

∑

i∈D

zi xij ξ2
i1ξi2φ(ξi2)

Φ(ξi2)
− (a− 1)

σ2

∑

i∈D

zi xij ξ2
i1φ(ξi2)2

Φ(ξi2)2

− (b− 1)
σ2

∑

i∈D

zi xij ξi2φ(ξi2)
1− Φ(ξi2)

− (b− 1)
σ2

∑

i∈D

xij ξi1φ(ξi2)
1− Φ(ξi2)

+
(b− 1)

σ2

∑

i∈D

zi xij ξ2
i1ξi2φ(ξi2)

1− Φ(ξi2)
− (b− 1)

σ2

∑

i∈D

zi xij ξ2
i1φ(ξi2)2

[1− Φ(ξi2)]2

+
∑

i∈C

[
ÏΦ(ξi2)(a, b)

]
σβj

,

L̈βjβs =
1
σ2

∑

i∈D

xij xis − 1
σ2

∑

i∈D

xij xis ξ2
i2

ξ2
i1

− 1
σ2

∑

i∈D

xij xis(ξ2
i1 + ξ2

i2)

+
(a− 1)

σ2

∑

i∈D

xij xis ξi2φ(ξi2)
Φ(ξi2)

− (a− 1)
σ2

∑

i∈D

xij xis ξ2
i1ξi2φ(ξi2)

Φ(ξi2)

+
(a− 1)

σ2

∑

i∈D

xij xis ξ2
i1φ(ξi2)2

Φ(ξi2)2
− (b− 1)

σ2

∑

i∈D

xij xis ξi2φ(ξi2)
1− Φ(ξi2)

+
(b− 1)

σ2

∑

i∈D

xij xis ξ2
i1ξi2φ(ξi2)

1− Φ(ξi2)
− (b− 1)

σ2

∑

i∈D

xij xis ξ2
i1φ(ξi2)2

[1− Φ(ξi2)]2

+
∑

i∈C

[
ÏΦ(ξi2)(a, b)

]
βjβs

,

where j, s = 1, . . . , p,
[
ÏΦ(ξi2)(a, b)

]
km

= ∂
([

İΦ(ξi2)(a, b)
]
k
/[1 − IΦ(ξi2)(a, b)]

)
/∂m and ψ′(·) is the trigamma

function. Here, [İΦ(ξi2)(a, b)]βj = −xij ξi1φ(ξi2)Φ(ξi2)a−1[1−Φ(ξi2)]b−1/[σ B(a, b)] and all the others quantities

were defined before.
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