Hear Andre,
As promised, I wrote to Cedric Smith and Orear Kampttaome aburtyre and neceived eneousajing rephis in both cares. As is urual mitt Cedrie, an esmemely delpful pescus, heurote back mitt sufsestions forym (I had mentimid ypuetrance). The topie of multipoint linkape is not familias to me and his lettes is enelored in the sege that itwill be ureful to-ym. Do wrres to eithe or both of them if you feel it would be at all useful.

I sope allis well mith yus and yow fanily. Joan ands of em recall that pleasant day ont at you house, esperially when weare gavdening in ous defferent cunditions.

Best writes.
Semis.

Dear Andrè,
Congratulations on the appointment in Lyon. I wish that it had been in Britain but universities and research institutions here are experiencing bad times under this government. I do admire your ability to face another foreign culture and a new language; the prospect would daunt me. We have largely given up extensive travel and have settled down to a quiet life here, spending a lot of time gardening. We remember yours with delight. How is the family and what about the fine dog, Petra was it? And we listened to Berio. Was it really almost seven years ago.

Your paper on meta-analysis is really excellent. The Bayesian paradigm has been performed sensibly and correctly. The demonstration of its effectiveness is striking. This is a really nice piece of work. I would have used a slightly different model which differs from yours in one important respect in that it does not use the sharp, null hypothesis that all the deltas are equal. Sharp hypotheses can lead to strange results and my preference is to avoid them unless the practical problem tells me otherwise. My guess here is that no one would really believe the null. The alternative is to suppose them to be normal with mean and variance that can be estimated from the data. Another idea is to use log-odds in preference to probabilities $\theta$ because they are more nearly normally distributed. So the model would
have the binomial likelihoods as yours but reparameterized in terms of $\phi_{t}^{(i)}=\log \left(\theta_{t}^{(i)} /\left(1-\theta_{t}^{(i)}\right)\right)$ and $\phi_{c}^{(i)}$. Then $\phi_{t}^{(i)}-\phi_{c}^{(i)}$ are i.i.d $N\left(\boldsymbol{\mu}, \boldsymbol{\tau}^{\boldsymbol{2}}\right)$ and $\phi_{c}^{(i)}$ is $N\left(\mu_{0}, \boldsymbol{\tau}_{0}^{2}\right)$ - or better, they could have a bivariate normal. Then $\tau^{2}$ would show how the treatments differed
from trial to trial and $\mu$ would provide the overall assessment. I have not any reason to think this is better than yours. To find out would require time and computing facilities.

I hope that we shall meet again soon. There is to be a meeting on Bayesian Statistics in Valencia from 15-20 April 1991. I hope that you will be able to come especially as we need applied Bayesians. You can get details from Prof. J Bernardo, Palacio de la Generalidad, Caballeros 2, E-46001 Valencia, Spain.

Regards from Joan and I to you and Bernadetti (which we hope has been remembered correctly).

Best wishes,


