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a b s t r a c t

In this paper, we formulate a flexible density function from the selection mechanism
viewpoint (see, for example, Bayarri and DeGroot (1992) and Arellano-Valle et al. (2006))
which possesses nice biological and physical interpretations. The new density function
contains as special cases many models that have been proposed recently in the literature.
In constructing this model, we assume that the number of competing causes of the event
of interest has a general discrete distribution characterized by its probability generating
function. This function has an important role in the selection procedure as well as in
computing the conditional personal cure rate. Finally, we illustrate how various models
can be deduced as special cases of the proposed model.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Recently, there has been a great interest among statisticians and applied researchers in constructing flexible families
of distributions to facilitate better modeling of data. Consequently, a significant progress has been made in developing
the generalizations of some well-known lifetime distributions and their successful application to problems in areas such
as engineering, environmetrics, economics and biomedical sciences. The purpose of this work is to formulate a unified
procedure with a biological and physical interpretation that includes as special cases many of these lifetime distributions.
For formulating this procedure, we choose the selection approach discussed by Bayarri and DeGroot (1992) and Arellano-
Valle et al. (2006). This selection approach is useful for obtaining flexible distributions from the original model based on the
occurrence of some related selection randomvariables.Moreover,we introduce a newnotion, called the conditional personal
non-cure rate, for which we give an interpretation in terms of selection or weight function. Another related measure is the
conditional personal cure rate which is of interest when, for example, successfully treated cancer patients may die from a
cause other than the diagnosed cancer.

The rest of this article is organized as follows. In Section 2, the unified model is developed from the selection mechanism
viewpoint and the idea of the conditional personal probability is introduced. In Section 3, many of the recently introduced
lifetime distributions are obtained as special cases from the proposed unified model, and some new interpretations from
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a biological viewpoint are given to them. Section 4 deals with some mathematical properties of the unified model. Two
applications of some distributions, discussed in Section 3, are given in Section 5. Finally, Section 6 offers some concluding
remarks.

2. A unified selection distribution

Selection mechanisms arise when a random sample from the entire population might be too difficult or too expensive
to secure and so flexible models must be developed to incorporate this constraint on the observations. We formulate the
selection distributions here within a biological context, where the population is restricted to patients not cured from an
event of interest such as disease or tumor. In biological context, we mean that the damaged cells are competing to produce
detectable tumors. The time for the jth damaged cell (clonogens) to transform into a detectable tumor (promotion time) is
denoted by Xj, j = 1, . . . ,N , where N denotes the unobservable number of damaged cells that can produce the event of
interest. In the sequel, we suppose that N has its probability mass function (pmf) given by

pn = P(N = n), n = 0, 1, . . . . (1)

Let AN(s) =
∑

∞

n=0 pn s
n be the corresponding probability generating function (pgf) for 0 < s < 1, and p0 the cure rate. We

assume that, conditional on N , that the Xj’s are i.i.d. having density function g(x) and survival function S(x) = 1 − G(x).
Usually, exponential, piecewise exponential (Chen and Ibrahim, 2001) andWeibull distributions are used to represent g(x).

GivenN = n and the lifetime T = t , let Zj, j = 1, . . . , n, be independent random variables, independently ofN , following
a Bernoulli distribution with success probability G(t) indicating the presence of the jth competing cause (or clonogens) at
time t . The discrete variable Nt , representing the total number of competing causes among the N initial competing causes
that are present at time t , is then given by

Nt =


Z1 + Z2 + · · · + ZN , if N > 0,
0, if N = 0. (2)

It follows from the fundamental formula for conditional probabilities that

P(Nt = j) =

∞−
n=j

pn

Binomial(n,G(t))  
P(Nt = j|N = n),

and its corresponding pgf (Feller, 1968) is

ANt (s) = AN [1 − (1 − s)G(t)]. (3)

The long-term survival function (Rodrigues et al., 2008) can be obtained from (3) as

SPop(t) = P(T ≥ t) = P(Nt = 0) = ANt (0) = AN [S(t)], (4)

where AN(.) is the pgf of the discrete random variable N .
Motivated by the work of Arellano-Valle et al. (2006), we start with a definition of a selection distribution and its

association with the pgf ANt (s) and density function g(x) of the promotion time random variable X . First, we assume that
the population is divided into two sub-populations of cured and non-cured patients defined by the following binary random
variable for any time t:

Ut =


1, if Nt ≥ 1,
0, if Nt = 0, (5)

where P(Ut = 1) = 1 − P(Nt = 0) = 1 − p0.

Definition 2.1 (Selection Distribution). Let T be a non-negative lifetime random variable and X the promotion time with
probability density function (pdf) g(x). We define the selection distribution of T as the conditional distribution of X , given
Ut = 1.

This definition simply states that the selection probability distribution of T is the probability distribution of X , truncated by
non-cured patients. We show that this viewpoint is quite useful to obtain new classes of flexible lifetime distributions and
also to unify many models proposed recently in the literature.

Indeed, if X in Definition 2.1 has pdf g(x), then T has a pdf fT (t) given by

fT (t) =
g(t) P(Ut = 1 | X ≤ t)

P(Ut = 1)
=

g(t) P(Ut = 1 | X ≤ t)
1 − p0

. (6)

In fact, (6) can be expressed as a weighted distribution (Bayarri and DeGroot, 1992)

fT (t) =
w(t) g(t)
E[w(X)]

, (7)
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where the weight function w(t) is precisely

w(t) = P(Ut = 1 | X ≤ t), (8)

and E[w(X)] is the mean of w(X) with respect to g(t).

Definition 2.2. The lifetime T is under the first-activation at time t if Nt = 1 or T = min{X1, . . . , XN}.

Definition 2.3. The lifetime T is under the last-activation at time t if Nt = N or T = max{X1, . . . , XN}.

The first-activation at time t means that the cancer patient died from a specific clonogen in the presence of other clonogens
and P(Nt = 1) is called the crude cumulative probability or cumulative incidence function (CIF) (Yu et al., 2010). On the
other hand, the last-activation at time t means that all clonogens are activate at time t and P(Nt = N) is the so-called net
survival at time t (Yu et al., 2010) and it is a measure of survival if all causes of death other than the cancer of interest were
to be eliminated. As mentioned by Yu et al. (2010), the net survival is a desirable measure for evaluating the progress of
cancer treatment and control efforts since the interpretation of excess mortality due to cancer is not affected by changes in
mortality due to other diseases.

Theorem 2.4. The crude cumulative distribution and the net survival at time t are given by

P(Nt = 1) =
G(t)dAN(s)

ds


s=S(t)

, (9)

P(Nt = N) = AN [G(t)],

respectively.

Proof. The crude cumulative distribution simply follows from (3) and the net survival is obtained from the following result:

P(Nt = N) =

∞−
n=0

pnP(Nt = n | N = n) =

∞−
n=0

pnG(t)n. �

Definition 2.5 (Conditional Personal Non-Cure Rate Under the First-Activation). Let T be the lifetime of some treated cancer
patient under the first-activation process and X the promotion timewith pdf g(x). The conditional probability of the patient
dying from the damaged or initiated cells (clonogens), given that X ≤ t , called the ‘‘conditional personal non-cure rate’’, is
defined as

γnp(t) = P(Ut = 1 | X ≤ t). (10)

Indeed, we can show from (9) that

γnp(t) =
P(Nt = 1)

G(t)
=

dAN(s)
ds


s=S(t)

, (11)

and from (6) the selection distribution of T is then given by

fT (t) =
g(t)

1 − p0


dAN(s)

ds


s=S(t)


. (12)

The corresponding proportion of patients dying from causes other than the diagnosed cancer γp = 1 − γnp, given that
X ≤ t , is defined as the conditional personal cure rate. This measure will be of natural interest since it corresponds to
successfully treated cancer patients who may not die from cancer during the time t . Analogously, the selection distribution
of T under the last-activation at time t is given by

fT (t) =
g(t)

1 − p0


dAN(s)

ds


s=G(t)


. (13)

We had not chosen any r-activation that is between the first-activation and last-activation, since from Cooner et al. (2007),
r | N ∼ DiscreteUnif(1,N) and P(N = 0) = 0 jointly imply w(t) = 1, i.e., we do not select any distribution, or simply
fT (y) = g(t).

Eqs. (12) and (13) are important since they show how the pgf works as a selection mechanism and how it unifies in a
simple way many of the distributions recently proposed in the literature. It also enables the calculation of the personal cure
rate, which is a measure that is of interest in the treatment of cancer patients, for example. The weight function w(t) in (8)
is concerned with selected patients at risks, and this assists in obtaining the conditional personal cure rate. These results are
summarized in Table 1.
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Table 1
Selection mechanisms and personal cure rates.

Selection distribution First-activation Last-activation

fT (t)
g(t)
1−p0


dAN (s)

ds


s=S(t)


g(t)
1−p0


dAN (s)

ds


s=G(t)


ST (t)

AN [S(t)]−p0
1−p0

1−AN [G(t)]
1−p0

hT (t)
g(t)


dAN (s)

ds


s=S(t)


AN [S(t)]−p0

g(t)


dAN (s)
ds


s=G(t)


1−AN [G(t)]

γp(t) 1 −
dAN (s)

ds


s=S(t)

1 −
dAN (s)

ds


s=G(t)

3. Some special models

In this section,we demonstrate howmany existingmodels can be deduced as special cases of the proposed unifiedmodel.
In addition, this viewpoint also results in a biological interpretation for these cases.

• Generalized exponential Poisson (GEP) distribution.
Barreto-Souza and Cribari-Neto (2009) introduced the GEP distribution with two parameters α and λ, and they showed
that it has a desirable physical interpretation. That is, if there are n components in a parallel system and the lifetimes of
the components are independently and identically distributed as exponential Poisson (EP) (Kuş, 2007), then the system
lifetime follows the GEP law. Here, we give a different characterization for the GEP distribution from our unified model.
Consider a sequence of independent Bernoulli trials, where the kth trial has probability of success α/k, for k = 1, 2, . . .,
0 < α < 1. The trial number X forwhich the first success occurs follows the so-called Sibuya distributionwith parameter
α, say Sibuya(α) (Christoph and Schreiber, 2000; Devroye, 1993), given by P(X = r) = (−1)r−1α(α−1) . . . (α−r+1)/r!.
The pgf of X (Pillai and Jayakumar, 1995) is

AX (s) = 1 − (1 − s)α. (14)

Now, defineM ∼ Sibuya(α) and Xi ∼ P(λ), and

N =


X1 + · · · + XM : ifM > 1
0 : ifM = 0.

Then, we have

AN(s) = 1 − [1 − exp{−λ(1 − s)}]α. (15)

From the first-activation mechanism in Eq. (15), by taking S(x) = exp(−βx), we obtain the GEP distribution

fT (t; θ) =
αλβ

(1 − e−λ)α
{1 − e−λ+λ exp(−βt)

}
α−1e−λ−βt+λ exp(−βt), (16)

where θ = (α, β, λ). Further, if α = 1, we have the EP distribution (Kuş, 2007). Various properties and inferential
methods for this two-parameter distribution with decreasing failure rate are discussed by Kuş (2007).

• Classical Lehmann alternative distributions.
There has been several attempts at modeling failure time data by the classical Lehmann type I and II alternatives given
by FT (t) = [G(t)]α and FT (t) = 1 − [1 − G(t)]α , respectively, where G(t) is the parent cumulative function and α is
a positive real number. Recently, the first form has also been refereed to as the exponentiated-G (Exp-G) distributions.
Some examples, discussed by Nadarajah and Kotz (2006), are the exponentiated exponential (EE), exponentiated gamma,
exponentiated Weibull, exponentiated Gumbel and exponentiated Fréchet distributions, which extend the exponential,
gamma, Weibull, Gumbel and Fréchet distributions, respectively. The advantage of this approach lies in its flexibility to
model both monotonic as well as non-monotonic failure rates even though the baseline failure rate may be monotonic.
Lehmann type I and II models are easily obtained from the Sibuya generating function (14) under the first-activation and
last-activation mechanisms in Table 1 by setting p0 = 0.
We give a simple example. Assuming S(x) = e−βx, from (14), we obtain, under the first-activationmechanism in Table 1,
the EE (also called generalized exponential) distribution (Gupta and Kundu, 1999). Its density function is

fT (t, θ) = αβe−βt(1 − e−βt)α−1, (17)

where θ = (α, β). The EE cumulative function has closed form and so its inference based on censored data can be handled
more easily than with the gamma distribution (Gupta and Kundu, 1999). Here, we have provided above a nice biological
interpretation for it through the first-activation selection.

• The Weibull-geometric (WG) distribution.
Barreto-Souza et al. (2010) proposed the WG distribution (with decreasing failure rate), which generalizes the
exponential geometric (EG) distribution due to Adamidis and Loukas (1998). Taking the pgf asA(s) =

1−p
1−ps , corresponding
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to a geometric distribution with parameter p, and the Weibull survival function S(t) = exp{−(βt)α}, we obtain, under
first-activation mechanism in Table 1, the WG density function

fT (t, θ) = αβα(1 − p)tα−1 exp{−(βt)α}[1 − p exp{−(βt)α}]
−2,

where θ = (α, β).
• Exponential Conway–Maxwell Poisson (ECOMP) distribution.

The Conway–Maxwell Poisson distribution (COM-Poisson), first introduced by Conway andMaxwell (1961), was revived
recently by Shmueli et al. (2005). The COM-Poisson distribution generalizes the Poisson distribution in an elegant and
flexible way, allowing for under-dispersion as well as over-dispersion. This distribution was also discussed by Kadane
et al. (2006) from a Bayesian viewpoint, and an elicitation program to find the hyper-parameters from the predictive
distribution was discussed there as well; see also Kokonendji et al. (2008) for more details on the COM-Poisson
distribution. This distribution can be expressed in the exponential form and can then be viewed as a weighted Poisson
distribution with weight function w(m; φ) = (m!)1−φ (Kokonendji et al., 2008; Rodrigues et al., 2009). The pmf of the
COM-Poisson distribution for a discrete variableM is given by

P(M = m; η, φ) =
1

Z(η, φ)

ηm

(m!)φ
, m = 0, 1, 2, . . . , (18)

where Z(η, φ) =
∑

∞

j=0
ηj

(j!)φ . Therefore, the cure fraction turns out to be

p0 = P(M = 0; η, φ) =
1

Z(η, φ)
. (19)

The corresponding pgf is

A(s) =
Z(ηs, φ)

Z(η, φ)
. (20)

Now, by applying the first-activation mechanism, we obtain the ECOMP distribution (Cordeiro et al., in press) with pdf

fT (t; θ) =
β

Z(λ, φ) − 1

∞−
j=1

jλj

(j!)φ
exp(−jβt), y > 0, (21)

where θ = (β, λ, φ)T .
• The exponentiated Weibull (EW) distribution.

The EW distribution (Nassar and Eissa, 2004) is an extension of the well-known Weibull distribution. The EW family
contains distributions with non-monotone failure rates in addition to a broad class of monotone failure rates. In practice,
many lifetime data display bathtub shape or upside-downbathtub shape failure rates and so the EWdistribution provides
a more realistic model than those with monotone failure rates. Taking the Weibull survival function S(x) = exp(−xβ)
with a scalar parameter equal to one and a shape parameter β , we obtain from (14), for 0 < α ≤ 1 and under the
first-activation mechanism in Table 1, the EW density function given by

fT (t; θ) = αβtβ−1 exp(−tβ){1 − exp(−tβ)}α−1, (22)

where θ = (α, β). For this restricted parameter space, the selection mechanism gives a new biological interpretation for
the EW distribution.

• The Kumaraswamy G family of distributions.
Consider starting from a parent continuous distribution function G(t). A natural way of generating families of
distributions on some other support is to apply the quantile function to a family of distributions on the interval (0, 1).
Based on the Kumaraswamy distribution on this interval, Cordeiro and de Castro (2010) defined the Kumaraswamy G
(Kw-G) family of distributions by

FT (t) = 1 − {1 − [G(t)]a}b, (23)

where a > 0 and b > 0 are two additional parameters to control skewness through the relative tail weights. They
presented someexamples of (23) such as theKw-normal, Kw-gamma, Kw-Weibull, Kw-Gumbel andKw-inverseGaussian
distributions. Because of its tractable distribution function (23), the Kw-G family of distributions can be used quite
effectively for inferential purposes even if the data are censored. Eq. (23) is easily obtained (for b < 1) from the
Sibuya(b) pgf (14), under the last-activationmechanism in Table 1, by considering the Exp-G(a) distribution as the parent
distribution and p0 = 0. In a differentway, the Kw-Gdistribution can be derived by twomechanisms applied in sequence,
which hold only for a < 1 and b < 1: the Sibuya(a) pgf under the first-activation mechanism applied to G(t) gives
H(t) = [G(t)]a and then the Sibuya(b) pgf under the last-activation mechanism applied to H(t) yields (23), both cases
with p0 = 0. We have

G → Sibuya + first mechanism → Exp-G(a) → Sibuya + last mechanism → Kw-G.
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• The Kumaraswamy–Weibull (KwW) distribution.
Cordeiro et al. (2010b) introduced the KwW distribution that contains as special sub-models the exponentiatedWeibull,
exponentiated Rayleigh, exponentiated exponential, Kumaraswamy exponential (KwE) andWeibull distributions. Taking
G(x) = [1 − exp{−(λx)c}]a, from (15) under the last-activation mechanism in Table 1, we obtain the KwW density
function (for t > 0) given by

fT (t; θ) = abcλc tc−1 exp{−(λt)c}[1 − exp{−(λt)c}]a−1
{1 − [1 − exp{−(λt)c}]a}b−1, (24)

where θ = (a, b, c, λ) and 0 < b < 1.
In view of the selection mechanism considered here, we have a new biological interpretation for the KwW distribution,
which is quite different from the physical interpretation given by Cordeiro et al. (2010b).

• A generalized modified Weibull (GMW) distribution.
Carrasco et al. (2008) proposed a four-parameter generalization of theWeibull distribution, which is capable ofmodeling
a bathtub shaped hazard rate function. This distribution has a number of well-known lifetime distributions as special
cases includingWeibull, extreme value, exponentiatedWeibull, generalized Rayleigh andmodifiedWeibull distributions.
Now, by taking S(x) = exp{−αyγ exp(λy)}, from (14) and under the first-activation mechanism in Table 1, we obtain
the generalized modified Weibull density function given by

fT (t; θ) = αβtγ−1(γ + λt) exp{λt − αytγ exp(λt)}[1 − exp{−αtγ exp(λt)}]β−1, (25)

where θ = (α, β, γ , λ) and 0 < β < 1. The selection mechanism then provides a new biological interpretation for the
GMW distribution from the first-activation viewpoint.

• The exponential power series (EPS) distribution
Chahkandi and Ganjali (2009) introduced a new lifetime family of distributions (with decreasing failure rate) by
combining a truncated at zero power series with some exponential distributions. Consequently, we consider S(t) =

exp(−βt) and the power series mass function

pn(α) = P(N = n; α) =
anαn

A(α)
, n = 0, 1, . . . , (26)

where an > 0, A(α) =
∑

n anα
n and α > 0. The family (26) of distributions includes as special cases the binomial,

Poisson, negative binomial and logarithmic distributions, among others. The corresponding pgf is AN(s; α) =
A(αs)
A(α)

and
p0 =

a0
A(α)

. Under the first-activation mechanism given in Table 1, we obtain the density function

fT (t; θ) =

αβ exp(−βt) dAN (s;α)

ds


s=exp(−βt)

A(α) − a0
, (27)

where θ = (α, β). Estimation of these parameters by maximum likelihood procedure and its related EM algorithm can
be found in Chahkandi and Ganjali (2009).

• Beta generalized (BG) distribution.
Given a parent distribution G(t; θ)with the parameter vector θ and the density function g(t; θ), the BG distributionmay
be characterized by the density function

fBG(t; θ, a, b) = B(a, b)−1g(t; θ)G(t; θ)a−1
[1 − G(t; θ)]b−1, (28)

where B(a, b) = Γ (a)Γ (b)/Γ (a + b) denotes the beta function, Γ (·) the gamma function and a > 0 and b > 0
are additional shape parameters to those in θ . If T is a random variable with pdf (28), we write T ∼ BG(G; θ, a, b).
The density function fBG(t; θ, a, b) will be most tractable when both functions G(t; θ) and g(t; θ) have simple analytic
expressions. Except for some special choices of these functions, fBG(t; θ, a, b) could be complicated to deal with in full
generality. Some BG distributions have been discussed in recent literature. For example, Eugene et al. (2002); Nadarajah
and Kotz (2004) and Nadarajah and Gupta (2004) defined the beta normal, beta Gumbel and beta Fréchet distributions
by taking G(t) to be the cdf of the normal, Gumbel and Fréchet distributions, respectively, and studied some of their
properties.More than twenty BG distributions have been developed by several authors during the past ten years. It should
be emphasized that for a and b positive integers, (28) reduces to the density function of the ath order statistic from the
G distribution in a sample of size a + b − 1. Here, we provide a simple interpretation when b is real less than one and a
is any positive real.
The random variable T admits the simple stochastic representation T = G−1(V ), where V follows a beta distribution
with parameters a and b. Using this transformation, the cdf corresponding to (28) can be expressed as

FBG(t; θ, a, b) = IG(t;θ)(a, b) = [B(a, b)]−1
∫ G(t;θ)

0
ωa−1(1 − ω)b−1dω, (29)

where Ix(a, b) denotes the incomplete beta ratio function.
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For 0 < s ≤ 1, the well-known power series expansion for the incomplete beta ratio function holds and is given by

Is(a, b) =

∞−
n=0

dnsa+n,

where the coefficients dn are positive for b < 1. They are given by

dn =
Γ (1 − b + n)

(a + n)n!Γ (1 − b)B(a, b)
.

Clearly,
∑

∞

n=0 dn = 1 since I1(a, b) = 1. From the above expansion, let a discrete random variable M be defined by
the probabilities dn for n = 0, 1, . . . The generating function of M is then given by AM(s) =

∑
∞

n=0 dns
n. We define the

constant random variable K such that P(K = a) = 1 and the random variable N = K + M , where K andM are assumed
to be independent. Exploring the combination of the pgf of N with the last-activation mechanism in Table 1 yields the
BG distribution by setting p0 = 0, i.e., AN(G(t)) = AK (G(t))AM(G(t)) =

∑
∞

n=0 dnG(t)a+n
= FBG(t; θ, a, b).

4. Some properties

For an arbitrary baseline cdf G(t) and a discrete random variable N defined by the pgf AN(s), the unified cumulative
distribution of T under the first-activation and last-activation mechanisms can be expressed from Table 1 as

FT (t) =
1 − AN [1 − G(t)]

1 − p0
and FT (t) =

AN [G(t)] − p0
1 − p0

,

respectively. From now on, a random variable Za is said to have the exponentiated-G distribution with parameter a > 0, say
Za ∼ Exp-G(a), if its pdf and cdf are given by

ha(x) = ag(x)Ga−1(x) and Ha(x) = Ga(x),

respectively. Here, we demonstrate that fT (t) can be written as a mixture of exponentiated-G densities under the last-
activation mechanism and a linear combination of exponentiated-G densities under the first-activation mechanism. In both
cases, the weighted coefficients depend only on the probabilities of N . Under the last-activation mechanism, we have

FT (t) =
AN [G(t)] − p0

1 − p0
=

∞−
r=1

pr
1 − p0

[G(t)]r

and then

fT (t) =

∞−
r=0

vrhr(t), (30)

where v0 = 0 and vr = rpr/(1 − p0) for r = 1, 2, . . . .
By expanding the binomial term in the first-activation mechanism, we obtain

FT (t) =
1 − AN [1 − G(t)]

1 − p0
=

1
1 − p0

−

∞−
i=0

i−
r=0

(−1)r


i
r


pi

1 − p0
G(t)r .

Now, by interchanging the orders of summation, we can write

FT (t) =

∞−
r=1

qrG(t)r ,

where qr =
∑

∞

i=r

(−1)r+1


i
r


pi

1−p0
for r = 1, 2, . . . . Hence,

fT (t) =

∞−
r=0

wrhr(t), (31)

where wr = (r + 1)qr+1 for r = 0, 1, . . . . Eq. (31) has the same form as (30), but with different weight coefficients.
So, some mathematical quantities (such as ordinary and incomplete moments, generating function and mean deviation)

of the unified distribution of T in both mechanisms can be obtained by knowing those quantities for the exponentiated-G
distribution. The mathematical properties of the exponentiated distributions have been studied by many authors in recent
years (Nadarajah and Kotz, 2006). Now,we obtain themoments and generating function of T from (31) since they are similar
to (30). The sth moment of T is given by

E(T s) =

∞−
r=0

wrE(Z s
r ),



3318 J. Rodrigues et al. / Computational Statistics and Data Analysis 55 (2011) 3311–3319

Table 2
Parameter estimates and goodness-of-fit statistics for the fitted distributions (ordered according to A∗).

Data set Distribution Estimates W ∗ A∗

Boeing data ECOMP (7.37 × 10−3, 1.37, 0.983) 0.068 0.449
(n = 213) EG (7.99 × 10−3, 0.429) 0.074 0.484

EP (7.49 × 10−3, 1.34) 0.070 0.461
Exponential 1.07 × 10−2 0.165 1.018

Disasters data ECOMP (1.55 × 10−3, 3.90, 1.08) 0.067 0.432
(n = 109) EP (1.65 × 10−3, 3.26) 0.068 0.439

EG (2.36 × 10−3, 0.619) 0.068 0.480
Exponential 4.15 × 10−3 0.070 0.658

a b

Fig. 1. Empirical survival function and some fitted distributions. (a) Boeing data. (b) Coal-mining disasters data.

where Zr ∼ Exp-G(r). The moments of Zr can be derived from the quantile function of G, say Q (u) = G−1(u), as E(Z s
r ) =

r
 1
0 Q (u)sur−1du. Similarly, the generating function of T can be expressed as

MT (w) =

∞−
r=0

wrMZr (w),

whereMZr (w) = r
 1
0 exp{wQ (u)}ur−1du is the generating function of Zr .

5. Illustrative examples

In this section, we present two illustrative examples. The first data set was presented by Proschan (1963) which consists
of the interval in hours between successive failures of the air conditioning system in a fleet of Boeing 720 airplanes. The data
set contains 213 observations and was also analyzed by Adamidis and Loukas (1998), Kuş (2007) and Chahkandi and Ganjali
(2009), among others. The second data set, presented by Cox and Lewis (1966) and used by Adamidis and Loukas (1998),
comprises 109 observations on the number of days between successive coal-mining disasters. The required computations
were performed in R language (R Development Core Team, 2011). Computational code is available from the first author on
request.

Table 2 lists the parameter estimates and the results of the formal goodness-of-fit tests. We apply the modified
Cramér–von Mises (W ∗) and Anderson–Darling (A∗) statistics proposed by Chen and Balakrishnan (1995). In general, the
smaller the values of these statistics, the better the fit to the data. For both data sets, Table 2 presents the values of W ∗

and A∗, which indicate that the ECOMP, EG and EP distributions yield very similar fits. The fitted survival functions of these
distributions superimposed on the empirical survival function in Fig. 1 and reinforce this claim. For the GEP distribution, the
estimates of the parameter α in both examples are close to one, supporting the EP distribution.
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6. Concluding remarks

In this work, we have used the selection mechanism proposed by Arellano-Valle et al. (2006) to formulate a very flexible
family of distributions, where some structural properties are presented in detail. This unified distribution includes many of
the recently proposed lifetimemodels as special cases, andmoreover facilitates in giving a biological interpretation for them.
Also, the idea of personal probability presented gives an important interpretation for theweight function, whichwe feel will
be of interest in survival analysis. However, muchmore research needs to be done in order to investigate unexplored aspects
of this mechanism, especially in inferential problems. We hope to motivate many important applications of this selection
lifetime distribution in the future.
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