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Analysis of scientific data involves many components, one of which is
often statistical testing with the calculation of p-values. However, re-
searchers too often pepper their papers with p-values in the absence of
critical thinking about their results. In fact, statistical tests in their various
forms address just one question: does an observed difference exceed
that which might reasonably be expected solely as a result of sampling
error and/or random allocation of experimental material? Such tests are
best applied to the results of designed studies with reasonable control of
experimental error and sampling error, as well as acquisition of a
sufficient sample size. Nevertheless, attributing an observed difference
to a specific treatment effect requires critical thinking on the part of the
scientist. Observational studies involve data sets whose size is usually a
matter of convenience with results that reflect a number of potentially
confounding factors. In this situation, statistical testing is not appropriate
and p-values may be misleading; other more modern statistical tools
should be used instead, including graphic analysis, computer-intensive
methods, regression trees, and other procedures broadly classified as
bioinformatics, data mining, and exploratory data analysis. In this re-
view, the utility of p-values calculated from designed experiments and
observational studies are discussed, leading to the formation of a deci-
sion tree to aid researchers and reviewers in understanding both the
benefits and limitations of statistical testing.
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ESPITE A MULTITUDE of warnings and explana-

tions from all disciplines of science, researchers
often misuse and misinterpret the results of statistical
tests, nor can they correctly explain the meaning of a
p-value (3,6). Research articles are often littered with
p-values in the absence of appropriate critical analysis.
This problem is all too familiar to the author, who is the
consulting statistician for Aviation, Space, and Environ-
mental Medicine. Throughout academia, industry, and
government research laboratories, misconceptions re-
garding statistical testing lead authors to ask “Is it
significant?” or say, “I want to know if there is a real
difference.” In this review, I shall provide for the jour-
nal’s contributors and readers a clear explanation of the
true nature of statistical testing and provide a flowchart
to aid in evaluating the results of statistical analyses.

Examples of Misunderstanding

In a recent paper, I stated that the observed mean for
the treatment group was 10 units higher than that for

the control group. A reviewer complained (in bold type,
no less) that I could not make such a statement unless
the difference was statistically significant. Alas, many
scientists seem to believe that the observed results of an
experiment or observational study are not factual and,
therefore, cannot be discussed unless some type of sta-
tistical sanctification is invoked.

While the observed means or the mean difference in
my study may not be factual as a result of sampling
variability or measurement error, it is certain (p = 1.0!)
that there was a 10-unit difference between groups. No
author should be faulted (and in most cases should be
praised) for discussing the actual outcome of the exper-
iment; doing so does not require a statistical test nor is
the result probabilistic. For a specific experiment, the
results occur with absolute certainty.

A second example of this kind of misconception con-
cerns an article that I reviewed that reported commer-
cial airline accident rates over a span of 10 yr. Such
accidents are subject to exact enumeration and thor-
ough investigation, so we can assume that the database
included every accident during that period. The author
presented the data with 95% confidence limits and an
index of sampling error, despite the fact that this was
the entire population and not a sample! When asked to
remove the confidence limits, the author suggested that
other kinds of errors (i.e., incorrect reporting or com-
puter entry mistakes) could have influenced the rates,
and I had to point out that such non-sampling errors are
not subject to statistical analysis unless repeated mea-
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sures (i.e., reliability checks) are performed, which was
not the case here.

As a statistician with long experience in human ex-
perimentation and observational studies, I believe that
these examples reflect a lamentably common state of
misinformation among medical scientists. The remain-
der of this paper will be devoted to helping readers
understand the correct use and limitations of statistical
inference.

Statistical Tests

Ask research scientists why they wish to perform
statistical tests and the answer is likely to be either, “I
want to know whether there is a difference” or “I want
to see if the difference is significant.” Unfortunately,
statistical tests cannot answer either question. Establish-
ing a difference is a matter of looking at the numbers:
does the mean of the treatment group equal the mean of
the control group or does it differ? Evaluating signifi-
cance is more complex: the scientist likely wants to
know whether the results are important, notable, con-
sequential, vital, crucial, serious, critical, momentous,
and/or weighty, but statistical tests do not address
those issues. Even the more limited question of “statis-
tical significance” is vague because “significance” has
many meanings and interpretations. In fact, statistical
testing in its various forms addresses just one question:
does the observed difference exceed that which might
reasonably be expected solely as a result of sampling
error and/or random allocation of experimental mate-
rial? If the answer is “no,” the difference could be a
chance occurrence, simply a function of the randomiza-
tion or sampling process.

In a designed experiment, material is assigned to
experimental conditions, the treatments are applied,
and results are then observed. Even if the treatment has
no effect whatever, the observed means for different
groups will likely differ due to the effects of experimen-
tal error and sampling error. Experimental error should
be a minor concern if the experiment is well designed
with tight controls and good measurement techniques.
Sampling error reflects the fact that different initial
random allocations will produce slightly different re-
sults even when the treatment has no effect. Statistical
tests compare the specific observation (experimental
outcome or difference) to that which might be expected
if there were no treatment effect, i.e., sampling variation
was the only factor operating in the experiment.

Since there are many possible outcomes to the re-
randomization of an experiment, the observed results
are compared with a distribution of outcomes derived
solely as a result of sampling error. These “reference
distributions,” which reflect the differences that might
be observed in multiple repetitions of a noise-only ex-
periment, can be found in the back of any statistics or
biostatistics text (e.g., z, t, F, X°). Statistical tests and
their resulting p-values are generated when the differ-
ence observed in the experiment is compared with the
reference distribution of differences in the absence of
any treatment effect. If the observed result greatly ex-
ceeds that which might be expected solely as a result of
random sampling or random allocation, then one may

conclude that some other effect influenced the results.
That is, something is at work that influenced the means
beyond the effect of only sampling error. Note that the
researcher cannot say that there was a treatment effect,
only that the result exceeded what might be logically
expected due to sampling error alone. Attributing the
result to the treatment is a completely different problem
that is not addressed by statistical testing, a distinction
that is often misunderstood by researchers and is a
major cause of the misuse of statistical testing.

Test statistics are merely standardizations of the ob-
served result after considering sample size and ob-
served variation. Large test statistics result when effects
are large (big observed differences), experimental error
is small (low noise), and/or sample sizes are large (little
sampling error). The size of the difference between the
observed result and what might be expected solely as a
result of sampling error is quantified by where the
observed test statistic falls on the sampling-error-only
reference distribution (t, F, etc.). If the test statistic is
near the center of the distribution, we may conclude
that the value of the test statistic is not unlike one that
might be obtained if this were a noise-only system. It
may then be concluded that there is insufficient evi-
dence to discount sampling variation as a possible rea-
son for the observed difference. If the test statistic is
large and falls on the tails of the reference distribution,
this is evidence against the “noise-only” hypothesis and
it may be concluded that other influences are operating
within the system. Depending on the situation, these
“other influences” could be anything from the treat-
ment effect to the fact that the researcher was unethical
and doctored the numbers. Statistical tests never reveal
the source of the observed effect, only whether the latter
is rare compared with a noise-only system.

The location of the test statistic is quantified by cal-
culating the percentile of the statistic with regard to the
reference distribution. This resembles the way a teacher
references an individual’s test score to a norm distribu-
tion: if a student is in the 90th percentile, we know that
approximately 10% (one minus the percentile) of scores
exceeds the score obtained by this individual, who can,
therefore, be viewed as more the exception than the
rule. Similarly, the p-value associated with the test sta-
tistic indicates the rarity of the observed test statistic
when referenced to a distribution of outcomes in which
sampling variation is the only effect. The p-value is one
minus the percentile, and indicates the proportion of
the reference distribution which is equal to or greater
than the observed test statistic. Thus, large test statistics
will be associated with low p-values; a p-value of 0.43
indicates a rather common occurrence when referenced
to sampling variation alone, while a p-value of 0.01
indicates a rather rare occurrence. That is all we know;
we need not sensationalize the results with superlatives
such as significant, momentous, or spectacular. Nor do
we need to garnish the results with stars, crosses, dou-
ble asterisks, or smiley faces.

Designed (Randomized) Experiments

Suppose a study meets all the requirements of an
ideal experiment including: random assignment of sub-
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jects or experimental materials to treatment groups;
replication of experimental material within each treat-
ment group; close attention to issues such as measure-
ment, masking, and laboratory procedures; and elimi-
nation of potential confounding elements by treating all
experimental material alike in every respect except for
the independent variable being manipulated. The ex-
periment then yields a 15-unit difference between
Treatment Group A and Treatment Group B. The data
all seem reasonable and there is no reason to believe
that the researcher or laboratory technicians were dis-
honest in any way. Under these conditions, there are
only two possible explanations for the observed differ-
ence: one is that a treatment effect was involved and the
other is that the treatment had no effect and the result
arose purely as a consequence of sampling error (4,7).

Now suppose we construct a test statistic (f-test) to
determine whether 15 is greater than zero in the context
of sampling error. It is a fact that 15 is not equal to zero,
but we want to know whether 15 is markedly different
from what might be expected if the treatment had no
effect, i.e., the only thing operating in this experiment is
sampling variation. The test statistic is calculated (cor-
rectly) and the associated p-value is 0.03. Can we con-
clude that the treatment was effective? No! Such a
conclusion requires a clinical judgment of efficacy. Can
we conclude that the result was significant? No! Signif-
icance is a relative term meaning different things to
different people over varied circumstances. Can we
conclude that the treatment produced a 15-unit change
beyond sampling variation? No! Since the effect of sam-
pling variation and the effect of the treatment are mixed
together, the 15-unit change cannot all be attributed to
the treatment. The only conclusion we can draw is that
the observed difference is somewhat unlikely in the
absence of a treatment effect, i.e., there was “some”
treatment effect. That is it! The actual effect of the
treatment may be 3 units or 5 units or 0.006 units!

So, it cannot be concluded that the treatment effect
was 15 units, but it might be concluded that the treat-
ment effect was not zero. Notice that it cannot even be
said that it is non-zero with certainty, since the end
result of the statistical test is a probability. The re-
searcher may feel that 0.03 is sufficiently robust to sup-
port a statement that there was some effect of the treat-
ment despite the risk that this is in fact one of those rare
situations where the observed 15-unit difference re-
sulted purely from sampling variation. Since this is a
properly designed experiment, the researcher might
logically attribute this effect to the treatment.

If the p-value = 0.34, it indicates that the experimen-
tal result was not markedly different than what might
be expected from sampling variability alone. Does that
mean there was no treatment effect? No! In the absence
of an unusually large test statistic (low p-value), the
researcher cannot discount the “noise-only” hypothesis.
Does this mean there is no treatment effect? Of course
not! There are still two hypotheses left with equally
viable explanations for the observed difference: treat-
ment effect and sampling error. The inability to dis-
count the noise-only hypothesis does not mean the
treatment had no effect. A test statistic will always yield

a large p-value if the sample size is inadequate with
respect to the individual variability of the experimental
material. If we find a dead animal and know that the
cause of death was either poison or old age, but we
cannot determine the animal’s age, it does not mean the
animal was poisoned!

Large p-values will also occur in poorly run experi-
ments using unreliable measurements. Since experi-
mental error and measurement error increases the ob-
served variability between individual pieces of
experimental material, sampling error appears larger
than it actually is. Treatment effects in excess of sam-
pling variability are more difficult to detect when ex-
perimental and/or measurement error are high. In that
situation, the experiment was not adequately designed
to detect treatment effects in the presence of the great
sampling variability. That is why large p-values cannot
be used to justify “no effect.” The effect may very well
be present, but the design was simply inadequate to
detect it.

Because a sufficiently large sample allows detection
of even the smallest effect no matter how large the
experimental error, some investigators would like to
scrap the whole process of statistical hypothesis testing
(2). However, the ability to detect small differences
using a large sample is a virtue of statistical inference.
The theory that supports statistical inference is exquis-
ite, but its practice is another matter. Effects come in all
sizes. Small effects are just as “real” as large ones.
Although separating small effects from sampling vari-
ability is difficult, the tools of statistical inference would
be of little use if they could detect only large effects. The
problem lies in the interpretation of the statistical re-
sults. Low p-values say nothing about the clinical rele-
vance of the result or the size of the effect. Small p-
values can always be obtained with large samples no
matter how much random experimental error is
present. In this situation the more important question is
one of informed judgment of clinical or practical signif-
icance.

Observational Studies

Observational studies usually involve data that is
acquired rather than sampled. Studies of this type have
a number of names including analytical surveys, corre-
lational studies, and pseudo-experiments. In general,
there are two key differences between observational
studies and designed experiments. First, there is no
form of sampling or random allocation. Observations
are often ones of convenience and are not selected or
assigned using any type of probabilistic notion. Second,
the investigator has minimal control over error variance
(experimental error in a true experiment). All types of
error, both random and systematic, abound in such
studies (5,7,9). Systematic errors create confounds
which are typically difficult to adjust for in observa-
tional settings.

In a typical observational study, the researcher may
believe a certain risk factor is associated with a specific
outcome and obtains data that might show such an
association. What information might a p-value provide
in such a study? Some experts argue adamantly that
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statistical testing is inappropriate because such studies
lack randomization or random sampling, which are the
key ingredients that make inferential statistics work.
Without them, the databased estimates that are eventu-
ally used to construct statistical tests are too easily
biased. Furthermore, the central limit theorem (the ba-
sis of all statistical tests and confidence intervals) does
not work without randomization or random sampling.
If a statistical test on observational data produces a
large p-value (e.g., 0.36), we may be tempted to say there
is no evidence that the data is a result of something other
than random allocation (sampling error). Although we do
not have a random sample or random allocation, the data
do not seem to depart much from what we might expect
due to sampling variation alone. However, caution is re-
quired because an observational study does not follow the
rules that allow for this type of conclusion. Since the data
are most likely a “grab set,” estimates of means and vari-
ances that are used in constructing statistical tests may be
heavily biased. Statistical tests in designed studies attempt
to answer the question, “Given random sampling, what
are the chances of this result?” In an observational study
we can only ask, “Given the data (acquired without ran-
domization), what are the chances that it is random?”
These are two very different chances! In the first case
(random sampling), we are aware of the process by which
the data was obtained and wish to make statements about
the outcome. In the second case (observational data), we
have the outcome and are attempting to make statements
regarding the process! Traditional statistical tests ask,
“Given random sampling or allocation, what are the
chances of the data?” This can be written as a statement
of conditional probability, p(DATA IRANDOM), (the
symbol “1” means, given). This question cannot be
answered without random sampling or random alloca-
tion. When we perform statistical tests on observational
data, the only question we may attempt to answer is
p(RANDOM | DATA). Two problems! Traditional sta-
tistical tests do not address this question—they only
address p(DATA IRANDOM), and without random-
ization, p(DATA IRANDOM) has no meaning. Most
would not confuse p(DEATHIHANGING) and
p(HANGING I DEATH)! In the first case, we know the
process (HANGING) and wish to make statements re-
garding the outcome (DEATH). In the second case, we
know the outcome (DEATH) and wish to make state-
ments regarding the process (HANGING). We might
also ask, “Why are we attempting to answer a question
to which we already know the answer?” It is a known
fact; data which are “acquired” cannot be random! Re-
searchers must recognize that statistical tests performed
on observational data have different meanings from
those performed on randomized experiments!
Supposing the p-value for an observational study is
small, e.g.,, p = 0.03. Can it be concluded that the
independent variable had an effect on the dependent
variable beyond that due to sampling variation? No!
Since there was no random sampling or allocation,
there are many reasons, other than the effect of the
independent variable, for data that yield results in ex-
cess of sampling variation (4,7). Although a low p-value
indicates order that is not random in the data, we

cannot attribute this order to any treatment or condi-
tion. Perhaps the nonrandom result is purely a function
of the nonrandom procedure by which the data were
obtained (a statistical Catch-22)! With any grab-set, data
may be affected by innumerable confounding variables
and biases are in many cases impossible to separate
from the effects of the independent variable of interest.

Finally, the most compelling argument against per-
forming statistical tests in an observational study may
be that the size of the data set (N) is usually arbitrary, a
matter of convenience. Since the p-value is a function of
N, this situation in turn generates an arbitrary p-value.
If the data set happens to be large, then the p-value will
be small and visa versa.

Deduction vs. Induction

In well-designed, randomized experiments the deci-
sion process is deductive in nature. Since there are only
two possible reasons for the observed outcome, if one
can be discounted, then we can deduce the other. Of
course, it is not pure deduction since the procedure is
probabilistic, but it is close.

Observational studies do not provide such a defini-
tive decision tree. Statistical tests performed on obser-
vational data have little meaning and in most cases are
detrimental. Acting as though there was an experiment
does not create one. Observational studies require hard
thought and induction; they are very difficult to do well
and cannot be reliably analyzed with mindless com-
puter packages that spew out page after page of p-
values. The validity of the results can be determined
only through replication or cross-validation. Research-
ers must also realize that some, perhaps many, obser-
vational studies are unanalyzable because there are so
many problems and confounds. These confounds arise
from the fact that in most observational studies, the
data was collected for other purposes than those for
which it is now being analyzed. In that case, calculating
a p-value will not solve the problem and it may be
necessary to scrap the data, painful as that may be.

The Psychology of p < 0.05

Researchers and statisticians who perform statistical
tests on observational studies are really practicing psy-
chology rather than statistics (13). There appears to be a
perception by many scientists that the p-value can right
all wrongs. If they obtain p < 0.05, they believe that the
study is justified and consequently publishable. Psycho-
logically, it makes them feel good!

This is not to condemn observational studies, which
can provide important scientific insights and form the
majority of articles in this journal. However, the authors
should not rely on p-values to make their case. Many
other, more appropriate statistical tools are available,
including graphic analysis, computer-intensive meth-
ods, regression trees, and a variety of other procedures
broadly classified as bioinformatics, data mining, and
exploratory data analysis (6,12). In the case of observa-
tional studies, these modern techniques are much pre-
ferred over the experimentally based Neyman-Pearson
accept/reject convention of 1928 (11), a convention that is
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@
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[v2] E=

Evaluate!

(Sample Size )
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Results are Supported on Theoretical,
Practical, and Statistical Grounds

Fig. 1. Decision tree for the analysis and evaluation of designed experiments and observational studies.

completely misunderstood and only applies to the highly
specific univariate situations of true experiments (10).

Decision Tree

Fig. 1 presents a flow chart that can be used to eval-
uate research articles and/or formulate an analysis
plan. It shows the major points of this exposition. Note
that because statistical tests are meaningless in the face
of poor design, evaluation of statistical tests does not
appear until late in the decision tree.

Summary and Concluding Statement

To summarize, even in a designed experiment, sta-
tistical tests and p-values give very little information
because they can answer only the one very specific
question. Many other important questions need to be
addressed and answers found before valid conclusions
can be drawn. In the end, it is design issues that deter-
mine the validity of a study (1). In fact, a good practice
for authors and reviewers is to read the article or manu-
script without looking at or evaluating p-values and
then decide if there is sufficient information to support
the author’s conclusions. If the article or manuscript
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displays a plethora of p-values, with little or no objec-
tive results such as means and effect sizes, it is ques-
tionable as to the scientific merits of the study. A good
practice is to ask the question “Has the author made a
compelling case for the effect, sans p-values?” A good
strategy for reviewers would be to initially go thorough
the manuscript and black out any p-values or related
statements such as “statistically significant.” Then read
the paper and determine if the results and the write-up
provide sufficient evidence to support the research hy-
pothesis. Similarly, authors might first construct their
results section without any p-values. Results of statisti-
cal tests can then be added to supplement the findings.

Nothing in this paper is new or original. The cited
references are only a few from a very long list; many of
the references within each article are also very good and
highly recommended reading. The misuse of statistical
tests abounds despite enlightened scientists’” pleas for
reform over many decades. Statistical testing makes
researchers feel good and are, therefore, hard to give
up. Like a drug habit, a kind of dependency on p-values
persists and when attempts are made to relegate the
p-value to its proper place in science and logical
thought, statistical withdrawal occurs! A much clearer
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perspective is obtained once researchers and reviewers
get themselves out from under the veil of p-values.

An author may say, “I cannot get my paper published
unless p < 0.05!” Nonsense! The journal Science is ar-
guably the premiere scientific journal in the world, yet
it publishes few p-values. Watson and Crick discovered
the double helix without any p-values (14). Every year
pharmaceuticals are recalled despite the fact that the
clinical trials that documented their safety and efficacy
did so based on a p-value of less than 0.05. An editorial
in Nature Genetics (a sub-journal of Nature) laments that,
although hundreds of genetic-association studies have
initially found effects in which p was less than 0.05,
virtually none of these results have held up under
attempted replication (8). This is not to suggest that
there is any flaw or incorrect statistical theory associ-
ated with statistical testing. The problem is that re-
searchers, reviewers, and editors tend to view p-values
as conclusive despite the fact that they address only a
specific, limited scientific concept that is meaningful
only under very specific conditions.
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