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ABSTRACT

Consider a time series transformed by an instantaneous power function of
the Box—Cox type. For a wide range of fractional powers, this paper gives the
relative bias in original metric forecasts due to use of the simple inverse
retransforrnation when minimum mean squared error (conditional mean)
forecasts are optimal. This bias varies widely according to the characteristics
of the data. A fast algorithm is given to find this bias, or to find minimum
mean squared error forecasts in the original mctric. The results depend on the
assumption that the forecast errors in the transformed metric are Gaussian.
An example using real data is given.

KEY WORDS Box-Cox transformation Minimum mean absolute error
forecasts Minimum mean squared error forecasts Time
series Tukey's power transformation

Let a time series ¥, to be forecast be transformed by a monotonic, instantaneous power function
T(Y,)into another series X, to induce homogeneous and normally distributed model errors. For
example, if the variance of ¥, is proportional to its level, then X,= ¥2-5 will have a constant
variance. A model for X; is developed and, given the data, forecasts of X, are generated. Typically,
forecasts of ¥, are desired; for example, managers want forecasts of sales, not the square root of
sales.

One way to find forecasts of ¥, is to apply the inverse of the transformation T'(-) to forecasts of
X,. This is called the ‘naive’ retransformation. Practising forecasters often use this procedure,
partly because it seems natural and partly because their software may not provide
retransformation options. But to find the optimum forecast of ¥,, from origin n with lead time A,
generally we must know the decision-maker’s forecast error loss function (or an approximation)
and the conditional probability density function (pdf) of Y, ,;, given the available data (Granger,
1969). For example, for absolute error loss (that is, the loss function is linear and symmetrical
around zero) the naive retransformation is optimal for any conditional pdf of Y, ,,; it gives the
minimum mean absolute error (MMAE) forecast, equal to the median of the conditional pdf. In
this paper we assume that the error loss function is quadratic; that is, the cost of error is
proportional to the squared error. Then the optimal forecast in the original metric, for any
conditional pdf of Y, ,, is the minimum mean squared error (MMSE) forecast, equal to the mean
of the conditional pdf.
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While a quadratic forecast error loss function is not always appropriate, it may provide a useful
approximation in many cases when the exact loss function is unknown, especially when extreme
errors are likely to bring sharply increased costs. For example, consider a manufacturer that
produces for sale to retail dealers. If the forecast falls short of orders by a small to moderate
amount, insufficient resource acquisition will lead to lost profits; this cost may be approximated by
a linear function equal to profit margin times unit sales lost. But if the forecast falls far enough
below orders, unhappy dealers missing large portions of their orders may seek other suppliers in
the future. Then the (present value) cost of a large forecast shortfall will exceed the value of profit
margin times current unit sales lost; in the extreme case, the survival of the firm may be threatened.
If the forecast exceeds orders by small to moderate amounts, the producer will incur a cost which
may be well approximated by a linear function equal to unit carrying cost (e.g., interest and
warehouse handling) times unsold units. But if the forecast is far enough above orders, the
producer may acquire unnecessary and less convenient warehouse space, face higher interest
charges and additional financial transactions costs due to increased leverage (Weston and
Brigham, 1978, Ch. 19), undertake unnecessary yet costly labour search and hiring programmes,
and so forth. Then the cost of a large negative error will exceed unit carrying cost times the number
of unsold units and, in the extreme case, the viability of the firm may be threatened. In situations
like this a quadratic error loss function may be a reasonable approximation even if the true loss
function is linear and asymmetric for small to moderate errors.

Assuming a quadratic forecast error loss function, so that MMSE forecasts are optimal, two
questions arise: (i) How much do MMAE forecasts of ¥, deviate from MMSE forecasts? (ii) How
can MMSE forecasts be found? Several authors have investigated these questions for various
forms of the transformation T(-). Granger and Newbold (1976) present quite general theoretical
results on forecasting ¥, when X, is Gaussian for a wide class of transformations. They attack the
problem using Hermite polynomial expansions. Unfortunately the required expansions become so
complicated for many fractional power transformations that this approach is often not useful in
practice. Granger and Newbold give results for two tractable cases, X, = ¥,°'* and X, =1In ¥,. Their
results suggest that use of the naive retransformation may give forecasts in the original metric that
deviate substantially from MMSE forecasts.

‘Nelson and Granger (1979) approach the problem empirically, applying the transformation of
Box and Cox (1964) to 21 macroeconomic series. They find a non-biasing procedure (to obtain
MMSE forecasts) to be only moderately worthwhile, giving better forecasts in the original metric
about 60 per cent of the time for varicus forecast lead times. They report that the non-biasing
procedure gave little improvement in forecast accuracy in simulation experiments.

The present paper gives the theoretical relative bias resulting from use of the naive
retransformation for a wide range of fractional powers under the Box—Cox transformation,
assuming that MMSE forecasts are desired and that the forecast errors for X, are Gaussian. It also
gives a computationally fast algorithm for obtaining MMSE forecasts of Y, from forecasts of X,.
The results are not as general as those of Granger and Newbold (1976), but they cover a wider
range of fractional power transformations and are much more easily obtained. We find that the
bias due to use of the naive retransformation ranges from negligible to severe; this suggests that
Nelson and Granger (1979) may have found the non-biasing procedure to be only slightly
worthwhile largely because of the characteristics of their data.

The next section sets out the Box—Cox transformation. Section 2 gives the theoretical relative
bias in MMAE forecasts of ¥, under this transformation, assuming that MMSE forecasts are
optimal. Section 3 gives a fast algorithm for evaluating expressions derived in Section 2, along with
numerical results. An example using real data is given in Section 4, and Section 5 contains a
summary and concluding comments.
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1. THE BOX-COX TRANSFORMATION
Much attention has been given to the transformation introduced by Box and Cox (1964):
X,=(Y; —1)e, (1)

where Y;>0 aud c is real. If ¥; can be negative, a constant H is added to it such that
Pr[(Y; + H)<0] is negligible. Examples of the use of (1), where c is estimated, appear in Wilson
(1973), Chatfield and Prothero (1973b), Box and Jenkins (1976), Ansley et al. (1977), Nelson and
Granger (1979) and Hopwood et al. (1981, 1984). Transformation (1) is a variant of the simple
transformation X, = Y7 discussed by Tukey (1957). An advantage of (1) is that it is continuous in the
limit as ¢ goes to zero (by L'Hospital’s rule) with X, =1n Y, in that case.

In the next section we obtain expressions for MMAE and MMSE (conditional median and
mean) forecasts of ¥, based on forecasts of X,.

2. CONDITIONAL MEDIAN AND MEAN FORECASTS OF Y,

Suppose information set 7, is used to forecast the transformed series X, from forecast origin time n.
I, may include exogenous variables as well as values of X, through period n. Given I,, the optimal
(MMSE) A-step ahead forecast of X, ., is E(X,.,lI,), denoted here as £ Denote the A-step ahead
forecast error as u, so that X, ., = f+ u, where u is truncated Gaussian with mean zero and A-step
ahead variance 2. For an ARIMA model, for instance, this variance depends on the model
coefficients as well as the forecast horizon A.

Truncation of u follows from the restriction ¥, ., > 0, which implies a lower or upper bound for
X, +»and thus for u. To ensure E(u) =0, let u be doubly truncated at 4+ u*. The results in this paper
rest on the usual assumption that u* is large enough to render the effect of this truncation
negligible.

Conditional median forecasts

Given an optimal forecast for X, ,,, suppose that a forecast of ¥, ., is desired. (For simplicity let
H=0.1If H> 0, H must be subtracted from the forecast of ¥, ; to return the forecast to the original
level of the Y, series.) One procedure to forecast Y, ., is simply to apply the inverse of the original
transformation to f;, giving a ‘naive’ forecast of Y,,, as m= T~ 1(f). Letting 1/c=p, this naive
forecast under transformation (1) is m=(cf+1)*.

This inversion generally does not give the MMSE forecast in the original metric; it gives the
MMAE forecast equal to the median of the conditional pdf of ¥, ,.,. This follows because the pdf of
u is symmetrical so that f'is the median as well as the mean of X, ,,. And since Y,=T"*(X}is an
increasing function of X, for (1), the 50th percentile of ¥, . , is the inverse transformation of the 50th
percentile of X, ,,. For ¢# 1, the conditional pdf of Y, ,, is skewed so that m is not its mean.

Conditional mean forecasts
For the MMSE forecast of ¥, ., we require the expected value M = E(Y,,|I,). We have ¥, ,,=
T YX,.s)=T"Y(f+u), and M may be found directly from the conditional pdf of X, ,, as

{ad
M= f T @
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where ¢ is the (negligibly truncated) Gaussian pdf,

[(1/:;,,\/[21:]) exp {—(u/o,)*/2} / j i.,- ¢(u)du],

in which the value of the integral is close enough to 1.0 that it may be ignored in practice. Define
w=u/c,, S0 u=o,w, w*=u*/o,, du=c,dw, and

M= J'n' (cf + capw + 1)Pg(w)dw, 3)

where g is the (negligibly truncated) standard Gaussian pdf and the integrand is T~ *(f+ ) under
transformation (1), with ¢ (and hence p), fand o, treated as constants. Nelson and Granger (1979)
give (3) for the Box—Cox case, though their expression (3.4) has a typographlcal error: —1 in the
second factor of the integrand should be +1.

Factoring m= T~ (f)=(cf+ 1)* out of (3) gives the alternative expression

“"
M= mf (14 rw)Pg(w)dw = mG, 4)
where r = 0,/(f+ p). (Equation (4) also holds for the simple power transformation X, = Y, with
r=oa,/f) Thus the MMSE forecast of ¥, ., may be found as the product of the simple inverse
transformation (conditional median) m and a factor G which is the value of the integral in (4).

There are restrictions on r implied by the assumptions that ¥, > 0 and that truncation of the pdf
2(w) is negligible. This is seen by noting that, under transformation (1), the condition ¥,,,>0
requires Y7, ,=cX,p+1=cdf+u)+1=c(f+0o,w)+1>0. Thus, if ¢>0, we must have w>
—(f+p)/oy, or w> —1/r. This also ensures (14 rw)>0 in (4) when ¢ >0 (preventing negative
numbers to fractional powers). If ¢ <0, we must have w< —(f+ p)/a,, or w< —1/r. Thus the
standardized truncation points are w* = +}1/r|. If truncation effects for the standard Gaussian pdf
are considered negligible for, say, |w*| >4, then we must have |r| <0.25.

Relative bias
Define the relative bias B from using m to forecast ¥, ., as
B=(m— M)M 5

For ¢=0 (the natural log transform), Nelson (1973, Ch. 6) and Granger and Newbold
(1976) show that m=exp(f) and M =exp(f+0?Z/2), in which case G=exp(sZ/2) and
B=exp(— a,,/2)— 1. For X,=Y? Granger and Newbold also show that m=f2 and
M=f%+ 02,50 G=1+(0,/f)* and B= ~(aulf /1 + (a,/f)*]

The next section gives a fast procedure for evaluating G, along with values of B, for a wide range
of fractional ¢ values when |r| <0.25.

3. NUMERICAL EVALUATION ALGORITHM AND RESULTS
The integral G in (4) has no closed form solution for general ¢ and must be evaluated numerically.
As shown in the Appendix, assuming 1/c = p is a positive integer and expanding the binomial in (4)
gives
M= M{l + Y plp—1)(p—(2k—2)p—(2k— l))rz"/Z"k!}, 6)
=1
where the factor in brackets is the non-biasing factor G.
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The sum in (6) is finite when p is a positive integer. If p is an even, positive integer, all terms after
k =1/2¢ are zero; if p is an odd, positive integer, all terms after k= (1 — ¢)/2¢ are zero.

We use the expression in (6) to approximate the non-biasing factor when , is not a positive
integer. A numerical study of the sum shows that truncation after not more than eight terms gives
good results for most {c,|r]} values likely to arise in practice.

Tabie 1 shows values of 1008 (the per cent bias from use of m) for various {c, |r|}. These values
were found by truncating the sum in (6) after eight terms. Table 1 entries shown as ** are cases
where (6) gives results notably different from those obtained by evaluating (4) with Romberg
integration. (Romberg integration is a commonly used numerical integration method. See Stark
(1970, Ch. 4) for an introductory discussion.) This problem appears to be inherent in the integral G:
for those cases, Romberg method results are highly sensitive to the truncation value w*. It is not

Table 1. Per cent bias from use of conditional median forecast in original metric
when conditional mean forecast is optimal under Box—Cox transformation

I

c 0.02 0.05 0.10 0.15 0.20 0.25
3.00 0.0 00 0.1 03 0.5 0.8
2.00 00 00 0.1 0.3 0.5 0.8
1.00 0 0 0 0 0 0
0.75 —-00 —0.1 ~0.2 =05 -09 -14
0.50 -00 —-0.2 ~10 -22 —3.8 —59
0.25 -0.2 -5 ~57 —-120 —19.7 ~279
0.10 —1.8 —104 —34.0 -57.8 —-175.1 —859

-0.10 -22 —132 —46.8 hd had b
—0.25 —-04 =25 —10.1 =231 -43.8 -
-0.50 -0.1 -038 -31 -11 -134 —-238
—0.75 -0.1 —-04 —1.6 -37 —-69 —12.1
—1.00 -0.0 —-03 -1.0 —24 —44 -17
-2.00 -0.0 =01 —04 -09 -16 =27
—-3.00 -00 —0.1 -0.2 —0.5 —-10 —-1.6

** = unreliable results.

clear whether (6) or other numerical integration methods will give better results in such extreme
cases. Use of the log transformation is recommended in those situations since they arise only when
¢ is near zero (on the negative side). Expression (6) is more efficient computationally than
commonly used methods, such as Romberg integration, since the latter typically require repeated
exponentiations; after some parameter assignments, evaluating G with (6) requires no
exponentiations.

As seen in Table 1, the bias on the conditional median forecasts of Y, increases as ¢ approaches
zero or as |r| increases. The small bias for many {c, |r|} may help to explain the modest improvement
in forecast accuracy reported by Nelson and Granger (1979) when a non-biasing procedure was
used with the Box—Cox transformation. In 12 of their 21 cases using real data and maximum
likelihood estimates of c, they find |c]| > 0.6, and in 11 of those 12 cis positive. Table 1 shows that the
bias for a given |r] is smaller when ¢>0.

It also appears that the values of |r| arising in Nelson and Granger’s study may be rather small.
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We have not examined all of their data, but three of their series show the following range of |r
values for forecast lead times from A=1 to h=10:

Nelson-Granger

series c Range for |r|
H —152 0.014-0.052
J 0.14 0.003-0.020
P

0.63 0.004-0.023

Asseenin Table 1, for these {c, |r|} values the bias from using m is typically a small fraction of —1
per cent. If Nelson and Granger's other series have similar {c, |r|} values, it is not surprising that
their overall empirical results show only a small gain in forecast accuracy when a non-biasing
procedure is used.

4. SALES DATA EXAMPLE

In this section the non-biasing procedure is applied to forecasts of a real data series originally
studied by Chatfield and Prothero (1973a). (The data are given in their article.)

The series is 77 observations of the monthly sales of an engineering product with a strong
seasonal pattern. In their original analysis, Chatfield and Prothero use a log transformation. Use of
this transformation was criticized by Box and Jenkins (1973) and Wilson (1973). The former
suggest the use of ¢ = 0.25 based on graphical analysis; the latter finds the optimal ¢ to be 0.34 using
a maximum likelihood criterion. We use c=1/3, so 1/c=p=3, with X,= ¥}/,

Chatfield and Prothero and their critics consider various ARIMA models for series X, but the
one receiving the most attention is

(1—¢,Bw,=(1—6,,8'%)a, Q)

where w, is X, after both regular and seasonal differencing. The first 65 observations give the
estimates ¢, = —0.53 and 6, , = 0.54; these were obtained using the maximum likelihood option in
the SCA system (Liu et al,, 1983). The coefficients of skewness and kurtosis for the model residuals
are smaller than their respective standard errors, so the assumption of Gaussian forecast errors
seems reasonable.

Forecasts of X, , for h=1,...,12 from time origin 7 = 65 were produced using model (7). The
corresponding conditional median (m) and conditional mean (M) forecasts of ¥, are shown in
Table 2. The m forecasts (column 3) are simply the X,-metric forecasts raised to the power 1/c=
p =3, while the M forecasts (column 7) are the values of m multiplied by the non-biasing factor G
(column 6). Since p is a positive integer the series in (6) is finite; with p =3, only one term is needed
to find exact values of G:

G=1+p(p—1)r*)2=1+3r, ®)

where (under the simple power transformation) r=s,/f, f is the i-step ahead forecast in the X,
metric, and s, is the corresponding estimated forecast standard deviation. We obtained this
estimate from the SCA package (Liu et al., 1983) forecast option which uses the psi-weights implied
by the ARIMA model in (7) and the variance estimate of the residuals, following Box and Jenkins
(1976, Ch. 5).

Column 5 of Table 2 is s,/f=r for forecast lead times k=1, ..., 12. The largest s,/f value of 0.123
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Table 2. Conditional median (m) and mean (M) forecasts from model (7) for forecast
horizons h=1,..., 12 from forecast origin n=65

m (V4] 3) @ ) ()] (U] ®
t Y m

Y-m sif G M Y-M
66 257 256 +1 0.052 1.008 258 -1
67 324 304 +20 0.055 1.009 306 +18
68 404 423 —19 0.059 1.011 427 -23
69 677 572 +105 0.059 1.010 577 +100
70 858 768 +90 0.059 1.010 776 +82
71 895 806 +89 0.062 1.012 815 +80
72 664 650 +14 0.071 1.015 660 +4
73 628 665 -37 0075 1017 676 —48
74 308 469 —161 0.089 1.024 480 —172
75 324 365 —41 0.101 1.031 376 —~52
76 248 335 —-87 0.109 1.035 347 —99
77 272 261 +11 0.123 1.045 272 0

corresponds to the most severe truncation of the standard Gaussian density in (4) at about
w* = +8, so there is no apparent problem in assuming the truncation effects to be negligible.

As seen in column 6 of Table 2, the values for the non-biasing factor G range from 1.008 to 1.045.
Thus using m to forecast ¥, will give forecasts that are biased (downward) away from the MMSE
forecasts by roughly 1 to 4.5 per cent, depending on the forecast horizon. This is consistent with the
results across the first seven forecasts; in five of these cases the non-biasing procedure brings the
forecasts closer to the observed values.

The conditional median forecasts happen to perform slightly better based on (rounded)
summary statistics for all 12 forecasts in this very limited example: the conditional median
forecasts have a mean error of zero and a root-mean-squared error of 73 for the 12 forecasts,
compared to 1 and 75, respectively, for the conditional mean forecasts. This appears to bedue toan
outlier at period 74: when (7) is applied to the full data set, the residual for period 74 is more than
2.8 times the residual standard deviation. The model overforecasts that period, and M
overforecasts more than m since G is positive; the resulting large error imposes a heavy penalty on
M in the summary statistics.

5. SUMMARY AND CONCLUSIONS

This paper examines methods of forecasting a time series Y; after it has been transformed to a new
series X, by an instantaneous power function such as the Box—Cox transformation. Given the
available data, forecasts of X, may be used to find forecasts of ¥,. Applying the inverse of the
original transformation to forecasts of X; (the ‘naive’ procedure) yields minimum mean absolute
error forecasts of Y; equal to the median of the conditional pdf of ¥,.

Assuming that minimum mean squared error (MMSE) forecasts are optimal, this paper gives the
relative bias in the naive forecasts of ¥, for a wide range of fractional powers under the Box—Cox
transformation. (The results are easily adapted to the case of a simple power transformation.) A
fast algorithm is given for finding the bias due to the naive procedure, or for finding MMSE
forecasts of ¥,. For the range of cases considered here, the theoretical bias in the naive forecasts of
Y, varies from a small fraction of 41 per cent to more than — 85 per cent. A larger bias occurs as the
power (c) gets closer to zero, and as the X,-metric forecast standard deviation (s,) grows relative to
the sum of the forecast and the inverse of the power (f+ p) for the Box~Cox transformation.
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The results given here must be used with some care. They assume that the forecast error loss
function is quadratic, so that minimum mean squared error forecasts are optimal, and that the
forecast errors in the X, metric are Gaussian. As suggested by Nelson and Granger’s (1979) study,
real data subjected to ARIMA analysis may often not satisfy the latter assumption; this situation
might be improved by the addition of intervention components to account for outliers or step
shifts (see Box and Tiao, 1975). Furthermore, the properties of the algorithm in Section 3 may be
unsatisfactory when cis near zero on the negative side and the forecast standard deviation in the X,
metric is relatively large; however, other numerical integration methods also give unstable results
in those cases and the log transform perhaps should be used.

The results should give forecasters a better sense of the bias they may expect from use of the
naive (simple inverse) retransformation when MMSE forecasts are desired. In addition, the
algorithm in Section 3 behaves well enough for a sufficiently wide range of powers that it should be
useful in obtaining MMSE forecasts in the original metric in a computationally efficient manner
when the underlying assumptions are acceptable.

APPENDIX: DERIVATION OF NON-BIASING FACTOR G

For simplicity we ignore time subscripts and deal with the simple power transformation X = Y*,
and its inverse Y= X% where ¥>0 and cis real. Let X = f+ u, where f= E(X) and u is Gaussian
with mean zero and variance o2. Suppose for the moment that 1/c = pis a positive mteger We wish
to evaluate

M=E¥)= f " +uPd)du, (A1)

where ¢ is the Gaussian pdf, (l/aJ [2a])exp {—(u/0)*/2}. Let w=ufa,s0 u=0ow, f+u=f+ow=
f(1+ow[f), du=0odw, and

M= f N S 4+ ow[f)Pg(w)dw, (A2)

where g is the standard Gaussian pdf, and where f; ¢ and p are treated as constants. Expanding the
binomial,

M=(//2x)f? I ) {1 +k21 (Z)(aw/f)“} exp(—w¥/2)dw, (A3)

where the sum is finite since (f) =0 for k> p.
Since w*exp(—w?/2) is an odd function when k is odd,

M=(1//2a)s" J {1 + Z ( )(a/ 2 2*} exp(—w?/2) dw (Ad.1)
- f"{l +(1/\/[27z])k§: ( )(amZ*I w2 exp (— w2/2)dw} (A42)
= f"{l +3 (2’;‘)(0/1)2"(1-3'--(2k— 1))} (A4.3)

1
=f ”{1 + kzl Plp—1) - (p— @2k~ 2))(p— (2k — 1)o/f)**/2*k !}, (Ad4)
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where the factor in brackets is the non-biasing factor G. When using the Box—~Cox transformation,
o/f is replaced by o/(f+p).

Truncating the integral to go from — w* to w* introduces negligible error in G even for moderate
values of w*. This may be seen by noting that the resulting error (E) in G when truncating the right-
hand tail of the integral is

E=(1//[20) I " 1+ owlfPexp(—w32)dm: a3)
Now let o{w)=(1 + ow/f)” exp(—w/2), s0 » -
E= <1/\/[2n])£j o) exp (~ (w2 — w)/2) dw. (A9)

The maximum value of v to the right of its zero at w= —f/; occurs at w,,, =2p—f'c. Then
E<(1// 22070 f " exp (—(w — w2)dm. (A7)

Letting z=w~1/2, ”

E < (1/\/[27])(Winar) €xp(1/8) f:_m exp(—z%/2)dz (A8.1)
< (1/o/ 21009 ar) XD (/B){EXD (— (w* — 2P/ (0% — 1/2)}). (A82)

This beconies small very quickly as w* increases since the factor in brackets is very small and
(Wnax) is not large for values of {o,f, p} likely to occur in practice. For example, consider the
extreme case of ¢/ = 0.25, so w* = 4; then for p= 5, Eiisless than 1.4 x 10~ 3, Similar analysis shows
that the error in G resulting from truncating the left-hand tail of the integral is also small.
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