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While Don’s paper does shed new insight on the evaluation of Bayesian
bounds in a frequentist light, the main point of the paper seems to be a
radical reexamination of the relevance of the whole Bayesian approach to
condence regions. This is surprising given that the disagreement between
classical and frequentist perspectives is usually quite limited (in contrast
with tests) in that the coverage statements agree to orders between n−1/2

and n−1, following older results by Welch and Peers (1963).
First, the paper seems to contain a lot of apocryphal deeds attributed to

Thomas Bayes. My understanding of the 1763 posthumous paper of Thomas
Bayes is one of a derivation of the posterior distribution of a probability
parameter θ driving a binomial observation x ∼ B(n, θ). It thus fails to
contain anything about confidence statements or location parameters, in
relation with the “translation invariance” mentioned in the Introduction
or in Section 7. As noted by Fienberg (2006), Thomas Bayes does not
either introduce explicitly the constant prior as a rule, even in his limited
perspective, this had to wait for Pierre Simon de Laplace twenty to thirty
years later. Thanks to Don’s paper, however, I re-read Bayes’ essay (in
Edward Demings 1940 reprint) and found in both RULE 2 (page 400 and
further) and RULE 3 (page 403 and further) that Bayes approximated the
(posterior) probability that the parameter θ is between x/n−z and x/n+z.
However, a closer examination revealed that this part (starting on page 399)
had actually been written by Richard Price (even though Price mentions “Mr
Bayes’s manuscript”).

My second and more important point of contention is that the Bayesian
perspective on confidence (or credible) regions and statements does not claim
“correct coverage” from a frequentist viewpoint since it is articulated in
terms of the parameters. Probability calculus remains probability calcu-
lus whether it applies to the parameter space or to the observation space,
making the comment about the term probability [being] less appropriate in
the Bayesian weighted likelihood quite debatable. Following Jaynes (2003),
“there is only one kind of probability”. The title of the paper is thus in com-
plete contradiction with the purpose of Bayesian inference and the chance
identity occurring for location parameters is a coincidence on which one
should not build sandcastles.

I find Bayesian analysis neither quick (although it is logical) nor, obvi-
ously, dirty (on the opposite, it proposes a more complete and more elegant
inferential framework!). Looking at a probability evaluation on the parame-
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ter space being “correct” (Section 3) is also strange in that the referential for
a Bayesian analysis is the prior endowed space, not the consequences on ob-
servable values that have not been observed to paraphrase Harold Jeffreys.
A Bayesian credible interval is therefore correct in terms of the posterior
distribution it is derived from and it does not address the completely dif-
ferent target of finding a frequency-valid interval. (The distinction made in
the Bayesian literature, as e.g. Berger (1985) between confidence and cred-
ible intervals is significant for those different purposes.) That a β quantile
Bayesian confidence bound does not exclude the true value of the parameter
in 100β% of the observations is not a cause for worry when considering only
the observed y0 and the example of Section 4 is perfectly illustrating this
perspective. When I see on Figure 4 (c) that the Bayesian coverage starts
at 1 when θ = θ0 I am indeed quite happy with the fact that this coher-
ent procedure accounts for the fact that θ cannot be lesser than θ0. I thus
strongly object to the dire conclusion of Bayes approach [being] viewed as a
long history of misdirection! I also fail to understand what is the meaning
of “reality” in Section 7. When running Bayesian inference, the parameter
θ driving the observed data is fixed but unknown. Having a prior attached
to it has nothing to do with “reality”, it is a reference measure that is nec-
essary for making probability statements (or, quoting again from Jaynes,
2003, extending the logics framework). Thus the apparently logical concern
in Section 7 on how probabilities can reasonably be attached to a constant has
no raison d’être. The debate about where the prior comes from (Section 9)
neither. If the matter is about improper versus proper priors (as hinted at by
the comments about marginalisation paradoxes), this has been extensively
discussed in the literature and the difference seems to me less important
than the difference between Bayes and generalised Bayes estimators.

While this is directly related to the above, the discussion in the Paradigm
section also confuses me. Introducing a temporal order between y1 and y2
does not make sense from a probabilistic viewpoint. Both representations
f(y1)f(y02|y1) and f(y02)f(y1|y02) are equally valid. I note as a side remark
that the derivation of f(y1|y02) as the collection of simulated y1’s for which
y2 = y02 is exactly the starting point of the ABC (Approximate Bayesian
calculation) algorithm (Rubin, 1984; Pritchard et al., 1999).

I further object to the debate about optimality (and the subsequent
relevance of Bayes procedures) as I do believe that decision theory brings
a useful if formal representation of statistical inference. The choice of the
criterion that I understand as the choice of the loss function is clearly impor-
tant; however, it helps in putting a meaning to notions like “real” or “true”
or “correct” found in the paper. Changing the criterion does change the
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outcome for the “optimal” interval but the underlying relevance of Bayesian
procedures does not go away. For instance, we proposed in Robert and
Casella (1994) several of such losses for evaluating confidence sets. The
criticism found at the end of this Section 9 is inappropriate in that the pos-
terior quantile is neither derived from a loss function nor evaluated under a
specific loss function, since the “non-zero” curvature drawback stems from
a frequentist perspective. Let me also add that, even from a frequentist
perspective, strange and counter-intuitive phenomena can occur, like the
domination of the classical confidence region by regions that are equal to
the empty set with positive probability (Hwang and Chen, 1986).

In conclusion, I am quite sorry about the negative (and possibly stri-
dent) tone of this discussion. However, I do not see a convincing reason
for opening afresh the Pandora box about the (lack of) justifications for
the Bayesian approach, the true nature of probability and the philosophical
relevance of priors: The last section is a nice and provocative enough collec-
tion of aphorisms, although I doubt it will make a dent in the convictions of
Bayesian readers. Bayesian credible intervals are not frequentist confidence
intervals and thus do not derive their optimality from providing an exact
frequentist coverage.
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