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Rejoinder:
Is Bayes posterior just quick and dirty confidence?
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1. INTRODUCTION

Very sincere thanks to the discussants for choosing to enter a virtual minefield of disagreement
in the development history of statistics. For we just need to recall the remark that fiducial is
Fisher’s “biggest blunder” and place it alongside the fact that fiducial was the initial step towards
confidence, which arguably is the most substantive ingredient in modern model-based theory: the
two differ in minor developmental detail, with fiducial offering a probability distribution as does
Bayes and with confidence offering just probabilities for intervals and special regions. Statistics
has spent far more time attacking incremental steps than it has seeking insightful resolutions.

As a modern discipline statistics has inherited two prominent approaches to the analysis of
models with data; of course such is not all of statistics but is a critical portion that influences
the discipline widely. How can a discipline, central to science and to critical thinking, have two
methodologies, two logics, two approaches that frequently give substantially different answers to
the same problems. Any astute person from outside would say “Why don’t they put their house
in order?” And any serious mathematician would surely ask how you could use a lemma with
one premise missing by making up an ingredient and thinking that the conclusions of the lemma
were still available. Of course the two approaches have been around since 1763 and 1930 with
regular disagreement and yet no sense of urgency to clarify the conflicts. And now even a tired
discipline can just ask “Who wants to face those old questions”: a fully understandable reaction!
But is complacency in the face of contradiction acceptable for a central discipline of science?

A statistical model differs from a deterministic model in having added probability structure
that describes the variability typically present in most applications. So, in an application with a
statistical model and related data it would then seem quite natural that that variability would enter
the conclusions concerning the unknowns in an application: what do I know deterministically,
and what do I know probabilistically?

And that is what Bayes proposed in 1763: probability statements concerning the unknowns of
an investigation. Many have had doubts and said there was no merit in the proposal; and many
have acceded and became strong believers. And then Fisher (1930) also offered probabilities
concerning the unknowns of an investigation, but by a different argument, and the turf fight
began! Bayes had hesitantly examined a special problem and added a random generator for the
unknown parameter, and Fisher had worked more generally and used just the randomness that
had generated the data itself.

But then a third person Lindley (1957) from the same country said that the second person
Fisher couldn’t use the term probability for the unknowns in an investigation as the term was
already taken by the first person Bayes. And strangely the discipline complied! Decades went by
and anecdotes were traded and things were often vitriolic.
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2. WHAT DOES THE ORACLE SAY?
Consider some regular statistical model f(y; θ), together with a lower β-confidence bound

θ̂β(y), and also a lower β-posterior bound θ̃(y) based on a prior π(θ): What does the oracle see
concerning the usage of these bounds? He can investigate any long sequence of usages of the
model, and He would have available the data values yi and of course the preceding parameter
values θi that produced the yi values; He would thus have access to {(θi, yi) : i = 1, 2, . . .}.

First consider the lower confidence bound. The oracle knows whether or not the θi is in the
confidence interval (θ̂β(yi),∞), and He can examine the long-run proportion of true statements
among the assertions that θi is in the confidence interval (θ̂β(yi),∞), and He can see whether
the confidence claim of a β-proportion true is correct. In agreement with the mathematics of
confidence that proportion is just β.

Now consider the lower posterior bound. The oracle knows whether θi is in the posterior
interval (θ̃β(yi),∞), and He can examine the long-run proportion of true statements that θi is in
the posterior interval (θ̃β(yi),∞). Now suppose the long-run pattern of θi values just happened
to correspond to the pattern π(θ); then in full agreement with the mathematics of the Bayes
calculation the Oracle would see that long-run proportion of true statements among assertions
that θi is in the posterior interval (θ̃β(yi),∞) was correct, was just the stated β.

But what if the long-run pattern of θi values was different from the introduced π(θ) pattern?
Then in wide generality the long-run proportion of true statements among assertions that θi is in
the posterior interval (θ̃β(yi),∞) would not be β! In other words the confidence procedure is
always right, and the Bayes procedure is typically wrong, unless the prior was guessed correctly.
Seems like a poor trade off!

Now consider further what a prior actually does in producing parameter bounds or quantiles
that are different from the confidence bound. From an asymptotic viewpoint a prior can be ex-
panded as exp(aθ/n1/2 + cθ2/n) to the third order, as mentioned but not pursued in §6(iv). This
provides a direct displacement of the confidence bound in standardized units and produces an
O(1)-shift away from the claimed β value, either up or down depending on the sign of a! Hardly
an argument for using the Bayes procedure unless there was some very urgent need for a quick
and dirty calculation.

3. RESPONSE TO THE DISCUSSANTS:
(i) Christian Robert:
Christian presents a very committed Bayes viewpoint and quite correctly admonishes me for

not distinguishing what Thomas Bayes did and what has followed in the same theme. But going
beyond the minor detail, Bayes added a distribution for a parameter, a distribution that was not
part of the binomial example under consideration and then used that distribution for probability
analysis. And much of modern Bayesian statistics does precisely that: introduces an artifact dis-
tribution for expediency or convenience and then works reasssuringly within accepted probability
calculus. Indeed this is the primary theme of the article: adding something arbitrary gives some-
thing arbitrary no matter how attractive the material labelled probability might or might not be,
or no matter what might be available by other methods of analysis. If one faces a probability-type
claim, it is fair enough to simulate and evaluate the claim, and that is what coverage probability
is all about, as the invincible Oracle well knows.

The marginalization paradoxes do appear in the literature but are widely neglected and not
“extensively discussed” as Christian suggests. They apply to any proposal for a distribution to
describe an unknown vector parameter, whether obtained by the Bayes inversion of a density
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or the frequentist inversion of a pivot, such as fiducial, confidence, structural or other. There is
an immutable contradiction built into the hope to describe a vector parameter by a distribution.
Curvature of an interest parameter has emerged as the critical source for this contradiction. Take
a bivariate parameter, a data point, and an interest parameter value: if the parameter is linear, the
confidence and the Bayes values are equal; if then parameter curvature is introduced we have that
the confidence value and the Bayes value change in opposite directions! One has the coverage
property and the ‘other’ acquires bias at twice the rate of the departure from linearity. And the
‘other’ uses the name probability with an assertiveness coming from the use of the probability
calculus, conveniently overlooking that an artifact was introduced in place of the input needed
for the validity of the probability calculus for the application.

Maybe it is time to address the Pandora’s box and check for a Madoff pyramid: too good to be
true.

(ii) Larry Wasserman:
Larry presents a pragmatic view of the Bayes approach, acknowledging its rich flexibility but

recommending coverage cautions. His five examples are most welcome concerning the wider
spheres of application and he is to be complemented on the skillful innovations. I do quarrel,
however, with his reinforcement of personality cults in statistics. It seems that statistics has suf-
fered greatly from this externalization of the scientific method, as if there were different flavors
of scientific thinking and mathematical logic and that these might gain concreteness when per-
sonalized.

(iii) Kesar Singh & Minge Xie:
Confidence for estimation and exploration? It is deeply unfortunate that statistics chooses

at many steps to malign its major innovators, for example, Fisher with his “biggest blunder”
as a referent for the initiative that gave us confidence. What Fisher didn’t do was present his
major innovations in a fully packaged form ready to withstand a few centuries of challenges and
modification: What? we still have to do a little bit of thinking! Tough! He clearly must generously
have expected others to have his insight and wisdom!

Fiducial, confidence, structural or other? It is just pivot inversion with variation in context,
conditions, or interpretation: the big risk was described by Dawid, Stone & Zidek (1973) and
curvature is now identified as the prime cause. To have different names to fine tune for differ-
ent applications or different explorations would seem to take emphasis away from the proper
calibration of the tool, as the primary concern for most applications.

Statistics routinely combines likelihoods as appropriate, so it is not correct to attribute this to
Bayesian learning; perhaps the central sectors of statistics were just slow to glamorize the good
things in their statistical modeling. Putting a prior on a likelihood is a different operation down-
stream from assembling the likelihood in the relevant broader context; although it does seem
convenient for the Bayes approach to co-opt it as their own contribution when it was somewhat
neglected by the ‘others’.

(iv) Tong Zhang:
Where does the pivot come from? Fisher’s development of confidence or whatever attracted

the mathematicians’ criticisms, mostly because it wasn’t proposed in a fully developed form. It
was then shredded, fully ignoring the emerging recognition of its innovative genius. Certainly the
need to clarify the origin of the key ingredient, ‘the pivot’, is of fundamental importance, as Tong
suggests: using all the data in an appropriately balanced way, respecting continuity and parameter
direction from data, and more. Whether these should be bundled under a term optimality may
be questionable, but doesn’t diminish the importance of the individual criteria; for some recent
emphasis on continuity see Fraser et al (2010c).
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4. SOME CONCLUDING INVOCATIVE REMARKS:
An inference distribution for a vector parameter is inherently a contradiction. Information from

two different sources can be reported separately, with combination not by principle. Combining
likelihoods is a consequence of combining models, typically following from independence; the
Bayes claim that it comes from the use of the Bayes argument is after the fact and disingenuous.
Inverting a density and inverting a pivot are different except in the linear case, but the first can
sometimes approximate the second.

The question was asked: “Is Bayes posterior just quick and dirty confidence?” And the case
was made for “Yes”: Bayes posterior is just quick and dirty confidence: quick in the sense of
easier than using quantiles to determine how θ affects data; and approximate in the sense of a
wide spread need to use approximation methods”.

Not everyone liked the blunt question. One discussion expresses discomfort with such a direct
confrontation to the Bayes approoach; one discussion adds additional support examples; and the
two remaining discussions speak more to methods and modifications of confidence distributions,
overlooking the risks. But no one argued that the use of the conditional probability lemma with
an imaginary input had powers beyond confidence, supernatural powers.
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