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234 Miscellanea

Studies in the History of Probability and Statistics. XXV.
On the history of some statistical laws of distribution

By O. B. SHEYNIN
Institute for the History of Natural Science and Technology, Academy of Sciences, Moscow

SUMMARY

The history of the y? distribution and the contributions by Herschel, Maxwell and Boltzmann are
discussed. The use of the beta distribution by Bayes is also described.

1. THE USE OF THE X? DISTRIBUTION IN PHYSICAL THEORY

The deduction of the y2 distribution is due to Abbe (1863); see also Sheynin (1966). While considering
the accuracy of archery, Herschel (1869) almost arrived at this distribution for two degrees of freedom,
a fact mentioned to me in 1967 by Professor W. Kruskal in a private communication. For three degrees
of freedom similar results were arrived at by Maxwell (1860) somewhat prior to Herschel. Boltzmann
arrived at this distribution at first (1878) for two and three degrees of freedom and then (1881) in the
general case.

Thus, these works should find their place in the history of the y2 distribution beside those of Laplace,
Bienaymé and Ellis (Lancaster, 1966), and, of course, beside those of Abbe (Helmert, 1876); see also
David (1957) and Pearson (1900).

Considering the probability of an arrow deviating by z from the centre of a circular target Herschel
(1869, pp. 506-7) starts from an obvious formula

pr(z|¢) oc e~*" dz,

where ¢ is the polar angle of the point of hit, the polar coordinate system being (z, ¢), and % is to be
estimated from observations. Then, since the circumference of a circle is proportional to z,

2
pr(z < zp) o f "2 e d. (1)
0

Herschel could have arrived at the y2? distribution for two degrees of freedom had he considered
instead of (1) the probability that 22 < z,. '

But the introduction of 22 does not seem sufficiently natural. More natural, however, would have been
a similar procedure of Maxwell (1860, p. 381), this being his classical paper where he arrived at the
normal distribution of velocities of molecules

f(x) — Le—x’/a’ (—wo<z<+00). (2)

N

It is not our intention to discuss his deduction of (2); what we notice is that Maxwell, starting from (2)
and giving no intermediate explanation, observes that

wjm v2evle dy (8)
molecules out of N, the whole number of them, have space velocities belonging to the segment [v, v 4+ dv].
Reconstruction of (3) is easy enough: starting from (2), we have a similar distribution for the simul-
taneous probability of {{ < =, 7 <y, { <z} and

v+dv

v

27 4
pr (velocity e[v, v+ dv]) = f d¢ f sin O d@f 22e~71a" dp,
0 0

this being equivalent to (3). Here £, 7 and { are the components of velocity in each of the three dimensions.

Introducing probability proper, i.e. eliminating N, and studying the square of the velocity rather
than the velocity itself, Maxwell could have found pr (£§2+ 92+ (%€ [v, v +dv]) which would have been
the y? distribution for three degrees of freedom. This transformation would have been quite natural,
for instance, in studying the kinetic energy (x.E.) of molecules. Maxwell, however, restricted himself
to remarking that the mean value of v? is equal to §«2.
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On the other hand, Boltzmann (1878, p. 252) studied just this distribution of the x.E. and arrived
at the y? distribution for two, and then (p. 257), for three degrees of freedom. Only in the first instance
did he mention his proceeding from the normal law

]f e~k 0Dy gy (4)
m

and explain that the integration had been made with respect to the polar angle.
More interesting is that Boltzmann (1881, p. 576), also with no explanations given, writes down
the distribution of the x.E. of molecules in the general case of a dimensions, i.e.
pr (3mv* €y, x +dx])= e e txyde-1dy. (5)
: Py
The meaning of &, first introduced in 1878, is not given in either article but it should be equal to 2k/m,
where k is the same as in (4) and m, as in (5), is the mass of the molecule.

In deducing (5), Boltzmann may have used the discontinuity, Dirichlet, factor as both Abbe and
Helmert did. But then, he would possibly have said so. And at least two other methods for the calculation
of the a dimensional integral of the exponential function were open to him.

The lack of references to Abbe and Helmert testify to the fact that Boltzmann did not know their
works.

None of the nineteenth-century authors mentioned thought of compiling a table of the y2 distribution.
The mode of using statistical considerations in physics proper could be seen in Maxwell (1860) who was
evidently satisfied with deducing several distributions and giving a corresponding overall numerical
estimate of the behaviour of molecules.

In error theory, the criteria for estimating systematic influences, bias, in observations developed by
Abbe and Helmert were nonparametric and the y? distribution itself was not used.

2. THE BETA DISTRIBUTION

This distribution is due to Bayes (1764). The beta function had been repeatedly considered by several
scholars prior to Bayes, but it was his probabilistic problem that led to the calculation of

(4
fxp(l—x)qu
4 = I(p+1,q+1)~L(p+1,q+1), (6)
Jx”(l—x)qd«x
0

where 0 < b < ¢ < 1, p and ¢ are large positive integers and I is the symbol for the incomplete beta
function. Of course, Bayes used neither these terms nor the symbols.
For the denominator of (8) he easily deduced

1
Blp+1,9+1) =

p+qg+1
@) (PTITY)
P
and, for the estimation of the whole fraction (6), used (Bayes, 1765) a supplementary curve

( n2x2>§n (
y=cll— n = p+gq).
Y »q

A more detailed description, including an improvement of Bayes’s estimate due to Price (see Sheynin,
1969) and, of course, including the related work of Laplace (I"%éor. anal. prob., chap. 6 of book 2) would
be of interest for the history of mathematical calculus. We, however, shall restrict ourselves to prob-
abilistic problems proper.

The integral limit theorem in De Moivre could be written as

pin—p 2 g et
P”[”z < (o < z] ~ @mi L" e, ™

where pg/n is the dispersion of u/n, the relative frequency, the notation being that in standard use
(which is not the case with Bayes).

Neither Bayes nor Price used this limit theorem while the latter observed, moreover (in the covering
letter to Bayes, 1764) that it is not ‘ rigorously exact’ for the case of a finite n. Price also noticed that
the problem being solved by Bayes is the converse to that of De Moivre’s. We shall now study this point.
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If, notwithstanding the opinion of Price (and, obviously, Bayes), the Bayesian formula is to be con-
sidered, in the limiting case, n — o0, it would give

p—a 2 ? aa
pr‘—ZSWSZ}QW‘LC 3 dy, (8)

where @ = p/n and 7 is the estimate of p, the classical probability in the binomial scheme. In a somewhat
different form (8) is to be found in a commentary by Timerding to the German translation of Bayes
(1908). Lacking in this commentary, however, is the understanding that, as a first approximation,

a = E(p), pg/n? = var (p).

Neither Bayes nor Price possessed any notion about dispersion but, what is remarkable, they both
obviously understood the practical worthlessness of using (7) for the converse problem of deducing p
from the relative frequency of the event studied.

It is generally known that the so-called Bayes’s formula

pr(B|4,)pr(4,)

Zpr(Bl4,)pr(4) )
j=

PI'(AilB) =

is not to be found in Bayes. Expressed in words only, (9) is contained in Laplace (Essat philosophigue)
and it is possibly Cournot (1843, §88, p. 158) to whom this incorrect expression (Bayes’s formula)
is due.

Acknowledgement is due to Professor H. O. Lancaster for reprints of his own paper (1966) and that of
David (1957) and to Professor W. Kruskal for permitting us to mention his own discovery of Herschel’s
connexion with the y2.
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