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Abstract

The paper traces the development of the use of martingale methods
in survival analysis from the mid 1970’s to the early 1990’s. This
development was initiated by Aalen’s Berkeley PhD-thesis in 1975,
progressed through the work on estimation of Markov transition prob-
abilities, non-parametric tests and Cox’s regression model in the late
1970’s and early 1980’s, and it was consolidated in the early 1990’s
with the publication of the monographs by Fleming and Harrington
(1991) and Andersen, Borgan, Gill and Keiding (1993). The develop-
ment was made possible by an unusually fast technology transfer of
pure mathematical concepts, primarily from French probability, into
practical biostatistical methodology, and we attempt to outline some
of the personal relationships that helped this happen. We also point
out that survival analysis was ready for this development since the
martingale ideas inherent in the deep understanding of temporal de-
velopment so intrinsic to the French theory of processes were already
quite close to the surface in survival analysis.
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1 Introduction

Survival analysis is one of the oldest fields of statistics, going back to the
beginning of the development of actuarial science and demography in the 17th
century. The first life table was presented by John Graunt in 1662 (Kreager,
1988). Until well after the Second World War the field was dominated by the
classical approaches developed by the early actuaries (Andersen and Keiding,
1998).

As the name indicates, survival analysis may be about the analysis of
actual survival in the true sense of the word, that is death rates, or mortality.
However, survival analysis today has a much broader meaning, as the analysis
of the time of occurrence of any kind of event one might want to study. A
problem with survival data, which does not generally arise with other types of
data, is the occurrence of censoring. By this one means that the event to be
studied, may not necessarily happen in the time window of observation. So
observation of survival data is typically incomplete; the event is observed for
some individuals and not for others. This mixture of complete and incomplete
data is a major characteristic of survival data, and it is a main reason why
special methods have been developed to analyse this type of data.

A major advance in the field of survival analysis took place from the
1950’s. The inauguration of this new phase is represented by the paper by
Kaplan and Meier (1958) where they propose their famous estimator of the
survival curve. This is one of the most cited papers in the history of statistics
with more than 33,000 citations in the ISI Web of Knowledge (by April,
2009). While the classical life table method was based on a coarse division
of time into fixed intervals, e.g. one-year or five-year intervals, Kaplan and
Meier realized that the method worked quite as well for short intervals, and
actually for intervals of infinitesimal length. Hence they proposed what one
might call a continuous-time version of the old life table. Their proposal
corresponded to the development of a new type of survival data, namely
those arising in clinical trials where individual patients were followed on a
day to day basis and times of events could be registered precisely. Also, for
such clinical research the number of individual subjects was generally much
smaller than in the actuarial or demographic studies. So, the development
of the Kaplan-Meier method was a response to a new situation creating new
types of data.

The 1958 Kaplan-Meier paper opened a new area, but also raised a num-
ber of new questions. How, for instance, does one compare survival curves?
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A literature of tests for survival curves for two or more samples blossomed in
the 1960’s and 1970’s, but it was rather confusing. The more general issue
of how to adjust for covariates was first resolved by the introduction of the
proportional hazards model by David Cox in 1972 (Cox, 1972). This was
a major advance, and the more than 24,000 citations that Cox’s paper has
attracted in the ISI Web of Knowledge (by April 2009) is a proof of its huge
impact.

However, with this development the theory lagged behind. Why did the
Cox model work? How should one understand the plethora of tests? What
were the asymptotic properties of the Kaplan-Meier estimator? In order to
understand this, one had to take seriously the stochastic process character of
the data, and the martingale concept turned out to be very useful in the quest
for a general theory. The present authors were involved in pioneering work
in this area from the mid-seventies and we shall describe the development
of these ideas. It turned out that the martingale concept had an important
role to play in statistics. In the 35 years gone by since the start of this
development, there is now an elaborate theory, and recently it has started
to penetrate into the general theory of longitudinal data (Diggle, Farewell
and Henderson, 2007). However, martingales are not really entrenched in
statistics in the sense that statistics students are routinely taught about
martingales. While almost every statistician will know the concept of a
Markov process, far fewer will have a clear understanding of the concept of a
martingale. We hope that this historical account will help statisticians, and
probabilists, understand why martingales are so valuable in survival analysis.

The introduction of martingales into survival analysis started with the
1975 Berkeley Ph.D. thesis of one of us (Aalen, 1975) and was then followed
up by the Copenhagen based cooperation between several of the present
authors. The first journal presentation of the theory was Aalen (1978b).
General textbook introductions from our group have been given by Andersen,
Borgan, Gill and Keiding (1993), and by Aalen, Borgan and Gjessing (2008).
An earlier textbook was the one by Fleming and Harrington (1991).

In a sense, martingales were latent in the survival field prior to the for-
mal introduction. With hindsight there is a lot of martingale intuition in
the famous Mantel-Haenszel test (Mantel and Haenszel, 1959) and in the
fundamental partial likelihood paper by Cox (1975), but martingales were
not mentioned in these papers. Interestingly, Tarone and Ware (1977) use
dependent central limit theory which is really of a martingale nature.

The present authors were all strongly involved in the developments we
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describe here, and so our views represent the subjective perspective of active
participants.

2 The hazard rate and a martingale

estimator

In order to understand the events leading to the introduction of martingales
in survival analysis, one must take a look at an estimator which is connected
to the Kaplan-Meier estimator, and which today is called the Nelson-Aalen
estimator. This estimation procedure focuses on the concept of a hazard
rate. While the survival curve simply tells us how many have survived up to
a certain time, the hazard rate gives us the risk of the event happening as a
function of time, conditional on not having happened previously.

Mathematically, let the random variable T denote the survival time of
an individual. The survival curve is then given by S(t) = P (T > t). The
hazard rate is defined by means of a conditional probability. Assuming that
T is absolutely continuous (i.e., has a probability density), one looks at those
who have survived up to some time t, and considers the probability of the
event happening in a small time interval [t, t+dt). The hazard rate is defined
as the following limit:

α(t) = lim
∆t→0

1

∆t
P (t ≤ T < t+∆t | T ≥ t).

Notice that, while the survival curve is a function that starts in 1 and then
declines (or is partly constant) over time, the hazard function can be essen-
tially any non-negative function.

While it is simple to estimate the survival curve, it is more difficult to
estimate the hazard rate as an arbitrary function of time. What, however, is
quite easy is to estimate the cumulative hazard rate defined as

A(t) =

∫ t

0

α(s) ds.

A non-parametric estimator of A(t) was first suggested by Wayne Nelson
(Nelson, 1969, 1972) as a graphical tool to obtain engineering information
on the form of the survival distribution in reliability studies; see also Nelson
(1982). The same estimator was independently suggested by Altshuler (1970)
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Figure 1: Transition in a subset of a Markov chain

and by Aalen in his 1972 master thesis, which was partly published as a
statistical research report from the University of Oslo (Aalen, 1972) and
later in Aalen (1976a). The mathematical definition of the estimator is given
in (2.2) below.

In the 1970’s there were close connections between Norwegian statisticians
and the Department of Statistics at Berkeley, with the Berkeley professors
Kjell Doksum (originally Norwegian) and Erich Lehmann playing particularly
important roles. Several Norwegian statisticians went to Berkeley in order to
take a Ph.D. The main reason for this was to get into a larger setting, which
could give more impulses than what could be offered in a small country
like Norway. Also, Berkeley offered a regular Ph.D. program that was an
alternative to the independent type doctoral dissertation in the old European
tradition, which was common in Norway at the time. Odd Aalen also went
there with the intention to follow up on his work in his master thesis. The
introduction of martingales in survival analysis was first presented in his 1975
Berkeley Ph.D. thesis (Aalen, 1975) and was in a sense a continuation of his
master thesis. Aalen was influenced by his master thesis supervisor Jan M.
Hoem who emphasized the importance of continuous-time Markov chains as
a tool in the analysis when several events may occur to each individual (e.g.,
first the occurrence of an illness, and then maybe death; or the occurrence
of several births for a woman). A subset of a state space for such a Markov
chain may be illustrated as in Figure 1. Consider two states i and j in the
state space, with Y (t) the number of individuals being in state i at time t,
and with N(t) denoting the number of transitions from i to j in the time
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interval [0, t]. The rate of a new event, i.e., a new transition occurring, is
then seen to be λ(t) = α(t)Y (t). Censoring is easily incorporated in this
setup, and the setup covers the usual survival situation if the two states i
and j are the only states in the system with one possible transition, namely
the one from i to j.

The idea of Aalen was to abstract from the above a general model, later
termed the multiplicative intensity model; namely where the rate λ(t) of a
counting process N(t) can be written as the product of an observed process
Y (t) and an unknown rate function α(t), i.e.

λ(t) = α(t)Y (t). (2.1)

This gives approximately

dN(t) ≈ λ(t)dt = α(t)Y (t)dt,

that is
dN(t)

Y (t)
≈ α(t)dt,

and hence a reasonable estimate of A(t) =
∫ t

0
α(s) ds would be:

Â(t) =

∫ t

0

dN(s)

Y (s)
. (2.2)

This is precisely the Nelson-Aalen estimator.
Although a general formulation of this concept can be based within the

Markov chain framework as defined above, it is clear that this really has
nothing to do with the Markov property. Rather, the correct setting would be
a general point process, or counting process, N(t) where the rate, or intensity
process as a function of past occurrences, λ(t), satisfied the property (2.1).

This was clear to Aalen before entering the Ph.D. study at the University
of California at Berkeley in 1973. The trouble was that no proper mathemat-
ical theory for counting processes with intensity processes dependent on the
past had been published in the general literature by that time. Hence there
was no possibility of formulating general results for the Nelson-Aalen esti-
mator and related quantities. On arrival in Berkeley, Aalen was checking the
literature and at one time in 1974 he asked professor David Brillinger at the
Department of Statistics whether he knew about any such theory. Brillinger

6



had then recently received the Ph.D. thesis of Pierre Bremaud (Bremaud,
1973), who had been a student at the Electronics Research Laboratory in
Berkeley, as well as preprints of papers by Boel, Varayia and Wong (1975a,
1975b) from the same department. Aalen received those papers and it was
immediately clear to him that this was precisely the right tool for giving a
proper theory for the Nelson-Aalen estimator. Soon it turned out that the
theory led to a much wider reformulation of the mathematical basis of the
whole of survival and event history analysis, the latter meaning the extension
to transitions between several different possible states.

The mentioned papers were apparently the first to give a proper math-
ematical theory for counting processes with a general intensity process. As
explained in this historical account, it turned out that martingale theory
was of fundamental importance. With hindsight, it is easy to see why this
is so. Let us start with a natural heuristic definition of an intensity process
formulated as follows:

λ(t) =
1

dt
P (dN(t) = 1 | past), (2.3)

where dN(t) denotes the number of jumps (essentially 0 or 1) in [t, t + dt).
We can rewrite the above as

λ(t) =
1

dt
E(dN(t) | past),

that is
E(dN(t)− λ(t)dt | past) = 0, (2.4)

where λ(t) can be moved inside the conditional expectation since it is a
function of the past. Let us now introduce the following process:

M(t) = N(t)−
∫ t

0

λ(s)ds. (2.5)

Note that (2.4) can be rewritten

E(dM(t) | past) = 0.

This is of course a (heuristic) definition of a martingale. Hence the natural
intuitive concept of an intensity process (2.3) is equivalent to asserting that
the counting process minus the integrated intensity process is a martingale.
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The Nelson-Aalen estimator is now derived as follows. Using the multi-
plicative intensity model of formula (2.1) we can write:

dN(t) = α(t) Y (t) dt+ dM(t). (2.6)

For simplicity, we shall assume Y (t) > 0 (this may be modfied, see e.g.
Andersen et al., 1993). Dividing over (2.6) by Y (t) yields

1

Y (t)
dN(t) = α(t) +

1

Y (t)
dM(t).

By integration we get
∫ t

0

dN(s)

Y (s)
=

∫ t

0

α(s) ds +

∫ t

0

dM(s)

Y (s)
. (2.7)

The right-most integral is recognized as a stochastic integral with respect to
a martingale, and is therefore itself a zero-mean martingale. This represents
noise in our setting and therefore Â(t) is an unbiased estimator of A(t),

with the difference Â(t) − A(t) being a martingale. Usually there is some
probability that Y (t) may become zero, which gives a slight bias.

The focus of the Nelson-Aalen estimator is the hazard α(t), where α(t)dt
is the instantaneous probability that an individual at risk at time t has an
event in the next little time interval [t, t+ dt). In the special case of survival
analysis we study the distribution function F (t) of a nonnegative random
variable, which we for simplicity assume has density f(t) = F ′(t), which
implies α(t) = f(t)/(1 − F (t)), t > 0. Rather than studying the hazard
α(t), interest is often on the survival function S(t) = 1 − F (t), relevant
to calculating the probability of an event happening over some finite time
interval (s, t].

To transform the Nelson-Aalen estimator into an estimator of S(t) it is
useful to consider the product-integral transformation (Gill and Johansen,
1990; Gill, 2005):

S(t) = R
(0,t]

{1− dA(s)} .

Since A(t) =
∫ t

0
α(s)ds is the cumulative intensity corresponding to the haz-

ard function α(t), we have

R
(0,t]

{1− dA(s)} = exp

(
−
∫ t

0

α(s)ds

)
,
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while if A(t) =
∑

sj≤t hj is the cumulative intensity corresponding to a dis-

crete measure with jump hj at time sj (s1 < s2 < · · · ) then

R
(0,t]

{1− dA(s)} =
∏

sj≤t

{1− hj} .

The plug-in estimator

Ŝ(t) = R
(0,t]

{
1− dÂ(s)

}
(2.8)

is the Kaplan-Meier estimator (Kaplan and Meier, 1958). It is a finite product
of the factors 1− 1/Y (tj) for tj ≤ t, where t1 < t2 < · · · are the times of the
observed events.

A basic martingale representation is available for the Kaplan-Meier esti-
mator as follows. Still assuming Y (t) > 0 (see Andersen et al., 1993, for how
to relax this assumption) it may be shown by Duhamel’s equation that

Ŝ(t)

S(t)
− 1 = −

∫ t

0

Ŝ(s−)

S(s)Y (s)
dM(s), (2.9)

where the right-hand side is a stochastic integral of a predictable process with
respect to a zero-mean martingale, that is, itself a martingale. “Predictable”
is a mathematical formulation of the idea that the value is determined by
the past, in our context it is sufficient that the process is adapted and has
left-continuous sample paths. This representation is very useful for proving
properties of the Kaplan-Meier estimator as shown by Gill (1980).

3 Stochastic integration and statistical

estimation

The discussion in the previous section shows that the martingale property
arises naturally in the modelling of counting processes. It is not a modelling
assumption imposed from the outside, but is an integral part of an approach
where one considers how the past affects the future. This dynamic view of
stochastic processes represents what is often termed the French probability
school. A central concept is the local characteristic, examples of which are
transition intensities of a Markov chain, the intensity process of a counting
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process, drift and volatility of a diffusion process, and the generator of an
Ornstein-Uhlenbeck process. The same concept is valid for discrete time
processes, see Diggle et al. (2007) for a statistical application of discrete time
local characteristics.

It is clearly important in this context to have a formal definition of what
we mean by the “past”. In stochastic process theory the past is formulated
as a σ-algebra Ft of events, that is the family of events that can be decided to
have happened or not happened by observing the past. We denote Ft as the
history at time t, so that the entire history (or filtration) is represented by
the increasing family of σ-algebras {Ft}. Unless otherwise specified processes
will be adapted to {Ft}, i.e., measurable with respect to Ft at any time t.
The definition of a martingale M(t) in this setting will be that it fulfils the
relation:

E(M(t) | Fs) = M(s) for all t > s.

In the present setting there are certain concepts from martingale theory
that are of particular interest. Firstly, equation (2.5) can be rewritten as

N(t) = M(t) +

∫ t

0

λ(s)ds.

This is a special case of the Doob-Meyer decomposition. This is a very gen-
eral result, stating under a certain uniform integrability assumption that any
submartingale can be decomposed into the sum of a martingale and a pre-
dictable process, which is often denoted a compensator. The compensator in
our case is the stochastic process

∫ t

0
λ(s)ds.

Two important variation processes for martingales are defined, namely the
predictable variation process 〈M〉, and the optional variation process [M ].
Assume that the time interval [0, t] is divided into n equally long intervals,
and define ∆Mk = M(k/n)−M((k − 1)/n). Then

〈M〉t = lim
n→∞

n∑

k=1

Var(∆Mk | F(k−1)/n) and [M ]t = lim
n→∞

n∑

k=1

(∆Mk)
2,

where the limits are in probability.
A second concept of great importance is stochastic integration. There is

a general theory of stochastic integration with respect to martingales. Under
certain assumptions, the central results are of the following kind:
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1. A stochastic integral
∫ t

0
H(s) dM(s) of a predictable process H(t) with

respect to a martingale M(t) is itself a martingale.

2. The variation processes satisfy:

〈∫
H dM

〉
=

∫
H2 d〈M〉 and

[∫
H dM

]
=

∫
H2 d [M ] . (3.1)

These formulas can be used to immediately derive variance formulas for es-
timators and tests in survival and event history analysis.

The general mathematical theory of stochastic integration is quite com-
plex. What is needed for our application, however, is relatively simple.
Firstly, one should note that the stochastic integral in equation (2.7) (the
right-most integral) is simply the difference between an integral with respect
to a counting processes and an ordinary Riemann integral. The integral with
respect to a counting process is of course just of the sum of the integrand
over jump times of the process. Hence, the stochastic integral in our context
is really quite simple compared to the more general theory of martingales,
where the martingales may have sample paths of infinite total variation on
any interval, and where the Itō integral is the relevant theory. Still the above
rules 1 and 2 are very useful in organizing and simplifying calculations and
proofs.

4 Stopping times, unbiasedness and

independent censoring

The concepts of martingale and stopping time in probability theory are both
connected to the notion of a fair game and originate in the work of Ville (1936,
1939). In fact one of the older (non-mathematical) meanings of martingale
is a fair-coin tosses betting system which is supposed to give a guaranteed
payoff. The requirement of unbiasedness in statistics can be viewed as es-
sentially the same concept as a fair game. This is particularly relevant in
connection with the concept of censoring which pervades survival and event
history analysis. As mentioned above, censoring simply means that the ob-
servation of an individual process stops at a certain time, and after this time
there is no more knowledge about what happened.
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In the 1960’s and 1970’s survival analysis methods were studied within
reliability theory and the biostatistical literature assuming specific censoring
schemes. The most important of these censoring schemes were the following:

• For type I censoring, the survival time Ti for individual i is observed if
it is no larger than a fixed censoring time ci, otherwise we only know
that Ti exceeds ci.

• For type II censoring, observation is continued until a given number of
events r is observed, and then the remaining units are censored.

• Random censoring is similar to type I censoring, but the censoring
times ci are here the observed values of random variables Ci that are
independent of the Ti’s.

However, by adopting the counting process formulation, Aalen noted in his
Ph.D. thesis and later journal publications (e.g. Aalen, 1978b) that if cen-
soring takes place at a stopping time, as is the case for the specific censoring
schemes mentioned above, then the martingale property will be preserved
and no further assumptions on the form of censoring is needed to obtain
unbiased estimators and tests.

Aalen’s argument assumed a specific form of the history, or filtration,
{Ft}. Namely that it is given as Ft = F0 ∨ Nt, where {Nt} is the filtration
generated by the uncensored individual counting processes, and F0 represents
information available to the researcher at the outset of the study. However,
censoring may induce additional variation not described by a filtration of
the above form, so one may have to consider a larger filtration {Gt} also
describing this additional randomness. The fact that we have to consider a
larger filtration may have the consequence that the intensity processes of the
counting processes may change. However, if this is not the case, so that the
intensity processes with respect to {Gt} are the same as the {Ft}-intensity
processes, censoring is said to be independent. Intuitively this means that
the additional knowledge of censoring times up to time t does not carry any
information on an individual’s risk of experiencing an event at time t.

A careful study of independent censoring for marked point process models
along these lines was first carried out by Arjas and Hara (1984). The ideas of
Arjas and Hara were taken up and further developed by Per Kragh Andersen,
Ørnulf Borgan, Richard Gill, and Niels Keiding as part of their work on the
monograph Statistical Models Based on Counting Processes ; cf. Section 11
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below. Discussions with Martin Jacobsen were also useful in this connection
(see also Jacobsen, 1989). Their results were published in Andersen et al.
(1988) and later Chapter 3 of their monograph. It should be noted that there
is a close connection between drop-outs in longitudinal data and censoring for
survival data. In fact, independent censoring in survival analysis is essentially
the same as sequential missingness at random in longitudinal data analysis
(e.g., Hogan, Roy and Korkontzelou, 2004).

In many standard statistical models there is an intrinsic assumption of
independence between outcome variables. While, in event history analysis,
such an assumption may well be reasonable for the basic, uncensored obser-
vations, censoring may destroy this independence. An example is survival
data in an industrial setting subject to type 2 censoring; that is the situation
where items are put on test simultaneously and the experiment is terminated
at the time of the r-th failure (cf. above). However, for such situations mar-
tingale properties may be preserved; in fact, for type 2 censoring {Gt} = {Ft}
and censoring is trivially independent according to the definition just given.
This suggests that, for event history data, the counting process and martin-
gale framework is, indeed, the natural framework and that the martingale
property replaces the traditional independence assumption, also in the sense
that it forms the basis of central limit theorems, which will be discussed next.

5 Martingale central limit theorems

As mentioned, the martingale property replaces the common independence
assumption. One reason for the ubiquitous assumption of independence in
statistics is to get some asymptotic distributional results of use in estimation
and testing, and the martingale assumption can fulfil this need as well. Cen-
tral limit theorems for martingales can be traced back at least to the begin-
ning of the 1970’s (Brown, 1971; Dvoretsky, 1972). Of particular importance
for the development of the present theory was the paper by McLeish (1974).
The potential usefulness of this paper was pointed out to Aalen by his Ph.D.
supervisor Lucien Le Cam. In fact this happened before the connection had
been made to Bremaud’s new theory of counting processes, and it was first
after the discovery of this theory that the real usefulness of McLeish’s paper
became apparent. The application of counting processes to survival analy-
sis including the application of McLeish’s paper was done by Aalen during
1974–75.

13



The theory of McLeish was developed for the discrete-time case, and had
to be further developed to cover the continuous-time setting of the counting
process theory. What presumably was the first central limit theorem for
continuous time martingales was published in Aalen (1977). A far more
elegant and complete result was given by Rebolledo (1980), and this formed
the basis for further developments of the statistical theory; see Andersen et
al. (1993) for an overview. A nice early result was also given by Helland
(1982).

The central limit theorem for martingales is related to the fact that a mar-
tingale with continuous sample paths and a deterministic predictable vari-
ation process is a Gaussian martingale, i.e., with normal finite-dimensional
distributions. Hence one would expect a central limit theorem for counting
process associated martingales to depend on two conditions:

(i) the sizes of the jumps go to zero (i.e., approximating continuity of
sample paths)

(ii) either the predictable or the optional variation process converges to a
deterministic function

In fact, the conditions in Aalen (1977) and Rebolledo (1980) are precisely of
this nature.

Without giving the precise formulations of these conditions, let us look
informally at how they work out for the Nelson-Aalen estimator. We saw in
formula (2.7) that the difference between estimator and estimand of cumula-
tive hazard up to time t could be expressed as

∫ t

0
dM(s)/Y (s), the stochastic

integral of the process 1/Y with respect to the counting process martin-
gale M . Considered as a stochastic process (i.e., indexed by time t), this
“estimation-error process” is therefore itself a martingale. Using the rules
(3.1) we can compute its optional variation process to be

∫ t

0
dN(s)/Y (s)2

and its predictable variation process to be
∫ t

0
α(s)ds/Y (s). The error pro-

cess only has jumps where N does, and at a jump time s, the size of the
jump is 1/Y (s).

As a first attempt to get some large sample information about the Nelson-
Aalen estimator, let us consider what the martingale central limit theo-
rem could say about the Nelson-Aalen estimation-error process. Clearly we
would need the number at risk process Y to get uniformly large, in order
for the jumps to get small. In that case, the predictable variation process
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∫ t

0
α(s)ds/Y (s) is forced to be getting smaller and smaller. Going to the

limit, we will have convergence to a continuous Gaussian martingale with
zero predictable variation process. But the only such process is the constant
process, equal to zero at all times. Thus in fact we obtain a consistency
result: if the number at risk process gets uniformly large, in probability, the
estimation error converges uniformly to zero, in probability. (Actually there
are martingale inequalities of Chebyshev type which allow one to draw this
kind of conclusion without going via central limit theory.)

In order to get nondegenerate asymptotic normality results, we should
zoom in on the estimation error. A quite natural assumption in many ap-
plications is that there is some index n, standing perhaps for sample size,
such that for each t, Y (t)/n is roughly constant (non random) when n is
large. Taking our cue from classical statistics, let us take a look at

√
n

times the estimation error process
∫ t

0
dM(s)/Y (s). This has jumps of size

(1/
√
n)(Y (s)/n)−1. The predictable variation process of the rescaled estima-

tion error is n times what it was before: it becomes
∫ t

0
(Y (s)/n)−1α(s)ds. So,

the convergence of Y/n to a deterministic function ensures simultaneously
that the jumps of the rescaled estimation error process become vanishingly
small and that its predictable variation process converges to a deterministic
function.

The martingale central limit theorem turns out to be extremely effective
in allowing us to guess the kind of results which might be true. Techni-
calities are reduced to a minimum; results are essentially optimal, i.e., the
assumptions are minimal.

Why is that so? In probability theory, the 1960’s and 1970’s were the hey-
day of study of martingale central limit theorems. The outcome of all this
work was that the martingale central limit theorem was not only a general-
ization of the classical Lindeberg central limit theorem, but that the proof
was the same: it was simply a question of judicious insertion of conditional
expectations, and taking expectations by repeated conditioning, so that the
same line of proof worked exactly. In other words, the classical Lindeberg
proof of the central limit theorem (see e.g. Feller, 1967) already is the proof
of the martingale central limit theorem.

The difficult extension, taking place in the 1970’s to the 1980’s, was
in going from discrete time to continuous time processes. This required a
major technical investigation of what are the continuous time processes which
we are able to study effectively. This is quite different from research into
central limit theorems for other kinds of processes, e.g., for stationary time
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series. In that field, one splits the process under study into many blocks, and
tries to show that the separate blocks are almost independent if the distance
between the blocks is large enough. The distance between the blocks should
be small enough that one can forget about what goes on between. The central
limit theorem comes from looking for approximately independent summands
hidden somewhere inside the process of interest. However in the martingale
case, one is already studying exactly the kind of process for which the best
(sharpest, strongest) proofs are already attuned. No approximations are
involved.

At the time martingales made their entry to survival analysis, statisti-
cians were using many different tools to get large sample approximations in
statistics. One had different classes of statistics for which special tools had
been developed. Each time something was generalized from classical data
to survival data, the inventors first showed that the old tools still worked to
get some information about large sample properties (e.g. U statistics, rank
tests). Just occasionally, researchers saw a glimmering of martingales behind
the scenes, as when Tarone and Ware (1977) used Dvoretsky’s (1972) mar-
tingale central limit theorem in the study of their class of non-parametric
tests. Another important example of work where martingale type arguments
were used, is Cox’s (1975) paper on partial likelihood; cf. Section 10.

6 Two-sample tests for counting processes

During the 1960’s and early 1970’s a plethora of tests for comparing two or
more survival functions were suggested (Gehan, 1965; Mantel, 1966; Efron,
1967; Breslow, 1970; Peto and Peto, 1972). The big challenge was to handle
the censoring, and various simplified censoring mechanisms were proposed
with different versions of the tests fitted to the particular censoring scheme.
The whole setting was rather confusing, with an absence of a theory connect-
ing the various specific cases. The first connection to counting processes was
made by Aalen in his Ph.D. thesis when it was shown that a generalized Sav-
age test (which is equivalent to the logrank test) could be given a martingale
formulation. In a Copenhagen research report (Aalen, 1976b) this was ex-
tended to a general martingale formulation of two-sample tests which turned
out to encompass a number of previous proposals as special cases. The very
simple idea was to write the test statistic as a weighted stochastic integral
over the difference between two Nelson-Aalen estimators. Let the processes
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to be compared be indexed by i = 1, 2. A class of tests for comparing the
two rate functions α1(t) and α2(t) is then defined by

X(t) =

∫ t

0

L(s)d(Â1(s)− Â2(s)) =

∫ t

0

L(s)

(
dN1(s)

Y1(s)
− dN2(s)

Y2(s)

)
.

Under the null hypothesis of α1(s) ≡ α2(s) it follows thatX(t) is a martingale
since it is a stochastic integral. An estimator of the variance can be derived
from the rules for the variation processes, and the asymptotics is taken care
of by the martingale central limit theorem. It was found by Aalen (1978b)
and detailed by Gill (1980) that almost all previous proposals for censored
two-sample tests in the literature were special cases that could be arrived at
by judicious choice of the weight function L(t).

A thorough study of two-sample tests from this point of view was first
given by Richard Gill in his Ph.D. thesis from Amsterdam (Gill, 1980). The
inspiration for Gill’s work was a talk given by Odd Aalen at the European
Meeting of Statisticians in Grenoble in 1976. At that time Gill was about
to decide on the topic for his Ph.D. thesis, one option being two sample
censored data rank tests. He was very inspired by Aalen’s talk and the
uniform way to treat all the different two-sample statistics offered by the
counting process formulation, so this decided the topic for his thesis work. At
that time, Gill had no experience with martingales in continuous time. But
by reading Aalen’s thesis and other relevant publications, he soon mastered
the theory. To that end it also helped him that there was organized a study
group in Amsterdam on counting processes with Piet Groeneboom as a key
contributor.

7 The Copenhagen environment

Much of the further development of counting process theory to statistical
issues springs out of the statistics group at the University of Copenhagen.
After his Ph.D. study in Berkeley, Aalen was invited by his former master the-
sis supervisor, Jan M. Hoem, to visit the University of Copenhagen, where
Hoem had taken a position as professor in actuarial mathematics. Aalen
spent 8 months there (November 1975 to June 1976) and his work imme-
diately caught the attention of Niels Keiding, Søren Johansen, and Martin
Jacobsen, among others. The Danish statistical tradition at the time had a
strong mathematical basis combined with a growing interest in applications.
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Internationally, this combination was not so common at the time; mostly the
good theoreticians tended to do only theory while the applied statisticians
were less interested in the mathematical aspects. Copenhagen made a fertile
soil for the further development of the theory.

It was characteristic that for such a new paradigm, it took time to gen-
erate an intuition for what was obvious and what really required detailed
study. For example, when Keiding gave graduate lectures on the approach
in 1976/77 and 1977/78, he followed Aalen’s thesis closely and elaborated
on the mathematical prerequisites [stochastic processes in the French way,
counting processes (Jacod, 1975), square integrable martingales, martingale
central limit theorem (McLeish, 1974)]. This was done in more mathemat-
ical generality than became the standard later. For example, he patiently
went through the Doob-Meyer decompositions following Meyer’s Probabilités
et Potentiel (Meyer, 1966), and he quoted the derivation by Courrège and
Priouret (1965) of the following result:

If (Nt) is a stochastic process, {Nt} is the family of σ-algebras generated
by (Nt), and T is a stopping time (i.e. {T ≤ t} ∈ Nt for all t), then the
conventional definition of the σ-algebra NT of events happening before T is

A ∈ NT ⇐⇒ ∀t : A ∩ {T ≤ t} ∈ Nt.

A more intuitive way of defining this σ-algebra is

N ∗
T = σ{NT∧u, u ≥ 0}.

Courrège and Priouret (1965) proved that NT = N ∗
T through a delicate

analysis of the path properties of (Nt).
Keiding quoted the general definition, valid for measures with both dis-

crete and continuous components, of predictability, not satisfying himself
with the “essential equivalence to left-continuous sample paths” that we work
with nowadays. Keiding had many discussions with his colleague, the proba-
bilist Martin Jacobsen, who had long focused on path properties of stochastic
processes. Jacobsen developed his own independent version of the course in
1980 and wrote his lecture notes up in the Springer Lecture Notes in Statistics

series (Jacobsen, 1982).
Among those who happened to be around in the initial phase was Niels

Becker from Melbourne, Australia, already then well established with his
work in infectious disease modelling. For many years to come martingale
arguments were used as important tools in Becker’s further work on statistical
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models for infectious disease data; see Becker (1993) for an overview of this
work. A parallel development was the interesting work of Arjas and coauthors
on statistical models for marked point processes, see e.g. Arjas and Haara
(1984) and Arjas (1989).

8 From Kaplan-Meier to the empirical

transition matrix

A central effort initiated in Copenhagen in 1976 was the generalization from
scalar to matrix values of the Kaplan-Meier estimator. This started out with
the estimation of transition probabilities in the competing risks model devel-
oped by Aalen (1972); a journal publication of this work first came in Aalen
(1978a). This work was done prior to the introduction of martingale the-
ory, and just like the treatment of the cumulative hazard estimator in Aalen
(1976a) it demonstrates the complications that arose before the martingale
tools had been introduced. In 1973 Aalen had found a matrix version of the
Kaplan-Meier estimator for Markov chains, but did not attempt a mathe-
matical treatment because this seemed too complex. It was the martingale
theory that allowed an elegant and compact treatment of these attempts to
generalize the Kaplan-Meier estimator, and the breakthrough here was made
by Søren Johansen in 1975–76. It turned out that martingale theory could be
combined with the product-integral approach to non-homogeneous Markov
chains via an application of Duhamel’s equality; cf. (8.2) below. The the-
ory of stochastic integrals could then be used in a simple and elegant way.
This was written down in a research report (Aalen and Johansen, 1977) and
published in Aalen and Johansen (1978).

Independently of this the same estimator was developed by Fleming and
published in Fleming (1978a, 1978b) just prior to the publication of Aalen
and Johansen (and duly acknowledged in their paper). Tom Fleming and
David Harrington were Ph.D. students of Grace Yang at the University of
Maryland, and they have later often told us that they learned about Aalen’s
counting process theory from Grace Yang’s contact with her own former
Ph.D. advisor, Lucien Le Cam. Fleming also based his work on the martin-
gale counting process approach. He had a more complex presentation of the
estimator presenting it as a recursive solution of equations; he did not have
the simple matrix product version of the estimator nor the compact presen-
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tation through the Duhamel equality which allowed for general censoring and
very compact formulas for covariances.

The estimator is named the empirical transition matrix, see e.g. Aalen et
al. (2008). The compact matrix product version of the estimator presented
in Aalen and Johansen (1978) is often called the Aalen-Johansen estimator,
and we are going to explain the role of martingales in this estimator.

More specifically, consider an inhomogeneous continuous-time Markov
process with finite state space {1, . . . , k} and transition intensities αhj(t)
between states h and j, where in addition we define αhh(t) = −∑j 6=h αhj(t)

and denote the matrix of all Ahj(t) =
∫ t

0
αhj(s)ds as A(t). Nelson-Aalen esti-

mators Âhj(t) of the cumulative transition intensities Ahj(t) may be collected

in the matrix Â(t) = {Âhj(t)}. To derive an estimator of the transition prob-
ability matrix P(s, t) = {Phj(s, t)} it is useful to represent it as the matrix
product-integral

P(s, t) = R
(s,t]

{I+ dA(u)} ,

which may be defined as

R
(s,t]

{I+ dA(u)} = lim
max |ui−ui−1|→0

∏

i

{I+A(ui)−A(ui−1)} ,

where s = u0 < u1 < · · · < un = t is a partition of (s, t] and the matrix
product is taken in its natural order from left to right.

The empirical transition matrix or Aalen-Johansen estimator is the plug-
in estimator

P̂(s, t) = R
(s,t]

{
I+ dÂ(u)

}
, (8.1)

which may be evaluated as a finite matrix product over the times in (s, t]
when transitions are observed. Note that (8.1) is a multivariate version of
the Kaplan-Meier estimator (2.8). A matrix martingale relation may derived
from a matrix version of the Duhamel equation (2.9). For the case where all
numbers at risk in the various states, Yh(t), are positive this reads

P̂(s, t)P(s, t)−1 − I =

∫ t

s

P̂(s, u−)d(Â−A)(u)P(s, u)−1. (8.2)

This is a stochastic integral representation from which covariances and asymp-
totic properties can be deduced directly. This particular formulation is from
Aalen and Johansen (1978).
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9 Pustulosis palmo-plantaris and k-sample

tests

One of the projects that were started when Aalen visited the University
of Copenhagen was an epidemiological study of the skin disease pustulo-
sis palmo-plantaris with Aalen, Keiding and the medical doctor Jens Thor-
mann as collaborators. Pustulosis palmo-plantaris is mainly a disease among
women, and the question was whether the risk of the disease was related
to the occurrence of menopause. Consecutive patients from a hospital out-
patient clinic were recruited, so the data could be considered a random sample
from the prevalent population. At the initiative of Jan M. Hoem, another of
his former master students from Oslo, Ørnulf Borgan, was asked to work out
the details. Borgan had since 1977 been assistant professor in Copenhagen,
and he had learnt the counting process approach to survival analysis from
the above mentioned series of lectures by Niels Keiding. The cooperation
resulted in the paper Aalen et al. (1980).

In order to be able to compare patients without menopause with patients
with natural menopuase and with patients with induced menopause, the sta-
tistical analysis required an extension of Aalen’s work on two-sample tests to
more than two samples. (The work of Richard Gill on two-sample tests was
not known in Copenhagen at that time.) The framework for such an exten-
sion is k counting processes N1, . . . , Nk, with intensity processes λ1, . . . , λk

of the multiplicative form λj(t) = αj(t)Yj(t); j = 1, 2, . . . , k; and where the
aim is to test the hypothesis that all the αj are identical. Such a test may
be based on the processes

Xj(t) =

∫ t

0

Kj(s)d(Âj(s)− Â(s)), j = 1, 2, . . . , k,

where Âj is the Nelson-Aalen estimator based on the j-th counting process,

and Â is the Nelson-Aalen estimator based on the aggregated counting pro-
cess N =

∑k
j=1Nj .

This experience inspired a decision to give a careful presentation of the
k-sample tests for counting processes and how they gave a unified formula-
tion of most rank based tests for censored survival data, and Per K. Andersen
(who also had followed Keiding’s lectures), Ørnulf Borgan, and Niels Keiding
embarked on this task in the fall of 1979. During the work on this project,
Keiding was (by Terry Speed) made aware of Richard Gill’s work on two-
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sample tests. (Speed, who was then on sabbatical in Copenhagen, was at a
visit in Delft where he came across an abstract book for the Dutch statistical
association’s annual gathering with a talk by Gill about the counting process
approach to censored data rank tests.) Gill was invited to spend the fall of
1980 in Copenhagen. There he got a draft manuscript by Andersen, Borgan
and Keiding on k-sample tests, and as he made a number of substantial com-
ments to the manuscript, he was invited to co-author the paper (Andersen,
Borgan, Gill, and Keiding, 1982).

10 The Cox model

With the development of clinical trials in the 1950’s and 1960’s the need to
analyze censored survival data dramatically increased, and a major break-
through in this direction was the Cox proportional hazards model published
in 1972 (Cox, 1972). Now, regression analysis of survival data was possible.
Specifically, the Cox model describes the hazard rate for a subject, i with
covariates Zi = (Zi1, . . . , Zip)

T as

α(t | Zi) = α0(t) exp(β
TZi).

This is a product of a baseline hazard rate α0(t), common to all subjects, and
the exponential function of the linear predictor, βTZi =

∑
j βjZij. With this

specification, hazard rates for all subjects are proportional and exp(βj) is the
hazard rate ratio associated with an increase of 1 unit for the jth covariate
Zj, that is the ratio

exp(βj) =
α(t | Z1, Z2, ..., Zj−1, Zj + 1, Zj+1, ..., Zp)

α(t | Z1, Z2, ..., Zj−1, Zj, Zj+1, ..., Zp)
,

where Zℓ for ℓ 6= j are the same in numerator and denominator. The model
formulation of Cox (1972) allowed for covariates to be time-dependent and it

was suggested to estimate β by the value β̂ maximizing the partial likelihood

L(β) =
∏

i:Di=1

exp(βTZi(Ti))∑
j∈Ri

exp(βTZj(Ti))
. (10.1)

Here, Di = I(i was observed to fail) and Ri is the risk set, i.e., the set of
subjects still at risk at the time, Ti, of failure for subject i. The cumulative
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baseline hazard rate A0(t) =
∫ t

0
α0(u)du was estimated by the Breslow (1972,

1974) estimator

Â0(t) =
∑

i:Ti≤t

Di

∑
j∈Ri

exp(β̂
T

Zj(Ti))
. (10.2)

Cox’s work triggered a number of methodological questions concerning
inference in the Cox model. In what respect could the partial likelihood
(10.1) be interpreted as a proper likelihood function? How could the large
sample properties of the resulting estimators be established? Cox himself
used repeated conditional expectations (which essentially was a martingale
argument) to show informally that his partial likelihood (10.1) had simi-
lar properties as an ordinary likelihood, while Tsiatis (1981) used classical
methods to provide a thorough treatment of large sample properties of the
estimators (β̂, Â0(t)) when only time-fixed covariates were considered. The
study of large sample properties, however, were particularly intriguing when
time-dependent covariates were allowed in the model.

At the Statistical Research Unit in Copenhagen, established in 1978, anal-
ysis of survival data was one of the key research areas and several applied
medical projects using the Cox model were conducted. One of these projects,
initiated in 1978 and published by Andersen and Rasmussen (1986), dealt
with recurrent events: admissions to psychiatric hospitals among pregnant
women and among women having given birth or having had induced abortion.
Here, a model for the intensity of admissions was needed and since previous
admissions were strongly predictive for new admissions, time-dependent co-
variates should be accounted for. Counting processes provided a natural
framework in which to study the phenomenon and research activities in this
area were already on the agenda, as exemplified above.

It soon became apparent that the Cox model could be immediately ap-
plied for the recurrent event intensity, and Johansen’s (1983) derivation of
Cox’s partial likelihood as a profile likelihood also generalized quite easily.
The individual counting processes, Ni(t), counting admissions for woman i
could then be “Doob-Meyer decomposed” as

Ni(t) =

∫ t

0

Yi(u)α0(u) exp(β
TZi(u))du+Mi(t). (10.3)

Here, Yi(t) is the at-risk indicator process for woman i (indicating that she
is still in the study and out of hospital at time t), Zi(t) is the, possibly
time-dependent, covariate vector including information on admissions before

23



t, and α0(t) the unspecified baseline hazard. Finally, Mi(t) is the martingale.
We may write the sum over event times in the score U(β) = ∂ logL(β)/∂β,
derived from Cox’s partial likelihood (10.1), as the counting process integral

U(β) =
∑

i

∫ ∞

0

(
Zi(u)−

∑
j Yj(u)Zj(u) exp(β

TZj(u))∑
j Yj(u) exp(β

TZj(u))

)
dNi(u).

Then using (10.3), the score can be re-written as U∞(β), where

Ut(β) =
∑

i

∫ t

0

(
Zi(u)−

∑
j Yj(u)Zj(u) exp(β

TZj(u))∑
j Yj(u) exp(β

TZj(u))

)
dMi(u).

Thus, evaluated at the true parameter values, the Cox score, considered as a
process in t is a martingale stochastic integral, provided the time-dependent
covariates (and Yi(t)) are predictable.

Large sample properties for the score could then be established using
the martingale central limit theorem and transformed into a large sample
result for β̂ by standard Taylor expansions. Also, asymptotic properties of
the Breslow estimator (10.3) could be established using martingale methods.

This is because we may write the estimator as Â0(t) = Â0(t | β̂), where for
the true value of β we have

Â0(t |β) =
∫ t

0

∑
i dNi(u)∑

j Yj(u) exp(β
TZj(u))

= A0(t)+

∫ t

0

∑
i dMi(u)∑

j Yj(u) exp(β
TZj(u))

.

That is, Â0(t |β) − A0(t) is a martingale stochastic integral. These results
were obtained by Per Kragh Andersen in 1979-80, but a number of techni-
calities remained to get proper proofs.

As mentioned above, Richard Gill visited Copenhagen in 1980 and he
was able to provide the proof of consistency and work out the detailed ver-
ifications of the general conditions for the asymptotic results in Andersen
and Gill’s (1982) Annals of Statistics paper. It should be noted that Næs
(1982), independently, published similar results under somewhat more re-
strictive conditions using discrete-time martingale results.

Obviously, the results mentioned above also hold for counting processes
Ni(t) = I(Ti ≤ t, Di = 1) derived from censored survival times and censor-
ing indicators, (Ti, Di), but historically the result was first derived for the
“Andersen-Gill” recurrent events process. Andersen and Borgan (1985), see
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also Andersen et al. (1993, Chapter VII), extended these results to multivari-
ate counting processes modelling the occurrence of several types of events in
the same subjects.

Later, Barlow and Prentice (1988) and Therneau, Grambsch and Flem-
ing (1990) used the Doob-Meyer decomposition (10.3) to define martingale

residuals

M̂i(t) = Ni(t)−
∫ t

0

exp(β̂
T

Zi(u))dÂ0(u). (10.4)

Note how Ni(t) plays the role of the observed data while the compensator
term estimates the expectation. We are then left with the martingale noise
term.

The martingale residuals (10.4) provide the basis for a number of goodness-
of-fit techniques for the Cox model. First, they were used to study whether
the functional form of a quantitative covariate was modelled in a sensible
way. Later, cumulative sums of martingale residuals have proven useful for
examining several features of hazard based models for survival and event
history data, including both the Cox model, Aalen’s additive hazards model
and others (e.g., Lin, Wei and Ying, 1993; Martinussen and Scheike, 2006).
The additive hazards model was proposed by Aalen (1980) as a tool for an-
alyzing survival data with changing effects of covariates. It is also useful for
recurrent event data and dynamic path analysis, see e.g. Aalen et al. (2008).

11 The monograph Statistical models based

on counting processes

As the new approach spread, publishers became interested, and as early
as 1982 Martin Jacobsen had published his exposition in the Springer Lec-
ture Notes in Statistics (Jacobsen, 1982). In 1982 Niels Keiding gave an
invited talk “Statistical applications of the theory of martingales on point
processes” at the Bernoulli Society conference on Stochastic Processes in
Clermont-Ferrand. (One slide showed a graph of a simulated sample func-
tion of a compensator, which prompted the leading French probabilist Michel
Métivier to exclaim “This is the first time I have seen a compensator”.) At
that conference Klaus Krickeberg, himself a pioneer in martingale theory
and an advisor to the Springer Series in Statistics, invited Keiding to write
a monograph on this topic. Keiding floated this idea in the well-established
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collaboration with Andersen, Borgan and Gill. Aalen was asked to partici-
pate, but had just started to build up a group of medical statistics in Oslo
and wanted to give priority to that. So the remaining four embarked upon
what became an intense 10-year collaboration resulting in the monograph
Statistical Models Based on Counting Processes (Andersen et al., 1993). The
monograph combines concrete practical examples, almost all of the authors’
own experience, with an exposition of the mathematical background, several
detailed chapters on non- and semiparametric models as well as parametric
models, as well as chapters giving preliminary glimpses into topics to come:
semiparametric efficiency, frailty models (for more elaborate introductions of
frailty models see Hougaard, 2002; or Aalen et al., 2008) and multiple time-
scales. Fleming and Harrington had published their monograph Counting

Processes and Survival Analysis with Wiley in 1991 (Fleming and Harring-
ton, 1991). It gives a more textbook-type presentation of the mathematical
background and covers survival analysis up to and including the proportional
hazards model for survival data.

12 Limitations of martingales

Martingale tools do not cover all areas where survival and event history anal-
ysis may be used. In more complex situations one can see the need to use a
variety of tools, alongside of what martingale theory provides. For staggered
entry, the Cox frailty model, and in Markov renewal process/semi-Markov
models (see e.g. Andersen et al., 1993, Chapters IX and X, for references on
this work), martingale methods give transparent derivations of mean values
and covariances, likelihoods, and maximum likelihood estimators; however
to derive large sample theory, one needs input from the theory of empirical
processes. Thus in these situations the martingale approach helps at the
modelling stage and the stage of constructing promising statistical method-
ology, but one needs different tools for the asymptotic theory. The reason
for this in a number of these examples is that the martingale structure cor-
responds to the dynamics of the model seen in real (calendar) time, while
the principal time scales of statistical interest correspond to time since an
event which is repeated many times. In the case of frailty models, the prob-
lem is that there is an unobserved covariate associated with each individual;
observing that individual at late times gives information about the value of
the covariate at earlier times. In all these situations, the natural statistical
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quantities to study can no longer be directly expressed as sums over contri-
butions from each (calendar) time point, weighted by information only from
the (calendar time) past. More complex kinds of missing data (frailty models
can be seen as an example of missing data), and biased sampling, lead also to
new levels of complexity in which the original dynamical time scale becomes
just one feature of the problem at hand, other features which do not mesh
well with this time scale become dominating, with regards to the technical
investigation of large sample behaviour. A difficulty with the empirical pro-
cess theory is the return to a basis of independent processes, and so a lot
of the niceness of the martingale theory is lost. Martingales allow for very
general dependence between processes.

However, the martingale ideas also enter into new fields. Lok (2008)
used martingale theory to understand the continuous time version of James
Robins’ theory of causality. Similarly, Didelez (2007) used martingales to un-
derstand the modern formulation of local dependence and Granger causality.
Connected to this are the work of Arjas and Parner (2004) on posterior pre-
dictive distributions for marked point process models and the dynamic path
analysis of Fosen et al. (2006), see also Aalen et al. (2008). Hence, there is
a new lease of life for the theory. Fundamentally, the idea of modelling how
the past influences the present and the future is inherent to the martingale
formulation, and this must with necessity be of importance in understanding
causality.

The martingale concepts from the French probability school may be the-
oretical and difficult to many statisticians. Jacobsen (1982) and Helland
(1982) are nice examples of how the counting process work stimulated prob-
abilists to reappraise the basic probability theory. Both authors succeeded
in giving a much more compact and elementary derivation of (different parts
of) the basic theory from probability needed for the statistics. This certainly
had a big impact at the time, in making the field more accessible to more
statisticians. Especially while the fundamental results from probability were
still in the course of reaching their definitive forms and were often not pub-
lished in the most accessible places or languages. Later these results became
the material of standard textbooks. In the long run, statisticians tend to
use standard results from probability without bothering too much about how
one can prove them from scratch. Once the martingale theory became well
established people were more confident in just citing the results they needed.

Biostatistical papers have hardly ever cited papers or even books in the-
oretical probability. However at some point it became almost obligatory
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to cite Andersen and Gill (1982), Andersen et al. (1993), and other such
works. What was being cited then was worked out examples of applying the
counting process approach to various more or less familiar applied statistical
tools like the Cox regression model, especially when being used in a little
bit non-standard context, e.g., with repeated events. It helped that some
software packages also refer to such counting process extensions as the basic
biostatistical tool.

The historical overview presented here shows that the elegant theory of
martingales has been used fruitfully in statistics. This is another example
showing that mathematical theory developed on its own terms may produce
very useful practical tools.
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l’Académie des Sciences 203, 26–27.

Ville, J.-A. (1939). Étude Critique de la Notion de Collectif. Gauthier-Villars, Paris

33


	1 Introduction
	2 The hazard rate and a martingale estimator
	3 Stochastic integration and statistical estimation
	4 Stopping times, unbiasedness and independent censoring
	5 Martingale central limit theorems
	6 Two-sample tests for counting processes
	7 The Copenhagen environment
	8 From Kaplan-Meier to the empirical  transition matrix
	9 Pustulosis palmo-plantaris and k-sample tests
	10 The Cox model
	11 The monograph Statistical models based on counting processes
	12 Limitations of martingales

