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For the first time, a new five-parameter distribution, called the beta generalized gamma distribution, is
introduced and studied. It contains at least 25 special sub-models such as the beta gamma, beta Weibull, beta
exponential, generalized gamma (GG), Weibull and gamma distributions and thus could be a better model
for analysing positive skewed data. The new density function can be expressed as a linear combination
of GG densities. We derive explicit expressions for moments, generating function and other statistical
measures. The elements of the expected information matrix are provided. The usefulness of the new model
is illustrated by means of a real data set.

Keywords: beta generalized distribution; expected information matrix; generalized gamma distribution;
mean deviation; moment

1. Introduction

The most general form of the gamma distribution is the three parameter generalized gamma
(GG) distribution studied by Stacy [1]. It includes as special sub-models the exponential, Weibull,
gamma, Rayleigh, among other models. This distribution is suitable for modelling data with
different types of hazard rate functions: increasing, decreasing, bathtub shaped and unimodal,
which makes it particularly useful for estimating individual hazard functions. The GG distribution
has been used in several research areas such as engineering, hydrology and survival analysis. Its
probability density function (pdf) is given by

gβ,λ,c(x) = cλcβ

�(β)
xcβ−1 exp{−(λx)c}, x > 0, (1)

where λ > 0 is a scale parameter, β > 0 and c > 0 are shape parameters and �(β) =∫ ∞
0 wβ−1 e−w dw is the gamma function. The Weibull, gamma and half-normal distributions cor-

respond to β = 1, c = 1 and β = 1/2, c = 2, respectively. In addition, the log-normal distribution
is a limiting special case when β → ∞.

*Corresponding author. Email: mcastro@icmc.usp.br

ISSN 0233-1888 print/ISSN 1029-4910 online
© 2012 Taylor & Francis
http://dx.doi.org/10.1080/02331888.2012.658397
http://www.tandfonline.com

D
ow

nl
oa

de
d 

by
 [

U
SP

 U
ni

ve
rs

ity
 o

f 
Sa

o 
Pa

ul
o]

, [
M

ar
io

 d
e 

C
as

tr
o]

 a
t 0

2:
42

 1
6 

Fe
br

ua
ry

 2
01

2 



2 G.M. Cordeiro et al.

The cumulative distribution function (cdf) corresponding to Equation (1) is

Gβ,λ,c(x) = γ (β, (λx)c)

�(β)
, (2)

where γ (β, x) = ∫ x
0 wβ−1 e−w dw is the incomplete gamma function. Stacy and Mihram [2], Har-

ter [3] and Hager and Bain [4] encountered some difficulties in developing maximum likelihood
procedures and large sample inference for its parameters. On the other hand, Prentice [5] re-
parameterized it in such a way that the inference can be fairly easily handled. Lawless [6], using
Prentice’s re-parametrization, developed exact inference procedures concerning the quantiles
and scale parameters from uncensored samples and DiCiccio [7] proposed approximate con-
ditional inference methods for location and scale parameters. Recently, Huang and Hwang [8]
presented a simple method for estimating the model parameters, using its characterization and
moment estimation. Cox et al. [9] presented a parametric survival analysis and taxonomy of hazard
rate functions. Further, Almpanidis and Kotropoulos [10] studied a text-independent automatic
phone segmentation algorithm based on the GG distribution and Nadarajah [11] analysed some
incorrect references with respect to the use of this distribution in electrical and electronic engi-
neering. An iterative estimation method for its parameters was implemented in S-PLUS by Gomes
et al. [12]. Tadikamalla [13] proposed a simple rejection method for sampling directly from the
GG distribution without generating gamma variates. This method is only applicable for β > 1.

Consider starting from an arbitrary baseline cdf G(x), Eugene et al. [14] defined a class of beta
generalized (BG) distributions by

F(x) = IG(x)(a, b) = 1

B(a, b)

∫ G(x)

0
ωa−1(1 − ω)b−1 dω, (3)

where a > 0 and b > 0 are two additional shape parameters whose role is to introduce skew-
ness and to vary tail weight, B(a, b) = ∫ 1

0 ωa−1(1 − ω)b−1 dω is the beta function and Iy(a, b) =
B(a, b)−1

∫ y
0 wa−1(1 − w)b−1 dw is the incomplete beta function ratio. One major benefit of this

class of distributions is its ability of fitting skewed data that cannot be properly fitted by existing
distributions. If b = 1, F(x) = G(x)a and then F is usually called the exponentiated G distribution
(or the Lehmann type-I distribution). See, for example, the exponentiated Weibull [15] and expo-
nentiated exponential [16] distributions. Eugene et al. [14], Nadarajah and Kotz [17], Nadarajah
and Gupta [18] and Nadarajah and Kotz [19] defined the beta normal, beta Gumbel, beta Fréchet
and beta exponential distributions by taking G(x) to be the cdf of the normal, Gumbel, Fréchet
and exponential distributions, respectively. Furthermore, Pescim et al. [20] proposed the beta-
G half-normal distribution, which contains some important distributions as special cases, such
as the half-normal and generalized half-normal distributions, the last one defined by Cooray and
Ananda [21]. Paranaíba et al. [22] defined the beta Burr XII distribution, which contains as special
sub-models some well-known distributions discussed in the literature, such as the logistic, Weibull
and Burr XII distributions, among several others. Zografos and Balakrishnan [23] characterized
the beta generated family using the maximum entropy principle and defined adequate conditions
for which the Kullback–Leibler entropy is maximized. Further, they defined a new family of gen-
erated distributions from a parent distribution G and a two-parameter gamma random variable Z
using the transformation T = G−1(1 − e−Z). The distribution of T is completely different from
the beta-G distribution studied in this article.

The pdf corresponding to Equation (3) can be written as

f (x) = g(x)

B(a, b)
G(x)a−1{1 − G(x)}b−1, (4)

where g(x) = dG(x)/dx is the baseline density function. The density f (x) will be most tractable
when both G(x) and g(x) = dG(x)/dx have simple analytic expressions.
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Statistics 3

Inserting the cdf (2) in Equation (3), we obtain (for x > 0) the beta generalized gamma (BGG)
cumulative function with five positive parameters

F(x) = Iγ (β,(λx)c)/�(β)(a, b) = 1

B(a, b)

∫ γ (β,(λx)c)/�(β)

0
ωa−1(1 − ω)b−1 dω, (5)

which involves simultaneously the incomplete beta and gamma functions. The density and hazard
rate functions associated with Equation (5) are (for x > 0)

f (x) = cλcβxcβ−1 exp{−(λx)c}γ (β, (λx)c)a−1{�(β) − γ (β, (λx)c)}b−1

B(a, b)�(β)a+b−1
(6)

and

h(x) = cλcβxcβ−1 exp{−(λx)c}γ (β, (λx)c)a−1{�(β) − γ (β, (λx)c)}b−1

B(a, b)�(β)a+b−1[1 − Iγ (β,(λx)c)/�(β)(a, b)] , (7)

respectively. Equations (5)–(7) are straightforward to compute using any statistical software with
numerical facilities. The density function (6) allows for greater flexibility of its tails and can be
widely applied in many areas of engineering and biology. We study some structural properties of
this distribution since it extends several well-known distributions.

The GG model with parameters β, λ and c is clearly a special sub-model for a = b = 1,
with a continuous crossover towards cases with different shapes (e.g. a particular combination
of skewness and kurtosis). The BGG distribution also contains the exponentiated generalized
gamma distribution as a special sub-model when b = 1. For a = 1, Equation (6) reduces to a new
distribution which is called the Lehmann type-II GG distribution. The beta exponential [19] and
beta Weibull [24] distributions are special sub-models for β = c = 1 and β = 1, respectively. As
pointed out by a referee, if Y follows a beta gamma distribution with parameters (β, λ = 1, a, b),
then X = λ−1Y 1/c ∼ BGG(β, λ, c, a, b). In Figure 1, we plot the density function for selected
values of a, b and c when λ = β = 1 including some special cases listed in Table 1. The parameters
of the GG distribution are identifiable, and then it seems that lack of identifiability is not a concern.
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Figure 1. pdfs for some distributions in Table 1.
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4 G.M. Cordeiro et al.

Table 1. Some particular cases of the BGG distribution.

a = b = 1

Case c λ β Distribution References

(1) c λ β GG [1]
(2) 1 λ β Gamma
(3) 1 1

2 n/2 Chi-square
(4) 1 λ 1 Exponential
(5) c λ 1 Weibull
(6) 2 λ 1 Rayleigh
(7) 2 λ 3

2 Maxwell

(8) 2 1√
2

1
2 Folded normal

(9) c λ ∞ Log-normal

b = 1

a c λ β

(10) a 1 λ β Exponentiated gamma
(11) a 1 1

2 n/2 Exponentiated chi-square
(12) a 1 λ 1 Exponentiated exponential [16]
(13) a c λ 1 Exponentiated Weibull
(14) a 2 λ 1 Exponentiated Rayleigh
(15) a 2 λ 3

2 Exponentiated Maxwell

(16) a 2 1√
2

1
2 Exponentiated folded normal

(17) a c λ ∞ Exponentiated log-normal

a b c λ β

(18) a b 1 λ β Beta gamma [25]
(19) a b 1 1

2 n/2 Beta chi-square
(20) a b 1 λ 1 Beta exponential [19]
(21) a b c λ 1 Beta Weibull [24,26]
(22) a b 2 λ 1 Beta Rayleigh
(23) a b 2 λ 3

2 Beta Maxwell

(24) a b 2 1√
2

1
2 Beta folded normal

(25) a b c λ ∞ Beta log-normal

For a and b are positive integers, the BGG density function becomes the density function of the
ath order statistic from the GG distribution in a sample of size a + b − 1.

Let {Xn} be a sequence of iid random variables with an arbitrary continuous distribution G.
Consider the random variable Z , independent from {Xn}, having the exponentialized G distribution,
that is, its cdf is FZ(x) = G(x)a. We assume b < 1 and define a discrete random variable M,
independent from {Xn} and Z , with probabilities (for n = 1, 2, . . .)

pn = (1 − b)n

B(a, b)(a + n)(1 − α)n! ,

whereα = [B(a, b)a]−1, (1 − b)n = (1 − b)(2 − b) . . . (n − b) and
∑∞

n=1 pn = 1. Next, we define
R = max{X1, . . . , XM , Z}. Let X be a random variable having the beta-G distribution with addi-
tional shape parameters a and b. Given R, Z and α, we can demonstrate (if 0 < b < 1) that the
density function of X is a simply mixture of the densities of Z and R with proportions α and 1 − α,
respectively.

An algorithm to generate X can be obtained as follows: if V is sampled from a beta distribu-
tion with parameters (a, b), then X = λ−1[H−1

1,β(V)]1/c follows the BGG(β, λ, c, a, b) distribution,
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Statistics 5

where H−1
1,β(u) denotes the gamma quantile function with parameters (1, β). Hence, random sam-

ples from the BGG distribution can be generated using freely available software [27]. Further,
while the transformation (3) is not analytically tractable in the general case, the formulae related
to the BGG distribution turn out manageable as it is shown in this article.

The rest of the paper is organized as follows. In Section 2, we demonstrate that the BGG
density function can be expressed as a linear combination of GG density functions. This is an
important result to provide some mathematical properties of the BGG distribution directly from
those properties of the GG model. Some explicit expansions for the moments, moment-generating
function (mgf), mean deviations, Bonferroni and Lorenz curves, order statistics and their moments
and Rényi entropy are provided in Section 3. Estimation by the method of maximum likelihood
is presented in Section 4. Section 5 illustrates an application of the new model to a real data set.
Section 6 provides some concluding remarks.

2. The BGG density expansion

The cdf Gβ,λ,c(x) of the GG distribution is usually straightforward to compute numerically using
statistical software with numerical facilities. However, we demonstrate that the BGG density
function can be written as a linear combination of GG densities.

For b real non-integer, we expand the binomial term in Equation (4) to yield

f (x) = g(x)

B(a, b)

∞∑
r=0

wrG(x)a+r−1, (8)

where wj = wj(b) = (−1)j
(b−1

j

)
. If b is an integer, the above sum stops at b − 1. If a is an integer,

Equation (8) gives the beta-G density function in terms of an infinite power series of G(x).
An integer power of the GG cumulative distribution can be expanded as

Gβ,λ,c(x)
r = (λx)rcβ

�(β)r

∞∑
m=0

cr,m(λxc)m, (9)

where the quantities cr,m (for m = 1, 2, . . .) are easily determined recursively from cj,0 = aj
0 and

cj,i = (ia0)
−1

i∑
m=1

[(j + 1)m − i]amcj,i−m, (10)

where am = (−1)m/[(a + m)m!]. The coefficients cj,i for any i can be calculated directly from
cj,0, . . . , cj,i−1 and, therefore, from a0, . . . , ai.

From Equations (1), (8) and (9), we obtain an expansion for the BGG density function (for
a > 0 integer)

fint(x) =
∞∑

r,m=0

qint(r, m, β, λ, a, b)g(r+a)β+m,λ,c(x), (11)

where

qint(r, m, β, λ, a, b) = λm(1−c)�((r + a)β + m)wrcr+a−1,m

B(a, b)�(β)r+a
.
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6 G.M. Cordeiro et al.

However, if a is a real non-integer, we have to derive another power-series expansion for f (x).
First, we use the expansion for any α > 0 real non-integer as

G(x)α =
∞∑

r=0

sr(α)G(x)r , (12)

where sr(α) = ∑∞
j=r(−1)r+j

(
α

j

)(j
r

)
. The power-series expansion (12) is required for the BGG

density expansion (a real) and for the density of the BGG order statistics. Inserting Equation (12)
in Equation (8), the beta-G density function can be expressed as a power series of G(x) (for a real
non-integer)

f (x) = g(x)

B(a, b)

∞∑
r=0

trG(x)r , (13)

where tr = tr(a, b) = ∑∞
j=0 wjsr(a + j − 1).

Analogously, from Equations (1), (9) and (13), we obtain (for a > 0 a real non-integer)

freal(x) =
∞∑

r,m=0

qreal(r, m, β, λ, a, b)g(r+1)β+m,λ,c(x), (14)

where

qreal(r, m, β, λ, a, b) = λm(1−c)�((r + 1)β + m)trcr,m

B(a, b)�(β)r+1
.

Equations (11) and (14) are the main results of this section. They allow us to derive some BGG
mathematical properties from those properties of the GG distribution.

3. Properties of the BGG distribution

3.1. Moments and generating function

Here and henceforth, X stands for a random variable having the BGG density function (6). For a
integer, Equation (11) gives the sth moment of X as

E(Xs) = λ−s
∞∑

r,m=0

qint(r, m, β, λ, a, b)
�((r + a)β + m + s/c)

�((r + a)β + m)
.

In a similar manner, for a real non-integer, Equation (14) gives E(Xs).
The moments of the BGG distribution can be expressed as linear functions of the corresponding

moments of GG distributions. These expansions are readily computed numerically using standard
statistical software. They (and other expansions in this article) can also be evaluated in symbolic
computation software such as Mathematica and Maple. In numerical applications, a large natural
number N can be used in the sums instead of infinity.

We provide explicit expressions for the mgf M(t) = E[exp(tX)] of X. First, the mgf of the
GG(β�, λ, c) distribution is given by [2]

Mβ�,λ,c(s) = 1

�(β�)

∞∑
m=0

�
(m

c
+ β�

) (s/λ)m

m! .
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Statistics 7

For a > 0 real non-integer, it follows from Equation (14) and the GG generating function with
β� = (r + 1)β + m

Mreal(t) =
∞∑

r,m=0

qreal(r, m, β, λ, a, b, )M(r+1)β+m,λ,c(t). (15)

Analogously, for a > 0 integer, we can express the mgf of X as

Mint(t) =
∞∑

r,m=0

qint(r, m, β, λ, a, b)M(r+a)β+m,λ,c(t). (16)

Clearly, special formulas for the mgf of all sub-models of the BGG distribution can be easily
derived from Equations (15) and (16) by the substitution of known parameters.

3.2. Mean deviations

The mean deviations of X about the mean μ = E(X) and about the median m are δ1 = ∫ ∞
0 | x − μ |

f (x) dx and δ2 = ∫ ∞
0 | x − m | f (x) dx, respectively. The median is the solution of the nonlinear

equation I[γ (β,(λm)c)/�(β)](a, b) = 1
2 . Defining the integral L(s) = ∫ s

0 xf (x) dx, these measures can
be expressed as

δ1 = 2μF(μ) − 2L(μ) and δ2 = E(X) − 2L(μ), (17)

where F(μ) is easily calculated from Equation (3). Now, we derive formulas for the integral L(s).
Setting ρr(s) = ∫ s

0 xgβ,λ,c(x)Gβ,λ,c(x)r dx, r ∈ N, it follows from Equations (8) and (13) for a > 0
integer and a > 0 real non-integer

L(s) = 1

B(a, b)

∞∑
r=0

wrρa+r−1(s) and L(s) = 1

B(a, b)

∞∑
r=0

trρr(s), (18)

respectively. By calculating the integral ρr(s), we obtain

ρr(s) = 1

λ�(β)r+1

∞∑
m=0

�((1 + r)β + m)cr,m

�((1 + r)β + m + c−1)
γ ((1 + r)β + m + c−1, λcsc). (19)

Hence, we can calculate the mean deviations in Equation (17) from Equations (18) and (19).
Bonferroni and Lorenz curves are useful in fields like reliability, economics, demography,

insurance and medicine. For the BGG distribution, these curves can be calculated (for a given
0 < π < 1) from B(π) = (πμ)−1L(q) and K(π) = μ−1L(q), respectively, where μ = E(X),
q = F−1(π) is the BGG quantile function obtained by inverting Equation (5) and L(q) can be
determined from Equation (18).

3.3. Order statistics

Order statistics make their appearance in many areas of statistical theory and practice. The
density fi:n(x) of the ith order statistic for i = 1, . . . , n from data values X1, . . . , Xn having the
BGG(β, λ, c, a, b) distribution can be written as

fi:n(x) = g(x)G(x)a−1{1 − G(x)}b−1

B(a, b)B(i, n − i + 1)

n−i∑
j=0

(−1) j

(
n − i

j

)
F(x)i+j−1. (20)

We now demonstrate that fi:n(x) can be expressed as a linear combination of GG density functions.
First, we provide expansions for a power (integer or real non-integer) of F(x) as infinite power
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8 G.M. Cordeiro et al.

series of the baseline G(x). For a integer and a real non-integer, the beta-G cumulative distribution
follows by integrating Equations (8) and (13) as

F(x) = 1

B(a, b)

∞∑
r=0

w∗
r G(x)a+r and F(x) = 1

B(a, b)

∞∑
r=0

t∗r G(x)r , (21)

respectively, where w∗
r = (−1)r

(b−1
r

)
/(a + r), t∗r = ∑∞

j=0 w∗
j sr(a + j) and sr(a + j) is defined in

Section 3. For a > 0 integer and b > 0 real non-integer, using Equations (9), (20) and (21), we
can write

fi:n(x) =
n−i∑
j=0

∞∑
r,l=0

(−1) j+l

(
b − 1

l

)(
n − i

j

)
c∗

i+j−1,rg(x)G(x)r+l+a(i+j)−1

B(a, b)i+jB(i, n − i + 1)
, (22)

where c∗
j,i = (iw∗

0)
−1 ∑i

m=1[(j + 1)m − i]w∗
mc∗

j,i−m and c∗
j,0 = (w∗

0)
j are calculated from

Equation (10). If b is an integer, the index l in the sum (22) stops at b − 1. In the same way,
for a > 0 real non-integer, we have

fi:n(x) =
n−i∑
j=0

∞∑
r,l=0

(−1) j+l

(
b − 1

l

)(
n − i

j

)
di+j−1,rg(x)G(x)r+l+a−1

B(a, b)i+jB(i, n − i + 1)
, (23)

where di+j−1,r = (rt∗0 )−1 ∑r
m=1[(i + j)m − r]t∗mdi+j−1,r−m, and di+j−1,0 = (t∗0 )i+j−1. If b is an

integer, the index l in the sum (23) stops at b − 1.
Let τs,r = ∫ ∞

0 xsGβ,λ,c(x)r be the probability weighted moment of the GG(β, λ, c) distribution
given by

τs,r = λ−s�(β)−(r+1)

∞∑
m=0

cr,m�
(
(1 + r)β + m + s

c

)
.

The sth ordinary moment of the ith order statistic, say Xi:n, for a > 0 integer, follows from
Equation (22) as

E(Xs
i:n) =

n−i∑
j=0

∞∑
r,l=0

(−1) j+lc∗
r,i+j−1

(n−i
j

)(b−1
l

)
B(a, b)i+jB(i, n − i + 1)

τs,r+a(i+j)+l−1, (24)

where the coefficient c∗
r,i+j−1 was defined before. If b is an integer, the index l in the above sum

stops at b − 1. For a > 0 real non-integer, Equation (23) gives

E(Xs
i:n) =

n−i∑
j=0

∞∑
r,l=0

(−1) j+ldr,i+j−1
(n−i

j

)(b−1
l

)
B(a, b)i+jB(i, n − i + 1)

τs,r+a+l−1, (25)

where dr,i+j−1 was defined before. If b is an integer, the index l in the above sum stops at b − 1.

3.4. Entropy

An entropy of a random variable X is a measure of variation of the uncertainty. One of the popular
entropy measures is the Rényi entropy defined by

�(ρ) = 1

1 − ρ
log

{∫
f (x)ρ dx

}
,
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Statistics 9

where ρ > 0 and ρ 	= 1. For the density function (4), we have

f (x)ρ = g(x)ρ

B(a, b)ρ
G(x)(a−1)ρ(1 − G(x))(b−1)ρ .

If (b − 1)ρ > 0 and (a − 1)ρ > 0, f (x)ρ can be expressed as a power series of the cdf G(x) as
f (x)ρ = C(x)

∑∞
r=0 tr(ρ)G(x)r , where tr(ρ) becomes

tr(ρ) =
∞∑

k=0

(−1)k

(
(b − 1)ρ

k

)
sr((a − 1)ρ + k),

where the quantity sr((a − 1)ρ + k) is defined in Section 2 and C(x) = B(a, b)−ρg(x)ρ . The
entropy measure can be rewritten as

�(ρ) = 1

1 − ρ
log

{ ∞∑
r=0

tr(ρ)

B(a, b)ρ
JR(ρ)

}
,

where

JR(ρ) =
∞∑

m=0

cr,mcρλcβ(r+ρ)+m

�(β)ρ+r

�((c(ρβ + rβ + m) − ρ + 1)/c)

c( c
√

ρ)c(ρβ+rβ+m)−ρ+1
.

4. Inference

Consider that X follows the BGG distribution and let θ = (λ, β, c, a, b)T be the parameter vector.
Setting t = (λx)c, the log-likelihood for a single observation x of X, say � = �(λ, β, c, a, b),
becomes

� = log(c) + log(λ) + β log(t) − 1

c
log(t) − t + (a − 1) log[γ (β, t)]

+ (b − 1) log[�(β, t)] − log[B(a, b)] − (a + b − 1) log[�(β)].
The expected value of the score vector vanishes. Defining T = (λX)c, we obtain E(T) =
β, E{log(T)} = ψ(β), E{T log(T)} = 1 + βψ(β), where ψ(·) is the digamma function and

E

{
e−T Tβ

γ (β, T)

}
= E

{
e−T T−β

�(β, T)

}
= E

{
e−T T−β log(T)

γ (β, T)

}
= E

{
e−T Tβ log(T)

�(β, T)

}
= 0,

and

E

{
γ ′(β, T)

γ (β, T)

}
= ψ(β), E

{
γ ′(β, T)

�(β, T)

}
= ψ(β)E

{
γ (β, T)

�(β, T)

}
.

For a random sample x = (x1, . . . , xn) of size n from X, the total log-likelihood is � = ∑n
i=1 �(i),

where �(i) is the log-likelihood for the ith observation (i = 1, . . . , n). The maximum likelihood
estimate (MLE) θ̂ of θ can be calculated numerically. For interval estimation and hypothesis tests
on the parameters in θ , we require the 5 × 5 unit expected information matrix

K(θ) = {κi, j}, i, j = β, λ, c, a, b.

The elements of the information matrix K are given by κλ,λ = c2ψ(β)/λ2, κλ,c =
1 + βψ(β), κλ,a = κλ,b = 0, κλ,β = −c/λ, κβ,β = ψ ′(β), κβ,c = −ψ(β)/c, κβ,a = κβ,b = 0,
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10 G.M. Cordeiro et al.

Table 2. The AIC and BIC statistics for the fitted distributions.

Criterion

Distribution − max �(θ) AIC BIC

BGG 23.4 33.4 44.2
GG 29.2 35.2 41.6
BG 30.9 38.9 47.5
G 47.9 51.9 56.2
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Figure 2. QQ plot of the normalized quantile residuals with an identity line for the distributions: (a) G, (b) GG, (c) BG
and (d) BGG.

κc,c = [1 + E(T{log(T)}2)]/c,κc,a = κc,b = 0,κa,a = ψ ′(a) − ψ ′(a + b),κb,b = ψ ′(b) − ψ ′(a +
b) and κa,b = −ψ ′(a + b).

Under conditions that are fulfilled for parameters in the interior of the parameter space but not
on the boundary, the asymptotic distribution of

√
n(θ̂ − θ) is N5(0, K(θ)−1). The asymptotic mul-

tivariate normal N5(0, Kn(θ̂)−1) distribution of θ̂ , where Kn(θ) = nK(θ) is the total information
matrix, can be used to construct approximate confidence intervals and confidence regions for the
parameters.

The likelihood ratio (LR) statistic is useful for comparing the BGG distribution with some
of its sub-models. If we consider the partition θ = (θT

1 , θT
2 )T, tests of hypotheses of the type
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Figure 3. (a) Histogram of strength and fitted density functions and (b) empirical cumulative function of strength and
fitted cumulative functions.

H0 : θ1 = θ
(0)
1 versus HA : θ1 	= θ

(0)
1 can be performed using LR statistics. The LR statistic for

testing a null model (H0) against the BGG model (HA) is w = 2{�(θ̂) − �(θ̃)}, where θ̂ and θ̃

are the MLEs of θ under HA and H0, respectively. The LR test rejects H0 if w > ξγ , where ξγ

denotes the upper 100γ % point of the χ2
q distribution and q is the difference of the dimensions

of the vectors of parameters under both models. For example, we can check if the fit using the
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12 G.M. Cordeiro et al.

BGG distribution is statistically ‘superior’ to a fit using the GG distribution for a given data
set by testing H0 : a = b = 1 versus HA : H0 is not true. Further, non-nested distributions can
be compared based on the Akaike information criterion given by AIC = −2�(θ̂) + 2#(θ) and
the Bayesian information criterion defined by BIC = −2�(θ̂) + #(θ) log(n), where #(θ) is the
number of model parameters. The distribution with the smallest value of any of these criteria
(among all distributions considered) is usually taken as the best choice for describing the given
data set.

5. Application

We give an example with data from strength of 1.5 cm fibres (in unknown units). The data set
contains 63 observations presented as sample one by Smith and Naylor [28]. The gamma (G),
GG, BG and BGG distributions were fitted to the data. Computational code in R language [27]
is available from the authors upon request. According to the classical statistics (AIC and BIC) in
Table 2, the BGG and GG distributions are the best models.

The QQ plots of the normalized quantile residuals [29] in Figure 2 show the improvement in the
fit achieved with the BGG distribution over the other distributions. This claim is supported by the
inspection of the plots in Figure 3. We also emphasize the gain yielded by the BGG distribution
in relation to the beta-G exponential distribution, recently proposed by Barreto-Souza et al. [30,
Figure 5].

Comparing the BGG and BG distributions, the LR statistic is w = 7.49 (1 d.f., p-value =
0.0062), whereas the BGG versus GG comparison represents a borderline situation at a 5%
significance level since w = 5.86 (2 d.f., p-value = 0.0533). However, taking into account the
values in Table 2 and the plots of Figures 2 and 3, we conclude that the BGG distribution provides
a better fit. Parameter estimates (and estimated standard errors) for the BGG distribution are:
â = 0.1305 (0.1082), b̂ = 0.0185 (0.0180), ĉ = 6.0008 (0.9087), λ̂ = 1.2151 (0.2553) and β̂ =
5.9155 (5.6735), so that the null hypothesis H0 : c = 1 is strongly rejected.

6. Conclusion

We introduce the BGG distribution with two additional positive parameters because of the wide
usage of the GG distribution and the fact that the current generalization provides extensions
to its continuous extension to still more complex situations. The new distribution unifies more
than 24 distributions and yields a general overview of these distributions for theoretical studies.
In fact, the BGG distribution (6) generalizes the Weibull, exponentiated Weibull [15,16,31–34],
beta exponential [19] and beta Weibull [24] distributions and other important models. The BGG
density function can be expressed as a linear combination of GG density functions which allow us
to derive some of its mathematical properties. The estimation of parameters is approached by the
method of maximum likelihood and the expected information matrix is calculated. The usefulness
of the BGG distribution is illustrated in one application to a real data set. The new model provides
a rather flexible mechanism for fitting a wide spectrum of real world lifetime data in reliability,
biology and other areas.
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