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Summary. Composite indicators aggregate a set of variables by using weights which are under-
stood to reflect the variables’ importance in the index. We propose to measure the importance
of a given variable within existing composite indicators via Karl Pearson’s ‘correlation ratio’; we
call this measure the ‘main effect’. Because socio-economic variables are heteroscedastic and
correlated, relative nominal weights are hardly ever found to match relative main effects; we
propose to summarize their discrepancy with a divergence measure. We discuss to what extent
the mapping from nominal weights to main effects can be inverted. This analysis is applied
to six composite indicators, including the human development index and two popular league
tables of university performance. It is found that in many cases the declared importance of single
indicators and their main effect are very different, and that the data correlation structure often
prevents developers from obtaining the stated importance, even when modifying the nominal
weights in the set of non-negative numbers with unit sum.

Keywords: Composite indicators; Linear aggregation; Modelling; Pearson’s correlation ratio;
Weights

1. Introduction

In social sciences, composite indicators aggregate individual variables with the aim of capturing
relevant, possibly latent, dimensions of reality such as a country’s competitiveness (World Eco-
nomic Forum, 2010), the quality of its governance (Agrast et al., 2010), the freedom of its press
(Reporters Sans Frontières, 2011; Freedom House, 2011) or the efficiency of its universities or
school system (Leckie and Goldstein, 2009). These measures have been termed ‘pragmatic’ (see
Hand (2009), pages 12–13), in that they answer a practical need to rate individual units (such
as countries, universities, hospitals or teachers) for some assigned purpose.

Composite indicators (which are also referred to here as indices) have been increasingly
adopted by many institutions, both for specific purposes (such as to determine eligibility for
borrowing from international loan programmes) and for providing a measurement basis for
shaping broad policy debates, in particular in the public sector (Bird et al., 2005). As a result,
public interest in composite indicators has enjoyed a fivefold increase over the period 2005−2010:
a search for ‘composite indicators’ on Google Scholar gave 992 matches in October 2005 and
5340 at the time of the first version of this paper (December 2010).

Composite indicators are fraught with normative assumptions in variable selection and
weighting. Here ‘normative’ is understood to be ‘related to and dependent on a system of
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norms and values’. For example, the proponents of the human development index (HDI) advo-
cate replacing gross domestic product (GDP) per capita as a measure of the progress of societies
with a combination of

(a) GDP per capita,
(b) education and
(c) life expectancy;

see Ravallion (2010). Both the selection of these three specific dimensions and the choice of
building the index by giving these dimensions equal importance are normative; see Stiglitz et al.
(2009), page 65. Composite indicators are thus often the subject of controversy; see Saltelli
(2007) and Hendrik et al. (2008).

The statistical analysis of composite indicators is essential to prevent media and stakehold-
ers from taking them at face value (see the recommendations in Organisation for Economic
Co-operation and Development (2008)), possibly leading to questionable choices of policy. For
example, a policy maker might think of merging higher education institutions just because the
most popular league table of universities puts a prize on larger universities; see Saisana et al.
(2011).

Most existing composite indicators are linear, i.e. weighted arithmetic averages (Organisa-
tion for Economic Co-operation and Development, 2008). Linear aggregation rules have been
criticized because weaknesses in some dimensions are compensated by strengths in other dimen-
sions; this characteristic is called ‘compensatory’. Non-compensatory and non-linear aggregate
ranking rules have been advocated by the literature on multicriteria decision making; see for
example Billaut et al. (2010), Munda (2008), Munda and Nardo (2009) and Balinski and Laraki
(2010). In this paper we concentrate on linear aggregation, because of its widespread use.

We address the issue of measuring variable importance in existing composite indicators. As
illustrated by a motivating example at the end of this section, nominal weights are not a measure
of variable importance, although weights are assigned to reflect some stated target importance,
and they are communicated as such. In linear aggregation, the ratio of two nominal weights
gives the rate of substitutability between the two individual variables (see Boyssou et al. (2006),
chapter 4, or Decancq and Lugo (2010)) and hence can be used to reveal the target relative
importance of individual indicators. This target importance can then be compared with ex post
measures of variables’ importance, such as the one that is presented in this paper.

We propose to measure the importance of a given variable via Karl Pearson’s ‘correlation
ratio’, which is widely applied in global sensitivity analysis as a first-order sensitivity measure;
we call this measure the ‘main effect’. Main effects represent the expected relative variance
reduction obtained in the output (the index) if a given input variable could be fixed (Saltelli and
Tarantola (2002); see Section 3.1). They are based on the statistical modelling of the relationship
between the variable and the index.

This statistical modelling can be parametric or non-parametric; we compare a linear and a
non-parametric alternative based on local linear kernel smoothing. We apply the main effects
approach to six composite indicators, including the HDI and two popular league tables of uni-
versity performance. We find that, in some cases, a linear model can give a reasonable estimate
of the main effects, but in other cases the non-parametric fit must be preferred. Further, we
find that nominal weights hardly ever coincide with main effects. We propose to summarize this
deviation in a discrepancy statistic, which can be used by index developers and users alike to
gauge the gap between the effective and the target importance of each variable.

We also pose the question of whether the target importance that is stated by the developers is
actually attainable by appropriate choice of nominal weights; we call this the ‘inverse problem’.
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We find that in most instances the correlation structure prevents developers from obtaining the
stated importance by changing the nominal weights within the set of non-negative numbers with
sum equal to 1. These findings may offer a useful insight to users and critics of an index, and a
stimulus to its developers to try alternative, possibly non-compensatory, aggregation strategies.

Our proposed measure of importance is also in line with current practice in sensitivity analy-
sis. Recently, some of the present authors have proposed a global sensitivity analysis approach
to test the robustness of a composite indicator (see Saisana et al. (2005, 2011)); this approach
performs an error propagation analysis of all sources of uncertainty which can affect the con-
struction of a composite indicator. This analysis might be called ‘invasive’ in that it demands all
sources of uncertainty to be modelled explicitly, e.g. by assuming alternative methods to impute
missing values, different weights and different aggregation strategies; the method may also test
the effect of including or excluding individual variables from the index.

In contrast, the approach that is suggested in this paper is non-invasive, because it does
not require explicit modelling of uncertainties. The measure proposed also requires minimal
assumptions, in the sense that it exists whenever second moments exist. Moreover, it takes
the data correlation structure into account. When this analysis is performed by the developers
themselves, it adds to the understanding—and ultimately to the quality—of the index. When
performed ex post by a third party on an already developed index, this procedure may reveal
unnoticed features of the composite indicator.

The paper is organized as follows: the rest of Section 1 reports the motivating example and dis-
cusses related work. Section 2 describes linear composite indicators. Section 3 defines the main
effects and discusses their estimation. It also defines a discrepancy statistic between main effects
and nominal weights. Finally it discusses the inversion of the map from nominal weights to main
effects. Section 4 presents detailed results for six indices: the 2009 HDI, the academic ranking
of world universities (ARWU) (Center for World-Class Universities, 2008) by Shanghai’s Jiao
Tong University, the university ranking by the Times Higher Education Supplement (THES)
(2008), the 2010 HDI, the index of African governance (IAG) and the sustainable society index
(SSI). Section 5 contains a discussion and conclusions. A solution to the inverse problem is
reported in Appendix A.

1.1. Motivating example
In weighted arithmetic averages, nominal weights are communicated by developers and per-
ceived by users as a form of judgement of the relative importance of the different variables,
including the case of equal weights where all variables are assumed to be equally important.
When using ‘budget allocation’, a strategy to assign weights, experts are given a number of
tokens, say 100, and asked to apportion them to the variables composing the index, assigning
more tokens to more important variables. This is a vivid example of how weights are perceived
and used as measures of importance. However, the relative importance of variables depends on
the characteristics of their distribution (after normalization) as well as their correlation struc-
ture, as we illustrate with the following example. This gives rise to a paradox, of weights being
perceived by users as reflecting the importance of a variable, where this perception can be grossly
off the mark.

Consider a university Dean who is asked to evaluate the performance of faculty members,
giving equal importance to indicators of publications x1, of teaching x2 and of office hours and
administrative work x3. Hence she considers an equally weighted index y= 1

3 .x1 +x2 +x3/, and
she employs R2

i := corr2.y, xi/ to measure the association between the index y and each of the
x-variables ex post.
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We consider two different situations, which illustrate the influence of variances and of cor-
relations of the x-variables on the performance of faculty members. In both situations, we let
the variables x1, x2 and x3 be jointly normally distributed with mean 0. First assume that the
variance of x1 is equal to 7 whereas x2 and x3 have unit variances, and that the xj-variables are
uncorrelated; the value 7 is chosen here to make the variance of y equal to 1. We then find

R2
1 =7=9≈0:778,

R2
2 =R2

3 =1=63≈0:016,

which implies that the importance (as measured by R2
i ) of the variables x2 and x3 relative to x1

is equal to 1=49 ≈ 0:020. This shows how variances can greatly affect this measure of impor-
tance. We conclude that the Dean needs to do something about the indicators’ variances before
computing the index.

Changing the weights from 1
3 to 1=.c

√
σii/, where c :=Σ3

i=1 1=
√

σii and σii is the variance of xi,
would compensate for unequal variances; this corresponds to standardizing indicators before
aggregation. In current practice, composite indicators builders prefer to normalize indicators
before aggregation, for instance by dividing by the highest score. Going back to the Dean’s
example, the yearly number of administration hours can be divided by the total number of
hours within a year, delivering x3 as the fraction of administration hours. We remark that, in
general, normalized scores present different variances.

Consider next the situation where x1, x2 and x3 are standardized, i.e. all have unit variances.
Assume also that the correlations ρij :=corr.xi, xj/ are all equal to 0, except ρ23 =ρ32 >0. Simple
algebra shows that

R2
1 = 1

3+2ρ23
,

R2
2 =R2

3 = .1+ρ23/2

3+2ρ23
,

R2
1

R2
2

= 1
.1+ρ23/2 ,

i.e. that the importance of indicators x2 and x3 is the same; this is a general property of stan-
dardized indicators. Note that the importance of indicators x2 and x3 is greater than that of x1,
because ρ23 > 0. Taking for instance ρ23 =0:7, we find

R2
1 =5=22≈0:227,

R2
2 =R2

3 =289=440≈0:657,

R2
1=R2

2 =100=289≈0:346:

One may imagine a faculty member looking at the relative importance of x1 with respect to
x2, complaining that research has become dispensable, because—although the index’s formula
seems to suggest that all variables are equally important—in fact teaching is valued more than
publications by a factor of 3. In this second situation, even if the Dean has standardized the
variables measuring publications x1, teaching x2 and administration x3, the last two have a
higher influence on the faculty performance indicator y due to their correlation.

This example describes different situations which generate the paradox. The occurrence of
different variances is one such situation; this is a problem also in practice, because usually
individual indicators are normalized to be between 0 and 1 or 0 and 100, and hence they have
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different variances in general. Also when correcting for different variances by using standardized
indicators, however, the paradox can be generated by correlations. This is of practical concern
as well, because different individual indicators are usually correlated.

The paradox that was illustrated by the preceding example equally applies when the index’s
architecture is made of pillars, each pillar aggregating a subset of variables. A hypothetical
sustainability index could have environmental, economic, social and institutional pillars, and
equal weights for these four pillars would flag the developers’ belief that these dimensions share
the same importance. Still one of the four pillars with a weighting in principle of 25% could
contribute little or nothing to the index, e.g. because the variance of the pillar is comparatively
small and/or the pillar is not correlated to the remaining three. A case-study of this nature is
discussed later in the present work.

1.2. Related work
The connection of the present paper with global sensitivity analysis has been discussed above.
A related approach to measure variable importance in linear aggregations is the one of ‘effec-
tive weights’, which was introduced in the psychometric literature by Stanley and Wang (1968)
and Wang and Stanley (1970). The effective weight of a variable xi is defined as the covari-
ance between wixi and the composite indicator y =Σk

i=1 wixi divided by its variance, i.e. "i :=
cov.y, wixi/=V.y/. The same approach has been employed in recent literature in global sensitivity
analysis; see for example Li et al. (2010).

Effective weights "i are, however, not necessarily positive, and hence they make an improper
apportioning of the variance V.y/: "i cannot be interpreted as a ‘bit’ of variance. In contrast, the
measure of importance Si that is proposed in this paper (i.e. Pearson’s correlation ratio) is always
positive and can be interpreted as the fractional reduction in the variance of the index that could
be achieved (on average) if variable xi could be fixed. Si also fits into an analysis-of-variance
decomposition framework; see Saltelli (2002) for a discussion.

Moreover, effective weights assume that the dependence structure of the variables xi is fully
captured by their covariance structure, as in linear regression. As we show in what follows,
the relationship between the index and its components may be non-linear, and the measure of
importance that is proposed in this paper extends to this case as well. The case-studies that
are reported in Section 4 show that non-linearity is often the rule rather than the exception. In
the case of a linear relationship between y and xi, our measure Si reduces to R2

i , the square of
corr.y, xi/, used in the example above; hence in this case, the present approach leads to a simple
transformation of the effective weights.

For some indices, such as the product market regulation index (see Nicoletti et al. (2000)),
principal component analysis (PCA) has been used to select aggregation weights. PCA chooses
weights that maximize (or minimize) the variance of the index, and hence weights do not reflect
the normative aspects of the definition of the index. Consequently, weights are difficult to inter-
pret and to communicate, and as a result the use of PCA in this context is not widespread.
The same product market regulation index moved from the use of PCA to a simpler and more
transparent technique for linear aggregation after a statistical analysis of the implications of
such a change (Nardo, 2009).

2. Weights and importance

Consider the case of a composite indicator y calculated as a weighted arithmetic average of k
variables xi,
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yj =
k∑

i=1
wixji, j =1, 2, . . . , n, .1/

where xji is the normalized score of individual j (e.g. country) based on the value Xji of vari-
able X·i, i=1, . . . , k, and wi is the nominal weight assigned to variable X·i. The most common
approach is to normalize original variables (see Bandura (2008)), by the min–max normalization
method

xji = Xji −Xmin,i

Xmax,i −Xmin,i
, .2/

where Xmax,i and Xmin,i are the upper and lower values respectively for the variable X·i; in this
case all scores xji vary in [0, 1]. Here we indicate transformation (2) as ‘normalization’; the nor-
malized variables in equation (2) are denoted as x·i. We let μi :=E.xji/ and σii =V.xji/ indicate
their expectation and variance respectively. In what follows, we replace X·i and x·i by Xi and xi

respectively, unless needed for clarity.
Observe that the normalization (2) implies a fixed scale of the individual indicators; this is

useful for instance for comparability in repeated waves of the same index. However, normali-
zation does not imply any standardization of different x·i-variables, which hence have different
means μi and variances σii in general.

A popular alternative to the min–max normalization (2) is given by standardization

xji = Xji −E.Xji/√
V.Xji/

, .3/

where E.Xji/ and V.Xji/ are the mean and variances of the original variables X·i. When stan-
dardized, all xi have the same mean and variance, μi = 0 and σii = 1 for all i, removing one
source of heterogeneity among variables. However, standardization does not affect the correla-
tion structure of the variables Xi (or xi). Both transformations (2) and (3) are invariant to the
choice of unit of measurement of Xi; see Hand (2009), chapter 1.

Although standardization may appear a better approach than normalization, statistically,
there are advantages and disadvantages of both. For example standardization may be expected
not to work so well when the distribution is very skewed or long tailed. Moreover it does not
enhance comparison across different waves of the same aggregate indicator over the years, if
the mean and variances that are used in equation (3) change over time. Also one cannot achieve
both standardization and normalization at the same time through a linear transformation of
Xi. This implies that index developers suffer the unwanted disadvantages of the transformation
chosen.

Whatever the transformation, in what follows we denote the column vector of scores of unit
j as xj := .xj1, . . . , xjk/′ and indicate by μ := .μ1, . . . , μk/′ and Σ := .σit/

k
i,t=1 the corresponding

vector of means and the implied variance–covariance matrix. The weight wi that is attached to
each variable xi in the aggregate is meant to appreciate the importance of that variable with
respect to the concept being measured. The vector of weights w := .w1, . . . , wk/′ is selected by
developers on the basis of different strategies, be those statistical, such as PCA, or based on
expert evaluation, such as an analytic hierarchy process; see Saaty (1980, 1987).

In what follows we indicate by ζ2
il the target relative importance of indicators i and l. When

this is not explicitly stated, the ratios wi=wl can be taken to be the ‘revealed target relative impor-
tance’. In fact wi=wl is a measure of the substitution effect between xi and xl, i.e. how much
xl must be increased to offset or balance a unit decrease in xi; see Decancq and Lugo (2010).
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For simplicity of notation and without loss of generality, we assume that the maximal weight
is assigned to indicator 1, i.e. that w1 �wi for i=2, . . . , k, and we consider ζ2

i := ζ2
i1.

The previous discussion applies to pillars as well as to individual variables, where a pillar
is defined as an aggregated subset of variables, identified by the developers as representing a
salient—possibly latent, or normative—dimension of the composite indicator.

3. Measuring importance

3.1. Measures of importance
In this paper we propose a variance-based measure of importance. We note that

E.y/=w′μ,

V.y/=w′Σw,
.4/

where, if equation (3) is used, E.y/=0 and the diagonal elements of Σ are equal to 1; here we
have dropped the subscript j in yj for conciseness. In what follows, we focus attention on the
variance term.

Following Pearson (1905), we consider the question ‘what would be the average variance of
y, if variable xi were held fixed?’. This question leads us to consider

Exi{Vx∼i .y|xi/},

where x∼i is defined as the vector containing all the variables in x except variable xi. Owing to
the well-known identity

Vxi{Ex∼i .y|xi/}+Exi{Vx∼i .y|xi/}=V.y/

we can define the ratio of Vxi{Ex∼i .y|xi/} to V.y/ as a measure of the relative reduction in
variance of the composite indicator to be expected by fixing a variable, i.e.

Si ≡η2
i := Vxi{Ex∼i .y|xi/}

V.y/
: .5/

The notation Si reflects the use of this measure as a first-order sensitivity measure (also termed
‘main effect’) in sensitivity analysis; see Saltelli and Tarantola (2002). The notation η2

i reflects
the original notation that was used in Pearson (1905); he called it ‘correlation ratio η2’.

The conditional expectation Ex∼i .y|xi/ in the numerator of expression (5) can be any non-
linear function of xi; in fact

fi.xi/ :=Ex∼i .y|xi/=wixi +
k∑

l=1,l �=i

wl Ex∼i .xl|xi/,

where the latter conditional expectations may be linear or non-linear in xi. For the connection
of fi.xi/ to global sensitivity analysis see Saltelli et al. (2008).

In the special case of fi.xi/ linear in xi, we find that Si reduces to R2
i , where Ri is the prod-

uct moment correlation coefficient of the regression of y on xi. In fact, it is well known that
when fi is linear, i.e. fi.xi/ = αi + βixi, it coincides with the L2-projection of y on xi, which
implies that βi = cov.y, xi/=σii; see for example Wooldridge (2010). Hence Si has the form Si =
Vxi.βixi +αi/=V.y/ and we find that Si =β2

i σii=V.y/= cov2.y, xi/={σiiV.y/}=R2
i .

A further special case corresponds to fi linear and x made of uncorrelated components. We
find that cov.y, xi/=Σk

t=1wtσti and V.y/=Σk
t=1w2

t σtt so Si =w2
i σii=Σk

t=1w2
t σtt . The main differ-

ence between the uncorrelated and the correlated case is that in the former Σk
i=1 Si =1 because
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Si =w2
i σii=Σk

h=1w2
hσhh, whereas for the latter Σk

i=1Si might exceed 1; see for example Saltelli and
Tarantolla (2002). We note that in general Si can still be high also when R2

i is low, e.g. in the
case of a non-monotonic U-shaped relationship for fi.xi/. Hence in general fi.xi/ needs to be
estimated in a non-parametric way; see Section 3.2.

As these special cases illustrate, Si is a quadratic measure in terms of the weights wj for linear
aggregation schemes (1); this follows from its definition as a variance-based measure. The main
effect Si is an appealing measure of importance of a variable (be it indicator or pillar) for several
reasons.

(a) It offers a precise definition of importance of a variable, i.e. ‘the expected fractional reduc-
tion in variance of the composite indicator that would be obtained if that variable could
be fixed’.

(b) It can be applied when relationships between the index and its components are linear or
non-linear. Such non-linearity may be the effect of non-linear aggregation (e.g. Condorcet
like; see Munda (2008)) and/or of non-linear relationships between the single variables. It
can be used regardless of the degree of correlation between variables. Unlike the Pearson
or Spearman correlation coefficients, it is not constrained by assumptions of linearity or
monotonicity.

(c) It is not invasive, i.e. no changes are made to the composite indicator or to the correlation
structure of the indicators, unlike for example the error propagation analysis that was
presented in Saisana et al. (2005). Whereas the error propagation can be considered as a
stress test of the index, the present approach is a test of its internal coherence.

3.2. Estimating main effects
In this subsection we consider estimating the main effects and focus on the 2009 HDI to illustrate
our approach. In Section 4 we describe the six case-studies of our approach in detail.

In sensitivity analysis, the estimation of Si is an active research field. Si can be estimated from
design points (Sobol’, 1993; Saltelli, 2002; Saltelli et al., 2010), Fourier analysis (Tarantola et
al., 2006; Plischke, 2010; Xu and Gertner, 2011) or others. Many non-parametric estimators
can be used to estimate fi.xi/, such as state-dependent regression; see Ratto et al. (2007) and
Ratto and Pagano (2010).

In the present work we employ a non-parametric, local linear, kernel regression to estimate
m.·/ := fi.·/, and then use it in expression (5) to estimate Si, replacing the variances in the
numerator and denominator with the corresponding sample variances, i.e. using

n∑
j=1

.mj − m̄/2
/ n∑

j=1
.yj − ȳ/2,

where ȳ :=n−1Σn
j=1yj, m̄ :=n−1Σn

j=1mj, mj := m̂.xji/ and m̂.·/ is the estimate of m.·/ :=fi.·/.
Local linear kernel estimators achieve automatic boundary corrections and enjoy some typ-

ical optimal properties that are superior to Nadaraya–Watson kernel estimators; see Ruppert
and Wand (1994) and reference therein. As a result, local linear kernel smoothers are often con-
sidered the standard non-parametric regression method; see for example Bowman and Azzalini
(1997).

The local linear non-parametric kernel regression is indexed by a bandwidth parameter h,
which is usually held constant across the range of values for xi. For large h, the local linear
non-parametric kernel regression converges to the linear least squares fit. This allows us to
interpret 1=h as the deviation from linearity; it suggests that we investigate the sensitivity of the
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estimation of Si to variation in the bandwidth parameter h. To make this dependence explicit
we write Si.h/ to indicate the value of Si that is obtained by a local linear kernel regression with
bandwidth parameter h. In the application we use a Gaussian kernel.

The choice of the smoothing parameter h can be based either on cross-validation (CV) prin-
ciples (see Bowman and Azzalini (1997)) or on plug-in choices for the smoothing parameter,
such as those proposed in Ruppert et al. (1995). We describe these approaches in turn, starting
with CV. Let m̂.x/ indicate the local linear non-parametric kernel estimate for fi.x/ at xi = x

based on all n observations, and let m̂−j.x/ be the same applied to all data points except for that
with index j; then the least squares CV criterion for variable xi is defined as

CV.h/= 1
n

n∑
j=1

{yj − m̂−j.xji/}2:

The optimal value for the CV criterion is given by the bandwidth hCV corresponding to the
minimum of CV.h/. In practice, a grid H of possible values for h is considered, and the minimum
of the function CV.h/ is found numerically. In the application we chose the grid of h-values as
follows: we defined a regular grid of 50 values for u :=√

h in the range from 0.1 to 5. The values
for h were then obtained as h=a+u2=b, for index-specific constants a and b; the resulting set
of values in this grid is denoted H in what follows.

The default values for indices with range from 0 to 10 or 100 were a = 0:05 and b = 1, so
0:06 <h�25:05; for indices with range from 0 to 1 (namely the 2009 and 2010 HDI), we chose
a = 0:01 and b = 25, so 0:01 < h� 1:01. In some cases CV.h/ attains its minimum at the right-
hand end of the grid H; this happened for both the ARWU{1, 2, 3} and THES{4, 6} indices (see
Table 1 in Section 4) as well as for the IAG{2, 5} and SSI{2} indices (see Table 5 in Section 4),
where the digits in braces refer to the subscript i of the xi-variables. In these cases, in practice, a
linear regression fit would not be worse than the fit of the local linear kernel estimator, according
to the CV criterion.

In the implementation of the CV criterion, when a local linear kernel regression implied a
row of the smoothing matrix with numerical ‘divisions by 0’, we replaced it with a local mean
(Nadaraya–Watson) estimator. When also the latter would imply numerical divisions by 0, we
replaced the row of the smoothing matrix with a sample leave-one-out mean.

An alternative choice of bandwidth is given by plug-in-rules. One popular choice is given
by the ‘direct plug-in’ (DPI) selector hDPI that was introduced by Ruppert et al. (1995), which
minimizes the asymptotic mean integrated squared error for the local linear Gaussian kernel
smoother, on the basis of the following preliminary estimators. Let θrs := E.m.s/m.r//, where
m.r/.x/ is the rth derivative of m.x/. The range of xi is partitioned into N blocks and a quartic is
fitted on each block. Using this estimation, an estimate for θ24 is found, along with an estimator
for the error variance σ2 :=E{yj −m.xji/}2. These estimates are then used to obtain a plug-in
bandwidth g, which is used in a local cubic fit to estimate θ22 and to obtain a different plug-in
bandwidth λ. The λ-bandwidth is then used in a final local linear kernel smoother to estimate
σ2, which is fed into the final formula for hDPI, along with the previous estimate of θ22. The
choice of N , the number of blocks, is obtained minimizing Mallows’s Cp-criterion over the set
{1, 2, . . . , Nmax}, where Nmax =max{min.�n=20	, NÅ/, 1}.

In the application we chose NÅ =5 as suggested by Ruppert et al. (1995); in case of numerical
instabilities, we decreased NÅ to 4. Moreover we performed an α-trimming in the estimation
of θ24 and θ22 with α=0:05. Because the choice of bandwidth can be affected by values at the
end of the x-range, we considered only pairs of observations for which x > 0 in the choice of
bandwidth, for both the CV criterion and the DPI criterion.
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Fig. 1. 2009 HDI y and life expectancy x1: (a) CV criterion as a function of the smoothing parameter
h ( ,hDPI; , hCV); (b) linearity test p-value as a function of h ( , hDPI; , hCV); (c) main effects Si as a function of
h ( , hDPI; , hCV); (d) cross-plot of y versus x1 with a linear fit and local linear fits for hDPI D 0:0841 ( )
and hCV D0:088 ( )

The resulting choice of bandwidth hDPI was sometimes very close to hCV, as in the case for
the 2009 HDI, which is depicted in Figs 1–4, where each figure refers to one of the four xi-
indicators that were used in the construction of the 2009 HDI. Fig. 1 refers to the x1-indicator
(life expectancy) and contains four panels, which report—counterclockwise from Fig. 1(b)—the
p-value of the linearity test introduced below, the CV criterion, the S1-measure and the regres-
sion cross-plot. Figs 1(a)–1(c) show functions of the bandwidth parameter h, whereas Fig. 1(d)
has the values of x1 on the horizonal axis. Figs 2–4 have the same format, and refer to indicators
x2, x3 and x4.

Tables 1 and 5 in Section 4 report the selected values of hCV and hDPI for the 2009 HDI and
for the other five indices, which are described in detail in Section 4. It can be seen that the values
of hCV sometimes differed from hDPI by several orders of magnitude.

As in many other contexts, in the estimation of main effects Si the linear case is a relevant
reference model, and we would like to address inference on Si and on the possible linearity of
fi.xi/ jointly. For this we implemented the test for linearity that is proposed in Bowman and
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Fig. 2. 2009 HDI y and adult literacy x2: (a) CV criterion as a function of the smoothing parameter
h ( , hDPI; , hCV); (b) linearity test p-value as a function of h ( , hDPI; , hCV); (c) main effects Si as a function of
h ( , hDPI; , hCV); (d) cross-plot of y versus x2 with a linear fit and local linear fits for hDPI D 0:0666 ( )
and hCV D0:05 ( )

Azzalini (1997), chapter 5. The fit of the linear kernel smoother can be represented as ŷ = Sy,
where the matrix S depends on all values xji, j = 1, . . . , n. A test of linearity can be based on
the F -statistic, F := .RSS0 − RSS1/=RSS1, that compares the residual sum of squares under
the linearity assumption RSS0 with the one corresponding to the local linear kernel smoother
RSS1. Letting Fobs indicate the value of the statistic, the p-value of the test is computed as the
probability that z′Cz >0 where z is a vector of independent standard Gaussian random variables
and C :=M.I− .1+Fobs/A/M with A= .I−S/′.I−S/, M= I−X.X′X/−1X′ and X equal to the
linear regression design matrix, with first column equal to the constant vector and the second
column equal to the values of xji, j =1, . . . , n.

Bowman and Azzalini (1997) suggested approximating the quantiles of the quadratic form
with the distribution of aχ2

b + c, where a, b and c are obtained by matching moments of the
quadratic form and the .aχ2

b +c/-distribution; here χ2
b represents a χ2-distribution with b degrees

of freedom. We implemented this approximation; Figs 1(b), 2(b), 3(b) and 4(b) report the result-
ing p-values of the test as a function of h for the 2009 HDI. It can be seen that for some xi-variable



620 P. Paruolo, M. Saisana and A. Saltelli

0.2 0.4 0.6 0.8 1

5.2

5.4

5.6

5.8

6

6.2

x 10
−3

h
0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

h

0.2 0.4 0.6 0.8 1

0.74

0.76

0.78

0.8

0.82

0.84

0.86

h
0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x3

(a) (b)

(c) (d)

Fig. 3. 2009 HDI y and enrolment in education x3: (a) CV criterion as a function of the smoothing parameter
h ( , hDPI; , hCV); (b) linearity test p-value as a function of h ( , hDPI; , hCV); (c) main effects Si as a function of
h ( , hDPI; , hCV); (d) cross-plot of y versus x3 with a linear fit and local linear fits for hDPI D 0:0631 ( )
and hCV D0:0424 ( )

the test rejects the linearity hypothesis for all values of h in the grid H, and for some other pairs
the test rejects only for a subset of H. In a few other pairs, the test never rejects for all h∈H.
Results for the linearity test are reported in Tables 1 and 5 for selected values of h, for the 2009
HDI and for five other indices, which are described in detail in Section 4.

To show sensitivity of the main effects Si to the smoothing parameter h, we also computed the
Si.h/ index as a function of h. We also recorded the minimum and maximum values obtained
for Si.h/ varying h in H; we denote these values Si,min and Si,max. We report the plot of Si.h/ as
a function of h in Figs 1(c), 2(c), 3(c) and 4(c).

3.3. Comparing weights and main effects
In this section we compare revealed or target relative importance measures ζ2

i with the relative
main effects Si=S1. First note that, in the independent case,

Si =w2
i σii

/ k∑
h=1

w2
hσhh,
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Fig. 4. 2009 HDI y and GDP per capita x4: (a) CV criterion as a function of the smoothing parameter h ( ,
hDPI; , hCV); (b) linearity test p-value as a function of h ( , hDPI; , hCV); (c) main effects Si as a function of h
( , hDPI; , hCV); (d) cross-plot of y versus x4 with linear fit and local linear fits for hDPI D0:0771 ( ) and
hCV D0:0884 ( )

so Si=S1 = w2
i σii=w2

1σ11. When the xi-variables are standardized, all σii = 1 and hence Si=S1 =
w2

i =w2
1. The relative main effects Si=S1 do not reduce to ζ2

i =wi=w1, except in the homoscedastic
case (σii =σ11) when the nominal weights are equal (wi = w1), so w2

i σii=w2
1σ11 = w2

i =w2
1 = 1 =

wi=w1. In the general case, Si depends on w and Σ in a more complicated way, and hence there
is no reason, a priori, to expect Si=S1 to coincide with ζ2

i .
One can compare how the effective relative importance Si=S1 deviates from the (revealed)

target relative importance ζ2
i ; for this we define the maximal discrepancy statistic dm as

dm = max
i∈{2,…,k}

|ζ2
i −Si=S1|: .6/

In the case of revealed target relative importance, recall that w1 is assumed to be the highest nomi-
nal weight wmax. In the case when more than one variable has maximum weight equal to wmax, we
selected as reference variable the variable with maximum value for Sl.hl,DPI/ with l∈{1, . . . , k},
i.e. l=arg maxi∈{1,…,k}Si.hi,DPI/ where hi,DPI is the DPI bandwidth choice for indicator i.
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The higher the value of dm, the more discrepancy there is between relative target importance
and the corresponding relative main effects. In dm we have chosen to capture the discrepancy
by focusing on the maximal deviation; alternatively we can consider any absolute power mean,
f -divergence function or distance between the (unnormalized) distributions {ζ2

i } and {Si=S1}.
For simplicity, in what follows we indicate these distributions used in the comparison as {ζ2

i }
and {Si}.

Because dm depends on the choice of bandwidth parameters h in the estimation of Si.h/,
i = 1, . . . , k, we also calculated bounds on the variation of dm obtained by varying h. Specifi-
cally, we computed dm comparing {ζ2

i } with {Si,li} choosing li as either equal to the minimum
or maximum, considering all possible combinations. For instance, with k = 2, we considered
{S1,min, S2,min}, {S1,min, S2, max}, {S1,max, S2,min} and {S1, max, S2,max}. Within the distribution
of values of dm that were obtained in this way, we recorded the minimum and the maximum,
denoted as dm,min and dm,max. Table 3 in Section 4 reports the dm for h equal to hDPI and hCV
and in the linear case, along with the values dm,min and dm,max, which provide a measure of
sensitivity of dm with respect to the choice of bandwidth h.

To compare the Si-values with the weights wi graphically, in Fig. 5 in Section 4 we rescale
the Si-values to have sum equal to 1, considering SÅ

i := Si=c with c := Σk
t=1St , which we call

‘normalized Si’. To visualize bounds for SÅ
i , we plot bars with end points equal to Si,min=c and

Si,max=c; these bars inform on the sensitivity of SÅ
i with respect to the variation of the bandwidth

parameter h.

3.4. Reverse engineering the weights
This section discusses when it is possible to find nominal weights wi that imply predetermined
given values z2

i for the relative main effects Si=S1; here we indicate the target relative impor-
tance z2

i to differentiate it from ζ2
i of the previous sections. This reverse engineering exercise can

help developers of composite indicators to anticipate criticism by enquiring whether the stated
relative importance of pillars or indicators is actually attainable.

For the purpose of this inversion, we consider the case of fi.xi/ linear in xi; in this case Si

coincides with R2
i , the square of Pearson’s product moment correlation coefficients between y

and xi. The linear case can be seen as a first-order approximation to the non-linear general case;
this choice is motivated by the fact that we can find an exact solution to the inversion problem
of the map from wi to R2

i =R2
1 when we allow weights wi also to be negative. One expects that

the reverse engineering formula in the linear case will be indicative of the formula based on a
non-linear approach, where the latter would be computationally more demanding.

We wish to find a value wÅ := .wÅ
1 , . . . , wÅ

k /′ for the vector of nominal weights w := .w1, . . . , wk/′
such that R2

i =R2
1 equals preselected target values z2

i , for i=1, . . . , k. We call this the ‘inverse prob-
lem’. The weights wÅ

i are chosen to sum to 1, but they are allowed also to be negative; this choice
makes the inverse problem solvable, and in Appendix A we show that it has a unique solution,
given by

wÅ = 1

1′Σ−1g
Σ−1g, .7/

where g is a vector with ith entry equal to gi := zi
√

.σii=σ11/ and 1 is a k-vector of 1s.
Because the solution to this inverse problem is unique, if some of the weights wÅ

j in equation
(7) are negative, it means that a solution to the inverse problem with all positive weights does
not exist and hence the targets z2

i are not attainable, owing to the data covariance structure. This
can help designers to reformulate their targets to make them attainable, and the stakeholders
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involved in the use of the composite indicator to evaluate whether the individual indicators can
have the stated importance by an appropriate choice of weights.

4. Case-studies

In this section we apply the statistical analysis that was described in Section 3 to the six compos-
ite indicators. In Section 4.1 we consider the three indices for which aggregation was performed
at indicator level and in Section 4.2 we consider the three indices for which aggregation was
performed at the pillar level.

4.1. Importance at the indicator level
We consider the HDI and two well-known composite indicators of university performance: the
ARWU of Shanghai’s Jiao Tong University and the indicator that is associated with the UK’s
THES.

4.1.1. University ranking
The 2008 ARWU (see Center for World-Class Universities (2008)) summarizes quality of edu-
cation, quality of faculty, research output and academic performance of world universities by
using six indicators: the number of alumni of an institution having won Nobel Prizes or Fields
Medals (weight 10%), the number of Nobel or Fields laureates among the staff of an institution
(weight 20%), the number of highly cited researchers (weight 20%), the number of articles pub-
lished in Nature or Science, the expanded Science Citation Index and Social Sciences Citation
Index (weight 40%) and finally academic performance measured as the weighted average of
these five indicators divided by the number of full-time equivalent academic staff (weight 10%).
The raw data are normalized by assigning to the best performing institution a score of 100 and
all other institutions receiving a score relative to the leader. The ARWU score is a weighted
average of the six normalized indicators, which is finally rescaled to a maximum of 100. The six
indicators have moderate to strong correlations in the range from 0.48 to 0.87 and an average
bivariate correlation of 0.68.

The 2008 THES (see Times Higher Education Supplement (2008)) summarizes university fea-
tures related to research quality, graduate employability, international orientation and teaching
quality by using six indicators: the opinion of academics on which institutions they consider to
be the best in the relevant field of expertise (weight 40%), the number of papers published and
citations received by research staff (weight 20%), the opinion of employers about the universi-
ties from which they would prefer to recruit graduates (weight 10%), the percentage of overseas
staff at the university (weight 5%), the percentage of overseas students (weight 5%) and finally
the ratio between the full-time equivalent faculty and the number of students enrolled at the
university (weight 20%). The raw data are standardized. The standardized indicator scores are
then scaled by dividing by the best score. The THES score is the weighted average of the six
normalized indicators, which is finally rescaled to a maximum of 100. The six indicators have
very low to moderate correlations that range from 0.01 to 0.64 and a low average bivariate
correlation of 0.24.

Results for the ARWU and THES are given in Tables 1–3. The first two panels of Table 1
provide the bandwidth selection results for the ARWU and THES; the corresponding panels
of Table 2 give estimates of the importance measure Si for various choices of bandwidth. The
first two rows in Table 3 give the maximum discrepancy statistic dm for the ARWU and THES.
Finally Figs 5(a) and 5(b) summarize the comparison between target and actual relative impor-
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Table 1. Bandwidth choice at indicator level†

hCV pCV hDPI pDPI n

2008 ARWU
Alumni winning Nobel Prize 25:05‡ 0.88 3.43 0.71 198
Staff winning Nobel Prize 25:05‡ 0.59 3.13 0.27 135
Highly cited research 25:05‡ 0.00 1.15 0.00 424
Articles in Nature and Science 9.05 0.00 1.78 0.00 494
Articles in Science and Social Sciences Citation Index 2.94 0.00 2.26 0.00 503
Academic performance (size adjusted) 1.74 0.00 2.12 0.00 503

2008 THES
Academic review 4.46 0.00 1.74 0.00 400
Recruiter review 5.81 0.00 2.62 0.00 400
Teacher/student ratio 4.46 0.07 4.76 0.08 399
Citations per faculty 25:05‡ 0.04 2.44 0.20 400
International staff 6.81 0.04 2.97 0.22 398
International students 25:05‡ 0.18 4.13 0.65 399

2009 HDI
Life expectancy 0.09 0.00 0.08 0.00 142
Adult literacy 0.05 0.00 0.07 0.00 142
Enrolment in education 0.04 0.00 0.06 0.00 142
GDP per capita 0.09 0.00 0.08 0.00 142

†Bandwidths hi,CV and hi,DPI and corresponding p-values for the linearity test pi,CV and pi,DPI;
n is the number of observations with xji > 0 used for CV and DPI.
‡Right-hand end of the grid H.

tance of indicators. For the ARWU the main effects Si are more similar to each other than
the nominal weights, i.e. ranging between 0:14 and 0:19 (normalized Si-values to unit sum; CV
estimates) when weights should either be 0:10 or 0:20.

The situation is worse for the THES index, where the combined importance of peer-review-
based variables (recruiters and academia) appears larger than stipulated by developers, indirectly
supporting the hypothesis of linguistic bias at times addressed to this measure (see for example
Saisana et al. (2011) for a review). Further for the THES index the ‘teachers-to-student ratio’, a
key variable aimed at capturing the teaching dimension, is much less important than it should
be when comparing normalized Si (0:09; CV estimate) with the nominal weight (0:20).

Overall, there is more discrepancy between the nominal weights that were assigned to the
six indicators and their respective main effects in the THES ranking (dm,CV =0:42) than in the
ARWU (dm,CV = 0:36) CV estimates. Comparing this result with the conclusions in Saisana
et al. (2011), we can see the value added of the present measure of importance. From Saisana
et al. (2011) we could not make a judgement about the relative quality of the THES ranking
with respect to the ARWU. The main effects that are used here allow us to say that—leaving
aside the different normative frameworks about which no statistical inference can be made—the
ARWU is statistically more consistent with its declared targets than the THES index.

When considering the sensitivity of dm-values to the choice of bandwidths h, we can see that
the range [dm,min, dm,max] is slightly shorter for the ARWU ([0:26, 0:50]) than for the THES
index ([0:29, 0:55]); this implies that the ARWU is slightly less sensitive than the THES index to
the choice of bandwidths h. Note, however, that the two ranges overlap, so there are choices of
bandwidths h for which the ordering of dm-values is reversed. This, however, does not happen
at the values hCV and hDPI.
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Table 2. Main effects at indicator level†

wi Si,lin Si,CV Si,DPI Si,min Si,max

2008 ARWU
Alumni winning Nobel Prize 0.10 0.64 0.65 0.67 0.65 0.76
Staff winning Nobel Prize 0.20 0.72 0.72 0.73 0.72 0.80
Highly cited researchers 0.20 0.81 0.85 0.87 0.85 0.90
Articles in Nature and Science 0.20 0.87 0.88 0.88 0.88 0.94
Articles in Science and Social 0.20 0.63 0.70 0.70 0.64 0.90

Sciences Citation Index
Academic performance (size 0.10 0.71 0.76 0.75 0.72 0.88

adjusted)

2008 THES
Academic review 0.40 0.77 0.81 0.82 0.78 0.85
Recruiter review 0.10 0.45 0.54 0.54 0.46 0.62
Teacher/student ratio 0.20 0.19 0.21 0.20 0.18 0.42
Citations per faculty 0.20 0.38 0.38 0.41 0.38 0.50
International staff 0.05 0.10 0.12 0.12 0.10 0.31
International students 0.05 0.16 0.16 0.17 0.16 0.34

2009 HDI
Life expectancy 0.33 0.80 0.80 0.80 0.78 0.85
Adult literacy 0.22 0.77 0.78 0.77 0.76 0.83
Enrolment in education 0.11 0.77 0.81 0.78 0.73 0.86
GDP per capita 0.33 0.85 0.84 0.84 0.84 0.88

†Nominal weights wi; main effects Si, Si,lin := Si.∞/ (linear fit), Si,CV := Si.hCV/,
Si,DPI :=Si.hDPI/, Si, min :=minh∈HSi.h/ and Si, max :=maxh∈HSi.h/.

Table 3. Maximum discrepancy statistic dm for various choices of
the bandwidth h in the main effect estimator Si .h/†

Index dm,DPI dm,CV dm,lin dm,min dm,max

ARWU 0.36 0.36 0.31 0.26 0.50
THES 0.41 0.42 0.34 0.29 0.55
2009 HDI 0.59 0.63 0.57 0.50 0.69
2010 HDI 0.06 0.07 0.09 0.03 0.13
IAG 0.29 0.34 0.42 0.13 0.57
SSI 0.85 0.91 0.95 0.38 0.98

†Minimum and maximum values were obtained by considering all
possible combinations of Si,li -values, where li ≡min, max.

The hypothesis of linearity is not rejected for two indicators for the ARWU and for four
indicators for the THES index, when evaluating the tests at hDPI and hCV. The two indicators
for the ARWU are those with the highest proportion of values equal to 0, which were discarded
in the choice of bandwidth; the numbers of valid cases n are 198 and 135 respectively. This may
reflect the fact that it is more difficult to reject linearity with smaller samples. The indicators
used in the THES ranking instead do not have so many 0 values; also here, however, we find
that E.y|xi/ is approximately linear for four indicators.

4.1.2. 2009 human development index
The HDI (see United Nations Development Programme (2009)) summarizes human devel-
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Fig. 5. Comparison of normalized main effects SÅ
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Si :D Si,CV; the indicators xi are numbered consecutively as in Tables 1, 2, 4 and 5; bounds for SÅ
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constructed as Si,min=c and Si,max=c): (a) ARWU; (b) THES; (c) 2009 HDI; (d) 2010 HDI; (e) IAG; (f) SSI

opment in 182 countries on the basis of four indicators: a long healthy life measured by life
expectancy at birth (weight 1/3), knowledge measured by adult literacy rate (weight 2/9) and
combined primary, secondary and tertiary education gross enrolment ratio (weight 1/9) and a
decent standard of living measured by the GDP per capita (weight 1/3). Raw data in the four
indicators are normalized by using the min–max approach to be in [0, 1]. The 2009 HDI score
is the weighted average of the four normalized indicators. Because data on the adult literacy
rate were missing for several countries, we analysed data only for the countries without missing
data; this gave a total of 142 countries. The four indicators present strong correlations that range
from 0.70 to 0.81 and an average bivariate correlation of 0.74.

Nominal weights and estimates of the main effects are given in the bottom panel of Table 2,
and the choice of bandwidth is given in Table 1. The maximum discrepancy is given in Table 3
and a graphical comparison of nominal weights and estimates of the main effects is provided in
Fig. 5. Table 1 reports evidence on the choice of bandwidth h and the p-values for the linearity
test, at the values hDPI and hCV of the smoothing parameter h.

Both the main effects Si and the Pearson correlation coefficients reveal a relatively balanced
effect of the four indicators life expectancy, GDP per capita, enrolment in education and adult
literacy on the variance of the HDI scores, with the adult literacy indicator being slightly less
important. It would seem that the HDI depends more equally on its four variables than the
weights that were assigned by the developers would imply. For example, if one could fix adult
literacy the variance of the HDI scores would on average be reduced by 77% (CV estimate),
whereas by fixing the most influential indicator, GDP per capita, the variance reduction would
be 84% on average.
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Table 4. Main effects at pillar level†

wi Si,lin Si,CV Si,DPI Si,min Si,max

2010 HDI
Life expectancy 0.33 0.82 0.84 0.84 0.81 0.86
Education 0.33 0.86 0.87 0.86 0.84 0.89
GDP per capita 0.33 0.90 0.90 0.90 0.89 0.93

IAG
Safety and security 0.20 0.52 0.54 0.63 0.51 0.87
Rule of law and corruption 0.20 0.77 0.76 0.78 0.76 1.00
Participation and human rights 0.20 0.44 0.63 0.68 0.43 1.00
Sustainable economic opportunity 0.20 0.52 0.52 0.56 0.52 0.98
Human development 0.20 0.50 0.50 0.55 0.49 0.94

SSI
Personal development 0.13 0.05 0.14 0.17 0.04 0.27
Healthy environment 0.13 0.04 0.04 0.07 0.04 0.27
Well-balanced society 0.13 0.13 0.21 0.21 0.12 0.32
Sustainable use of resources 0.30 0.48 0.64 0.64 0.47 0.72
Sustainable world 0.30 0.02 0.06 0.10 0.02 0.29

†Nominal weights wi; main effects Si, Si,lin :=Si.∞/ (linear fit), Si,CV :=Si.hCV/, Si,DPI :=Si.hDPI/,
Si,min :=minh∈H Si.h/, Si,max :=maxh∈HSi.h/.

One might suspect that it was precisely the developers’ intention, when assigning nominal
weights 11% and 33% to these two variables respectively, to make them equally important on
the basis of the Si-measure; however, this is not stated explicitly in the index documentation
report United Nations Development Programme (2009). Overall, there is considerable discrep-
ancy between the nominal weights that were assigned to the four indicators and their respective
main effects in the 2009 HDI (dm,CV =0:63).

The analysis of the 2009 HDI illustrates vividly that assigning unequal weights to the indi-
cators is not a sufficient condition to ensure unequal importance. Although the 2009 HDI
developers assigned weights varying between 11% and 33%, all four indicators are roughly
equally important. The scatter plots in Figs 1–4 help to visualize the situation. In cases like this,
where the variables are strongly and roughly equally correlated with the overall index, each of
them ranks the countries roughly equally, and the weights are little more than cosmetic.

4.2. Importance at the pillar level
The issue of weighting is particularly fraught with normative implications in the case of pil-
lars. As mentioned above, pillars in composite indicators are often given equal weights on the
grounds that each pillar represents an important—possibly normative—dimension which could
not and should not be seen to have more or less weight than the stipulated fraction. The dis-
crepancy measure that is presented here can be of particular relevance and interest to gauge the
quality of a composite indicator with respect to this important assumption. Here we consider
the 2010 version of the HDI, the IAG and the SSI.

4.2.1. 2010 human development index
In this section we analyse the 2010 version of the HDI at pillar level, covering 169 countries.
From the methodological viewpoint the main novelty in this version of the index is the use of a
geometric—as opposed to an arithmetic—mean in the aggregation of the three pillars. The three
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Table 5. Bandwidth choice at pillar level†

hCV pCV hDPI pDPI n

2010 HDI
Life expectancy 0.08 0.00 0.07 0.00 169
Education 0.02 0.09 0.06 0.21 169
GDP per capita 0.05 0.00 0.06 0.00 169

IAG
Safety and security 17.69 0.15 3.31 0.45 53
Rule of law and corruption 25:05‡ 0.30 4.75 0.94 53
Participation and human rights 4.89 0.08 2.85 0.41 53
Sustainable economic opportunity 22.14 0.09 4.21 0.51 53
Human development 25:05‡ 0.17 3.42 0.87 53

SSI
Personal development 0.69 0.00 0.37 0.00 151
Healthy environment 25:05‡ 0.41 0.49 0.69 151
Well-balanced society 0.69 0.00 0.42 0.01 151
Sustainable use of resources 0.30 0.00 0.30 0.00 150
Sustainable world 0.86 0.00 0.38 0.01 151

†Bandwidth h, hi,CV, hi,DPI; p-values for the linearity test, pi,CV (p-value for
hi,CV), pi,DPI (p-value for hi,DPI); n is the number of observations with xji > 0
used for CV and DPI.
‡Right-hand end of the grid H.

pillars cover health (life expectancy at birth) xlife, education xedu and income (gross national
income per capita) xinc. Education is the combination of two variables, namely mean years of
schooling and expected years of schooling (United Nations Development Programme, 2010).
The 2010 HDI index y is computed as

y = .xlifexeduxinc/
1=3

where all three dimensions have equal weights. The reason for this change of aggregation scheme
is to introduce an element of ‘imperfect substitutability across all HDI dimensions’, i.e. to
reduce the compensatory nature of the linear aggregation; see United Nations Development
Programme (2010), page 216.

Nominal weights and estimates of the main effects are given in the first panel of Table 4,
whereas the choice of bandwidth is given in Table 5. The maximum discrepancy is given in the
fourth row of Table 3 and a graphical comparison of nominal weights and estimates of the main
effects is provided in Fig. 5.

Overall, the 2010 HDI shows very little discrepancy between the goals of equal importance
of the three pillars and the main effects. In fact all three pillars have a similar effect on the index
variance (roughly 84−90%). Hence, in this case the relative nominal weights are approximately
equal to the relative effect of the pillars on the index variance. Such a correspondence is of value
because it indicates that no pillar impacts too much or too little on the variance of the index as
compared with its ‘declared’ equal importance. Compared with the other examples discussed,
the 2010 HDI is the most consistent in this respect (dm,CV = 0:07). The linearity tests reveal
that the role of education is approximately linear within the index, despite the multiplicative
aggregation scheme.

To assess the effect of the choice of the aggregation scheme on the index balance, we also
perform a counterfactual analysis of the 2010 HDI using linear aggregation of the three
dimensions. We find that this choice does not affect the relative importance of dimensions,
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as these have comparable variances and covariances. Hence the 2010 HDI would have been
balanced also under a linear aggregation scheme. This, however, does not detract from the
conceptual appeal of imperfect substitutability that is implicit in geometric aggregation.

4.2.2. Index of African governance
The IAG was developed by the Harvard Kennedy School; see Rotberg and Gisselquist (2008);
for a validation study see Saisana et al. (2009). In the 2008 version of the index, 48 African
countries are ranked according to five pillars:

(a) safety and security,
(b) rule of law, transparency and corruption,
(c) participation and human rights,
(d) sustainable economic opportunity and
(e) human development.

The five pillars are described by 14 subpillars that are in turn composed of 57 indicators in
total (in a mixture of qualitative and quantitative variables). Raw indicator data were normal-
ized by using the min–max method on a scale from 0 to 100. The five pillar scores per country
were calculated as the simple average of the normalized indicators. Finally, the IAG scores
were calculated as the simple average of the five pillar scores. The five pillars have correla-
tions that range from 0.096 to 0.76 and an average bivariate correlation of 0.45. Three pairwise
correlations (involving participation and human rights and either sustainable economic oppor-
tunity or human development or safety and security) are not statistically significant at the 5%
level.

Nominal weights and main effects are given in Table 4 and in Fig. 5, whereas the choice of
bandwidth is reported in Table 5 and the discrepancy statistics in Table 3. The main conclusions
are summarized as follows: the IAG is a good example of the situation that was discussed in
Section 1 whereby all pillars represent important normative elements which by design should
be equally important in the developers’ intention. Overall the IAG appears to be balanced with
respect to four pillars that have a similar effect on the index variance (roughly 50−63%), but the
fifth pillar on the rule of law is more influential than conceptualized (Si = 76%; CV estimate).
The IAG has a discrepancy statistic dm,CV =0:34.

The linearity tests in Table 5 suggest that there is no statistical evidence against linearity for
all the five indicators. Hence one could calculate Si here as R2

i .

4.2.3. Sustainable society index
The SSI has been developed by the Sustainable Society Foundation for 151 countries and it is
based on a definition of sustainability of the Brundtland Commission (van de Kerk and Manuel,
2008). Also in this example, the five pillars of the index represent normative dimensions which
are, however, considered of different importance: personal development (weight 1/7), healthy
environment (1/7), well-balanced society (1/7), sustainable use of resources (2/7) and sustainable
world (2/7). These five pillars are described by 22 indicators. Raw indicator data were normal-
ized by using the min–max method on a scale from 0 to 10. The five pillars were calculated as
the simple average of the normalized indicators. The SSI scores were calculated as the weighted
average of the five pillar scores.

One can note that the linearity test suggests that for the second pillar ‘healthy environ-
ment’ there is no evidence against linearity of its relationship to the SSI. The five pillars have
correlations that range from −0:62 to 0:75, where negative correlations between pillars are
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generally undesired, as they suggest the presence of trade-offs between pillars (for example eco-
nomic performance can only come with an environmental cost). Such trade-offs within index
dimensions are a reminder of the danger of compensability between dimensions.

For the SSI, there are notable differences between declared and variance-based importance
for the five pillars. The different association between a pillar and the overall index can also be
grasped visually in Fig. 5. The two pillars on ‘sustainable use of resources’ and on ‘sustainable
world’ are meant to be equally important according to the nominal weights (2/7 each), whereas
the main effects suggest that the variance reduction that is obtained by fixing the former is 67%
compared with merely 9% by fixing the latter. This strong discrepancy is due to the significant
negative correlations between the SSI pillars. Overall, the level of maximal discrepancy of the
SSI is the highest of the examples discussed (dm,CV =0:91). The authors and the developers of
the SSI have been communicating on this issue, and the 2010 version of the SSI index appears
considerably improved; see http://www.ssfindex.com/ssi/.

4.3. Reverse engineering the weights
Applying the reverse engineering exercise that is described in Section 3.4 and Appendix A to our
test cases (except for the case of the 2010 HDI that has low maximal discrepancy between relative
weights and relative importance for the three pillars, and it is not obtained by the linear aggrega-
tion scheme (1)), we find that to achieve a relative effect of the indicators (or pillars) (as measured
by the square of the Pearson correlation coefficient R2

i ) that equals the relative ‘declared’ impor-
tance of the indicators, negative nominal weights are involved in all studies except for the SSI.
In the case of the SSI, to guarantee that the two pillars on sustainable use of resources and
sustainable world are twice as important as the other three pillars, the nominal weights to be
assigned to them are 0.19 for personal development, 0.16 for healthy environment, 0.07 for
well-balanced society, 0.16 for sustainable use of resources and 0.41 for sustainable world. For
all other cases, the data correlation structure does not allow the developers to achieve the stated
relative importance by choosing positive weights.

5. Conclusions

According to many—including some of the authors of the Stiglitz report (see Stiglitz et al.
(2009))—composite indicators have serious shortcomings. The debate among those who prize
their pragmatic nature in relation to pragmatic problems (see Hand (2009)) and those who con-
sider them an aberration is unlikely to be settled soon; see Saltelli (2007) for a review of pros
and cons. Still these measures are pervasive in the public discourse and represent perhaps the
best-known face of statistics in the eyes of the general public and media.

One might muse that what official statistics are to the consolidation of the modern nation
state (see Hacking (1990)) composite indicators are to the emergence of post modernity—mean-
ing by this the philosophical critique of the exact science and rational knowledge programme
of Descartes and Galileo; see Toulmin (1990), pages 11–12. On a practical level, it is undeni-
able that composite indicators give voice to a plurality of different actors and normative views.
Stiglitz et al. (2009) remarked (page 65) that

‘The second [argument against composite indicators] is a general criticism that is frequently addressed
at composite indicators, i.e. the arbitrary character of the procedures used to weight their various
components. ... The problem is not that these weighting procedures are hidden, non-transparent or
non-replicable—they are often very explicitly presented by the authors of the indices, and this is one
of the strengths of this literature. The problem is rather that their normative implications are seldom
made explicit or justified.’
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The analysis of this paper shows that, although the weighting procedures are often very explicitly
presented by the authors of the indices, the implications of these are neither fully understood
nor assessed in relation to the normative implications. This paper proposes a variance-based
tool to measure the internal discrepancy of a composite indicator between target and effective
importance.

Our main conclusions can be summarized as follows. For transparency and simplicity, com-
posite indicators are most often built by using linear aggregation procedures which are fraught
with the difficulties that were described in Section 1: practitioners know that weights cannot
be used as importance, although they are precisely elicited as if they were. Weights are instead
measures of substitutability in linear aggregation. The error is particularly severe when a vari-
able’s weight substantially deviates from its relative strength in determining the ordering of the
units (e.g. countries) being measured.

Pearson’s correlation ratio (or main effect) that is suggested in this paper is a suitable measure
of importance of a variable (be it indicator or pillar) because

(a) it offers a precise definition of importance (i.e. ‘the expected reduction in variance of the
composite indicator that would be obtained if a variable could be fixed’),

(b) it can be used regardless of the degree of correlation between variables,
(c) it is model free, in that it can be applied also in non-linear aggregations, and finally
(d) it is not invasive, in that no changes are made to the composite indicator or to the cor-

relation structure of the indicators.

Because of property (a) and the fact that it takes the whole covariance structure into account,
the main effect can also be useful to prioritize variables on which a country or university, or
whatever units are being rated, could intervene to improve its overall score. Note that the indi-
cator with highest main effect is not necessarily the indicator in which the country scores the
worst.

The main effects approach can complement the techniques for robustness analysis applied to
composite indicators thus far seen in the literature; see for example Saisana et al. (2005, 2011)
and Organisation for Economic Co-operation and Development (2008). The approach that is
described in this paper does not need an explicit modelling of error propagation but it is simply
based on the data as produced by developers.

The discrepancy statistic based on the absolute error between ratios of the main effects and
of the corresponding target relative importance provides a pragmatic answer to the research
question that is posed in this paper. Relative main effects are variance based, and hence they
are ratios of quadratic forms of nominal weights, whereas target relative importance is often
deduced as ratios of nominal weights. Comparing them via the discrepancy statistic is a way of
comparing these two importance measures, one of which is stated ex ante as a target and the
other that is computed ex post; this allows us to see how close the two measures are in practice.

The discrepancy statistic has been effective in the six examples that were discussed, in that it
allowed an analytic judgement about the discrepancy in the assignment of the weights in two
well-known measures of higher education performance (dm = 0:42 for the THES index versus
dm =0:36 for the ARWU), two versions of an HDI (dm =0:63 for the 2009 HDI and dm =0:02 for
the 2010 HDI), one index of governance (dm =0:34 for the IAG) and one index of sustainability
(dm =0:86 for the SSI).

Our reverse engineering analysis shows that in most cases it is not possible to find nominal
weights that would give the desired importance to variables. This can be a useful piece of
information to developers and might induce a deeper reflection on the cost of the simplification
that is achieved with linear aggregation. Developers could thus
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(a) avoid associating nominal weights with importance but inform users of the relative
importance of the variables or pillars, using statistics such as those presented in this
paper,

(b) abstain from aggregating pillars when these display important trade-offs which make it
difficult to give them target weights in an aggregated index,

(c) reconsider the aggregation scheme, moving from the linear scheme (which is fully com-
pensatory) to a partially or fully non-compensatory alternative, such as a Condorcet like
(or approximate Condorcet) approach, where weights would fully play their role as a
measure of importance (see Munda (2008)) and

(d) assess different weighting strategies, to select the strategy that leads to a minimum dis-
crepancy statistic between target weights and variables’ importance.
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Appendix A: Solution to the inverse problem

In the linear case, the ratio Si=S1 equals the ratio of squares of Pearson’s correlation coefficients R2
i =R2

1;
this is a function Hi.w/ of w := .w1, . . . , wk/ and of the covariance matrix Σ of x := .x1, . . . , xk/

′. We find

H.w/= .e′
iΣw/2σ11

.e′
1Σw/2σii

,

where ei is the ith column of the identity matrix of order k and σii is the ith variance on the diagonal of
Σ. We wish to make Hi.w/ equal to a preselected value z2

i for all i,

Hi.w/= z2
i , i=1, . . . , k, .8/

and seek to find a solution w ∈Rk to this problem such that the nominal weights sum to 1, i.e.

1′w =1: .9/

We show that this solution is unique and it is given by equation (7) in the text, where g is a vector with ith
entry equal to gi := zi

√
.σii=σ11/> 0 and 1 is a k-vector of 1s.

By construction g1 =1. We have that expression (8) can be written as

e′
1Σw − 1

gi

e′
iΣw =0,

or, setting G := diag.1, 1=g2, . . . , 1=gk/ and F := 1e′
1, as .F − G/Σw = 0. This shows that Σw should be

selected in the right null space of F −G. We observe that

F −G =

⎛
⎜⎜⎜⎜⎝

0 0 0

1 −1=g2

:::
:::

: : : 0

1 0 −1=gk

⎞
⎟⎟⎟⎟⎠

whose right null space A is one dimensional; moreover A is spanned by g := .1, g2, . . . , gk/
′. Hence Σw=gc

for a non-zero c or w=Σ−1gc. Substituting this expression in equation (9), we find that 1=1′w=1′Σ−1gc,
which implies that c=1=1′Σ−1g. We hence conclude that the weights that satisfy equation (8) are given by
equation (7), and that they are unique.
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