Stochastic Processes or the Statistics of Change

Maurice S. Bartlett

Applied Statistics, Vol. 2, No. 1. (Mar., 1953), pp. 44-64.

Stable URL:
http://links jstor.org/sici?sici=0035-9254%28195303%292%3 A1%3C44%3ASPOTS 0%3E2.0.CO%3B2-D

Applied Statistics is currently published by Royal Statistical Society.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/rss.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org/
Thu Apr 6 08:37:32 2006



STOCHASTIC PROCESSES OR THE STATISTICS
OF CHANGE*

MAURICE S. BARTLETT
University of Manchester

The term ‘stochastic processes’ is used to denote statistical
phenomena that develop in time and the theoretical models
that arise in their treatment, and as these are encountered in
many fields, this article has a wide practical interest. Professor
Bartlett indicates how stochastic processes arise in physics and
communication engineering, industry, economics, biology, and
medicine. As an example he describes the construction of a
mock epidemic series simulating successive measles outbreaks
in a boarding school.

What are Stochastic Processes ?

A few years ago not many people in this country knew what was
meant by a stochastic process; today the situation is perhaps no different
for the general public, though professional statisticians are becoming
more familiar with the phrase. Like other new phrases or words, its
use ‘catches on,” and it gradually spreads through the community of
statisticians or other receptive agents much in the way an actual infec-
tion will spread. Such a process is itself a stockastic process, by which
is meant that it does not proceed according to any immutable law but
is at least partly dependent on random and chance factors. We there-
fore call it a random or stochastic process, usually preferring the second
adjective because random might convey the idea that every stochastic
process appeared purely haphazard (like the emissions from a radio-
active substance or the so-called Brownian motion of small dust
particles on the surface of a liquid), whereas in many stochastic pro-
cesses, such as the spread of epidemics or the growth of populations,
any random fluctuations may be apparently eliminated by the large
statistical groups involved, so that the development of the process
appears comparatively smooth and even predetermined.

Anyone previously unfamiliar with the idea of a stochastic process
will by now be beginning to see what is meant. He may, even if his
mathematics is a relic from his schooldays, remember the distinction
in mechanics between statics and dynamics. If he is an economist he
will know that much of classical economic theory is erected on the
same kind of static or equilibrium structure as classical statistical
mechanics, and will know that modern economic theorists, like their
physicist colleagues, are busy trying to formulate their theories to

*This article is based on a paper given at the Joint Conference of the Royal and Man-
chester Statistical Societies held in Manchester in September 1952.
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represent a little more closely our dynamic changing world. If he is a
statistician he will know that mathematical statisticians long ago began
to study the statistical populations and frequency distributions arising
in nature and how far they may be represented by theoretical models
which assist in their interpretation. The theory of stochastic processes is,
roughly speaking, concerned with the corresponding wider theory of the statistics
of change.

Interpreting the subject in this way, we can be either excited by its
generality or disappointed by its lack of novelty. Of course, stochastic
processes have always been there in nature, and the industrial statisti-
cian studying his control charts or the commercial statistician his
firm’s fluctuating sales figures will not automatically solve his problems
by calling them by a new name. However, while the statistician
should never be hidebound by the standard techniques available to
him, there is a limit to the extent to which even the best statistician can
make ad hoc improvisations on current methods, and there is no doubt
that recent systematic study of the theory of stochastic processes has
greatly broadened his possible approach to actual statistical problems.
I will cite two or three examples of how the older ‘static’ outlook tended
to be a barrier to improved technique until it was broken down.

The first was in the statistical analysis of time-series.* The ‘static’
procedure of considering a given sample of independent observations had
of course been adapted as far as possible to the study of time-series even
in classical methods, in which the stochastic process was represented by
a trend or a harmonic curve to which independent random fluctuations
were supposed added; but even this assumption proved too narrow to
cover many cases met with in practice. In particular, the impossibility
of such an assumption always being feasible became apparent from the
case of continuous time-records. In this case the assumption of inde-
pendence implied unlimited statistical information if the discrete
observations taken over a fixed period of time were increased indefi-
nitely by reducing the interval between successive observations.
Historically, the first attacks on this important statistical problem
using a more general approach were made independently by the
Russian mathematician and econometrician E. Slutsky2?® and by the
English statistician Udny Yule?3 in the year 1927.

The second example was in the practice of industrial sampling. The
‘single sampling’ schemes were supplemented by ‘double sampling,’
‘inverse sampling,” and finally by the ‘sequential sampling’ methods,
whose theory was mainly developed during the last world war by the
American mathematical statistician Abraham Wald.” With these
sequential methods the new feature is the continuation of sampling until
enough information has been acquired for a decision to be taken with
a specified risk. Sequential sampling is thus much less ‘static’ than the
classical practice of taking a sample of predetermined size, and its

* This general heading strictly includes such topics as control charts, especially if the
successive entries in the latter turn out to be correlated.
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distributional theory (e.g. determining the average size of sample
required in any application) is essentially one falling within the general
field of stochastic process theory and, in particular, is related to the
‘random walks’ and diffusion processes referred to in the next section.

As a third example consider the manner in which discrete frequency
distributions arise—in particular the well-known Poisson distribution
for small numbers. In text-books this is usually derived from the
binomial distribution, but a more direct and in many cases a more
natural way is to obtain it as the fundamental distribution associated
with events occurring randomly and independently of each other in
time, such as the emission of alpha-particles by a radioactive substance
or, in suitable cases, the occurrence of accidents to a particular indi-
vidual or at a particular locality. The theoretical derivation is com-
paratively simple. If the total number of events occurring in the time
¢is N(¢), then the distribution of N(¢) can be specified by its ‘probability-
generating function’

G(z; t) =po(t) + p1(Dz + pa(B)2 + . .

in which the coefficient p,(¢) of z” is the probability that N(¢) = r after
a time . We suppose that in a small time-interval 8¢ the chance of
one extra event occurring is @ 8¢ (for simplicity we assume a constant
in time, though this is not essential), and the chance of none, 1 — a 8¢
Then

G(z;t + &) = a 8t 2G(z; t) + (1 — a 8)G(z; ¢)
or dGldt = a(z — 1)G,
whence G = ¢4~ 1

if N(0) = o. This is the probability-generating function of the Poisson
law p,(¢) = e~™m’[rl, with a mean m = at. The theory of stochastic
processes thus gives the Poisson distribution a basic role in statistical
theory not less than that of any other distribution.

© Of course, if the events (e.g. accidents) are not independent the
distribution may be modified. An important case is that where the
chance of an event in the small time-interval 8 is not constant, but
depends on the number of events that have already occurred, being of
the form [a + bN(#)] 8¢. This ‘contagion’ hypothesis may be shown by
an extension of the above method to lead to the ‘negative binomial
distribution,” a result first established as long ago as 1914 by A. G.
McKendrick,* who was interested in its medical applications. Another
way in which this same distribution can arise was discovered in 1920
by Greenwood and Yule, who were investigating the numbers of
accidents experienced by a group of munition workers. They found
that if these workers were variable in their proneness to accidents then
the frequency distribution of the numbers of accidents per individual,
obtained from the statistics of the whole group, may be of the ‘negative
binomial’ type (see, for example, Lundberg3). If we wish to discrimi-
nate between the first hypothesis, that any individual may suffer more
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accidents than the average because initial accidents contracted by bad
luck render him more liable to others, and the second hypothesis, that
one individual will differ from another in his accident proneness right
from the start, it is necessary to analyse the accidents per individual
over more than one time-period. This has recently been done, for
example, on statistics collected for South African shunters.!

The fact that more than one causal mechanism can generate the
same statistical distribution is an obvious warning to the statistician
who is hoping to learn something of the way an observed distribution
may have arisen. Before embarking on such a task he should ideally
be familiar with all the theoretical possibilities. Even so, without some
further limitation of the possible hypotheses, the extent to which he
can unravel data presented to him may be severely limited. This
difficult but vital problem of what the statistician is entitled to ask
before undertaking a statistical analysis, particularly in connection
with stochastic processes, is returned to again later.

The Monte Carlo Method

While systematic study of stochastic processes is recent, it is evident
that in various guises they have appeared since the concepts of proba-
bility and chance were first formulated. It is in fact remarkable how
the early mathematicians in their attacks on probability problems
raised by gamblers included studies of game sequences closely related
to many modern stochastic process problems, such as sequential
analysis or the use of artificial stochastic processes to solve differential
equations and other theoretical problems (the so-called ‘Monte Carlo
method’). For example, in 1657 the famous Dutch mathematician
C. Huyghens propounded the following problem (quoted from a paper
by Professor G. A. Barnard!?). ‘A and B each take twelve counters and
play with three dice on this condition, that if eleven is thrown, A gives
a counter to B, and if fourteen is thrown, B gives a counter to A; and
he wins the game who first obtains all the counters. Show that A’s
chance is to B’s as 244 140 625 is to 282 429 536 481.> The mathe-
matical equation for this problem is readily set up, for if the chances
of obtaining fourteen or eleven at any trial are as p : ¢ (actually 15 : 27
in this case), the probability P(x) of A winning when he has x counters
must satisfy the ‘difference equation’

V4

P(x) =714 P(x + 1) +P_-I—-—P(x — 1), (0 <x<24)....(1)
and also P(0) = o, P(24) = 1. The. relevant solution is
P(x) = [(glp)" — 11[[(glp)** — 1] ceee(2)

or in particular
P(12) = 1f[(g/p)** + 1] ---(3)

agreeing with Huyghens’s answer.
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The interesting point about this is that, if the theoretical solution of
the problem, which has been formulated in mathematical terms in
equation (1), had not been precisely known, an approximate solution
could be obtained not by direct numerical methods, but by repeated
simulation of the gambling problem. As a simple illustration, one
hundred repetitions were made, all of which resulted in A losing,
consistently with the true value of P being as low as 0:000864. To
expedite these repetitions they were made for convenience with the aid
of four-figure random numbers rather than of dice. To obtain odds of
15 : 27 we may classify any random number into one of the two groups
0000-3570 and 38571-9999, giving the practically equivalent odds
3571 : 6429. Notice how the artificial games, which simulate real ones,
can give us at the same time all possible information we may wish to
know. For example, we know the number of trials required before a
game is terminated, and so accumulate information on the statistical
distribution of the ‘length’ of a game. This problem can also be solved
theoretically, but the mathematical solution is quite complicated.

This ‘artificial sampling’ or ‘Monte Carlo method’ is well known to
statisticians, so much so that tables of random numbers are a familiar
item in their libraries. In recent years, however, it has also been
seriously considered by mathematicians as an aid to the solution of
differential or other mathematical equations (see, for example, the
USA publication on the ‘Monte Carlo method’1?). Thus the above
gambling problem is an example of what is called a ‘random walk’
process in which each ‘step’ (in this case the transfer of a counter)
occurs independently of previous steps; if we further consider the
individual steps of this ‘walk’ to be small compared with the total
distances to be traversed (in the gambling problem the number of
counters originally held must be comparatively large), it may be shown
that the density f of ‘paths’ when a large number of repetitions of the
process is envisaged satisfies the partial differential equation

of/ot + a of|ox = b o%f]ox* ... (4)

where x is the net distance traversed in the ‘time’ ¢ (the number of
steps), a = (p — q)/(p + ¢), and b = qu/(p + ¢)% This equation is
well known as the ‘equation of diffusion’ in physics, and conversely, if
we met this equation directly and wished to obtain a solution of it by
the Monte Carlo method, we could choose an appropriate p : ¢ (altering
if necessary the scale of ¢ and hence of a and ), and proceed as already
indicated. Of course, we should be unlikely in this rather simple case
to use this method in practice unless the boundary conditions were
more complicated or we required to accumulate a lot of information
simultaneously about the underlying process. However, to illustrate
the connection with equation (4), the frequency distribution of the
lengths of the ‘games’ in the hundred repetitions already referred to is
compared in Fig. 1 with the theoretical distribution from (4) of the
time required to reach a boundary at distance 12 units from the starting
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point. The agreement, with so few stages as 12 to reach the boundary
in the artificial games, is surprisingly good.

It might be added that the reason a stochastic process may so often
be found corresponding to equations arising in physics is the obvious
one that the equation has really arisen in the first place, as in the case
of equation (4), from a stochastic process occurring in nature.

Stochastic Processes in Physics and Communication Engineering

The reader will, however, appreciate that this more fundamental
role of stochastic processes in physical problems cannot be adequately
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Fic. 1. Frequency distribution of the duration of play in 100 ‘games,” yielding an approxi-
mate solution of a diffusion problem whose correct solution is given by the continuous curve.

indicated here. It must suffice to remind him that the explicit use of
the theory of stochastic processes for such physical phenomena as the
showers of particles created by cosmic rays or other ‘chain reactions,’
as Brownian motion or other ‘noise’ phenomena, or as turbulence in
gases and liquids, is merely one indication of the increasing necessity
with all physical processes to allow fully for the role which chance and
statistical concepts play in them.

Two topics may perhaps be singled out as of particular interest in
industrial physics and communication engineering. The first is con-
cerned with the stray disturbances in electrical and other delicate
apparatus and has already been referred to above by its usual title,
‘noise.” The problem of correcting and filtering a long train of signals
to reduce the effect of noise to a minimum is one that comes under
the general theory of what are called ‘stationary’ time-series, and has

D
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been so treated by Norbert Wiener, the American mathematician.15 By
a stationary time-series is meant a stochastic process in time in which
the variable is fluctuating or oscillating but not otherwise changing as
time goes on (an example is shown in Fig. 2). From the point of view
of the communication engineer a continuing sequence of messages or
signals may often be regarded as a stationary time-series, whether or
not they are affected by external random disturbances. For example,
in a long passage in English the way in which the various letters or
even words happen to follow each other has a definite and constant
statistical structure which can be studied. If someone sends such a
passage by teleprinter or communicates it verbally by telephone, the
resulting electrical signals will also constitute a stationary time-series.

The second topic is concerned with the communication and coding
aspect of these series of messages or signals. It is clear that while the
sequence of electrical signals should, apart from the effect of disturb-
ances, represent the original sequences of messages, there is a consider-
able choice in how the representation is made; and one method may
be better than another. Here again the concept of stationary time-
series is used in the construction of a general theory of communication,
in which are studied and made precise such questions as: what is the
maximum rate of information that may be passed along a given
channel, or equivalently, how ‘big’ has a channel to be to pass a
required rate of information ? To give some idea, to those familiar
with the technical jargon of the electrical engineer, of the kind of
results that can be reached, I will merely quote one important result.
The maximum ‘capacity’ of a channel under certain conditions is given
by the formula

Wlog (1 + P/N)

where W is the band-width of frequencies employed, N is the average
power in this band-width of the noise in the channel, and P the corre-
sponding average power allowed in the signals. The efficiency of
actual communication systems, for example those making use of fre-
quency modulation in radio communication, can then be compared
with this optimum.

This communication theory has been largely developed by workers
at the Bell Telephone Laboratories, especially by C. Shannon.'3 It is
quite general and is not confined to electrical methods of communica-
tion. A symposium!4 was held in London in 1950 to discuss its
numerous ramifications and several statisticians attended who were
interested in its important relation with other branches of statistical
theory (see also Barnard?!?).

Stochastic Processes in Industry

An older problem in communication engineering associated with
the theory of stochastic processes arises, say, in the design of telephone
switchboards and is the one of determining ‘waiting times’ for any
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given capacity and density of ‘traffic.’ But this has so many guises that
it is better thought of in the more general terminology of the problem
of ‘queues,” which the inimitable periodical Punch evidently considered
(from its review of Mr D. G. Kendall’s paper?) to be one of the
universal problems of our time. Whether the wait is for a disengaged
line, or a disengaged shop assistant, or a vacant landing strip at an
aerodrome, or a vacant gap in the road traffic, or an available operative
to attend to a machine, the wait loses time and money, not to mention
our patience. A theoretical and practical study of the stochastic pro-
cesses involved may help to reduce the amount of time lost.

As an example consider the problem of servicing machines which
break down at random times at an average rate r per machine. It is
evident that a single group of 7 operatives to 2V machines will be, at
least in the absence of any other practical considerations, more efficient
than n separate operatives each servicing a separate group of N
machines, because the possibility of an operative to one of the latter
groups being idle while a machine in another group requires attention
is excluded when all operatives are pooled. To illustrate the gain in
more detail in a particular case, suppose that the time taken to finish
servicing any machine once it has received attention is also random.
with an average S. Also for simplicity in this example we shall suppose
that Vis large, but that the average rate of breakdown for all machines
remains at a reasonable figure R, say, (= N7). It might be noticed
that our problem is now theoretically equivalent to a queue problem
with customers coming in at random to be served, with the operatives
representing servers.

The average number of machines (customers) waiting to be served
comes out in the case n = 1 (one server) as a2/(1 — a) per server,
where o = RS, whereas for n = 2 itis 2a3/(1 — «2). Thus the ratio of
the average number waiting in the second case to twice the average
number for one server is «/(1 4 ), indicating the gain in efficiency
already referred to. For «, which must be less than 1 if stable condi-
tions are to be maintained, equal to } we have 2a2/(1 — a) = 1,
2a3/(1 — a?) = 4, and the gain ratio is as much as g : 1. As zn further
increases the ratio of the expected number of waiting machines to the
total expected number in 7 individual groups with one operative per
group tends steadily to zero. This example has, of course, been rather
drastically simplified for illustrative purposes, and statisticians in-
terested in this problem should consult a more comprehensive dis-
cussion by F. Benson and D. R. Cox.18

Apart from the connection already noted of sequential sampling
theory with stochastic processes, many sampling problems have been
reconsidered in recent years from the stochastic process viewpoint.
Thus the problem of sampling from a continuous ‘low’ of material has
been discussed by G. H. Jowett2? and the problem of sampling a two-
dimensional area (using the idea of a stochastic process over two
spatial dimensions) by M. H. Quenouille.5
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It is clearly not only in the sampling of a continuous output of some
material that a knowledge of stochastic processes may be useful; it will
. be needed in the statistical analysis and quality control of the material.
For example, in the textile industry, whether for cotton, wool, flax, or
other fibre, considerable attention has been given to maintaining
uniform quality of the yarn. In particular, certain tendencies to
periodicity in the thickness of cotton ‘slivers’ before they are spun into
yarn were discussed by G. A. R. Foster at a symposium?* on time-
series held in 1946. It has already been mentioned that a new approach

2 3 - A
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F1G. 2. This chart shows the variation in mass per unit length along a cotton yarn. It was
kindly supplied by Mr G. A. R. Foster, who has dealt elsewhere!®24 with the analysis of
such variation. The form of the variation is typical of that shown by a stationary time-series.

to time-series in the last twenty-five years has enabled us to attack such
problems statistically with a much greater understanding of what
methods to employ.

The Analysis of Economic and Other Time-Series

I have given a technical survey of the statistical analysis of time-
series elsewherel4 and do not want to attempt it here; I do, however,
without going into technicalities want to emphasise that the extent to
which the statistician can hope to analyse time-series by purely em-
pirical means is now realised to be severely limited. This is because
any analysis depends on a theoretical specification or hypothesis of
how the data have arisen, and the less detailed the specification avail-
able the fewer the conclusions that can be drawn. This is sometimes
forgotten in classical statistical problems, where the assumption of a
sample of independent and homogeneous observations is so common that it
is often not mentioned explicitly. As an exception, in many experi-
mental situations the lack of independence was not only recognised,
but it was effectively eliminated by the randomisation devices intro-
duced by Sir Ronald Fisher. But in time-series, and indeed in stochastic
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processes in general, the dependence between the successive observa-
tions is usually their most important feature. This has thrown up many
new and difficult problems in the theory of statistical inference. How-
ever, even when these purely technical problems have been solved, it
is necessary to realise that the nature of the dependence has so many
possibilities a priori that these need first to be drastically restricted in
any particular context by theoretical or other sources of information
before any analysis is likely to be profitable. Possible exceptions are
time-series of the stationary type occurring in some physical or meteoro-
logical applications, where the length of series available for study may
be more or less unlimited.

In economic and social studies it is rare to have homogeneous series
of any length, and any statistical analysis must be closely knit with as
full a theoretical specification as possible. Referring especially to this
field, Norbert Wiener!® has made much the same point (p. 85): *. . .
the modern apparatus of the theory of small samples, once it goes
beyond the determination of its own specially defined parameters and
becomes a method for positive statistical inference in new cases, does
not inspire one with any confidence, unless it is applied by a statistician
by whom the main elements of the dynamics of the situation are either
explicitly known or implicitly felt.’

The statistical analysis of economic time-series has thus in recent
years been based on rather well-defined hypothetical models of how the
variables under study interact with one another. When Udny Yule
introduced in 1927 methods of analysis for oscillatory time-series in
which the random or stochastic element became incorporated with the
future movement of the series, he used the vivid illustration of a
swinging pendulum which was being bombarded by boys armed with
peashooters. It is not unreasonable to suppose that any random or
unpredictable disturbances affecting economic series similarly influence
their future movement, and so the theoretical economic models used in
the specification automatically become stochastic processes of the kind
considered by Yule. One detailed (though somewhat indigestible !)
exposition?! of the statistical methods developed for analysing such
types of stochastic series has been published by the Cowles Commission
Economic Research Group at Chicago.

Stochastic Processes and the Statistician’s Role

The essentially close relation between theory and statistical analysis
in the case of economic time-series rather brings to a head the problem
of what responsibility devolves on anyone who undertakes statistical
analysis. It has always been stressed that the statistician must be fully
cognisant of how the figures he is analysing were collected and of any
other relevant information, but in the case of stochastic processes it is
clear that this ancillary information should also include a very thorough
theoretical knowledge of the possible mechanism and structure of the
process before any analysis can proceed. We have seen that stochastic

D*
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processes may arise in any field of application, and any statistician who
finds himself responsible for their analysis must be prepared either to
acquire such knowledge himself or to co-operate with someone who
has it. ‘ ‘

Let us consider an example in the actuarial field, the prediction of
population trends. Here it is true that any random or stochastic
element affecting separate individuals is practically eliminated if it is
the total population size that is of interest. But while the process will
appear smooth, its detailed structure is a determining factor in its evolu-
tion, and it is well known that any empirical extrapolation based on
the census figures for the total population is quite inadequate for any
but short-term purposes. This is most evident if we consider as an
extreme case a fictitious population of young married emigrants who
have founded an island colony. The island’s birth-rate would at first
show large but gradually damped oscillations with a period of about
one generation, until the successive generations had had time to merge
into each other. Thus more extended extrapolations before the war
took full account of (i) the distribution by age and sex of the total
population and (ii) fertility and death rates for individual ages. Even
this, which it will be noticed takes account of the instantancous detailed
structure of the population of individuals, has been recently shown to
be insufficient, for it is necessary to recognise the growing custom of
planning family size, and hence to try to follow family histories.22

Even when random fluctuations are neglected it is worth remem-
bering that they are still there, and that with smaller groups such as
some animal populations they may become a crucial factor. Popula-
tions are examples of what are called multiplicative stochastic processes,
for which fluctuations are cumulative in time. In appraising the possible
size of random fluctuations the statistician must therefore use the theory of
Sluctuations appropriate to the relevant stochastic process, and this may sometimes
be quite different from the ‘classical’ theory of fluctuations. Thus for popula-
tions with an expected balance of births and deaths relative fluctuations
will theoretically tend to be of order 4/(¢/n), in contrast with the classical
formula 4/(1/n), where ¢ is the time in generations and 7 the mean size
of population. For a human population of 50000 000 and a generation
time of] say, g0 years, this is still only of order 1/5 ooo after 60 years;
but for an animal population of 100 with a generation time of one year
it is of order 1/g after 10 years.

Stochastic Processes in Biology

This theory of population fluctuations is linked with a problem first
raised by Francis Galton at the end of the last century in connection
with the extinction of family surnames: if each male individual in a
population independently has a family containing 7z sons, where 7 is a
random number following some given distribution, and the sons in turn
each have a number of sons following the same distribution, what is the
chance of any particular male line becoming extinct ? The complete
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solution, first obtained by J. F. Steffensen, is a peculiar one. Suppose
the probability-generating function of the distribution of 7 is

G(z) = po+pz +p22+ . . .,

the probability that z = r being the coefficient p, of z* in G(z). Then
provided that p, # o (otherwise it is obvious that extinction could not
occur), the chance of ultimate extinction is the smallest root z, of the
equation

G(z) = z.

Moreover, this root z, is unity unless the average n is greater than unity;
~ even for the United States population in 1920, when the average value
of n was 1-145, it was shown by the American actuary Lotka from the
statistics of family sizes that the chance of extinction was still nearly o-g.
For example, if for G(z) he substituted the approximate expression
(0°482 — 0°0412)/(1 — 0°5592) the above equation became the quad-
ratic equation

0482 — 1-0412 + 0:5592% = (1 — 2)(0°482 — 0°5592) = o,
giving z, = 0°482/0-559 = 0-86.

This extinction problem* is important also in the theory of natural
selection, since # may alternatively be interpreted as the number of
mutant genes in one generation stemming from a mutant gene in the
last; as it is unlikely that even a favourable mutation will give an
average n much above unity, it will require many occurrences of any
such mutation before it is likely to become firmly established in the
population. ??

This last application reminds us that, since the theory of fluctuations
in populations is specially important for small populations, it is par-
ticularly relevant to all biological population problems involving
occasional mutations—the mutant individuals form at first a small
population however large the rest of the population may be.

A recent application of the theory of stochastic processes has been
to the study of fluctuations in bacterial populations. When the normal
bacterial type is placed in an unfavourable environment (for example,
a nutrient medium impregnated with bacteriophage) it is possible that
a mutant type will arise resistant to this environment. An alternative
hypothesis advanced by Sir Cyril Hinshelwood to account for the
survival of the bacteria in the new environment is that an actual
adaptation of the organism to the environment may lead to survival.
Whichever theory may be the correct one (and the latest evidence
suggests that neither theory alone is likely to be applicable to all

* For further historical references to this problem see D. G. Kendall’s paper ‘Stochastic
Processes and Population Growth.’® The ubiquity of the extinction problem is also indicated
(i) by its identification with the gambler’s ‘ruin’ in the historical problems referred to early
in this article, and (ii) by its relevance for the epidemiological model treated in the next
section,
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situations), a study and comparison with observation of the postulated
mechanism of growth is evidently necessary. This has been attempted
for the mutation theory, and a recent survey is given by Dr P,
Armitage. 28

Stochastic Processes in Medicine

So far I have been taking very much a ‘bird’s-eye view’ of stochastic
processes in relation to statistics, and the reader can justifiably complain
that the references to applications have been too brief to be other than
tantalising. Stochastic processes appear in many branches of medicine
also, for example in the study of nervous and cerebral activity or in the
study of possible mechanisms of carcinogenesis (see papers by Mc-
Culloch & Pitts, %! and Iverson & Arley39). It may, however, be more
helpful if I conclude with a single example from the medical field
treated in somewhat greater detail. In the discussion following an
admirable survey of statistical problems in medicine given at the 1951
Cambridge Conference of the Royal Statistical Society by N. T. J.
Bailey2® I mentioned the probable value of the ‘Monte Carlo method’
in epidemiological theory. We have seen that it is possible in the
growth of very large populations to neglect the stochastic element, but
if we do so for epidemics of infectious diseases, especially those whose
incidence in the population exhibits a quasi-periodic character, I
believe we are in danger of omitting an important factor in their
theoretical mechanism.

As an illustration I shall describe the results obtained in a series of
fictitious ‘measles epidemics,” generated with the aid of random num-
bers, under conditions simulating a partially isolated group such as a
boarding-school. Measles, although not usually a serious complaint,
is a favourite infectious disease for study among epidemiologists owing
to its relatively simple epidemic character; it confers permanent
immunity among almost all those attacked, who are mostly children
under the age of 15 (a useful summary of the epidemiology of measles
may be found in the late Professor Greenwood’s study of epidemics??).
Notifications are known to exhibit two comparatively stable statistical
features. The first is a tendency to biennial periodicity; for example,
for Manchester for the years 1917-51 this tendency is quite marked.
The second is a seasonal variation; in the case of Manchester for the
same years this ranged from 6o per cent. above the average at the
beginning of a calendar year to 60 per cent. below in the late summer.
It is, however, not at all easy to reconcile these two statistical facts.
One may investigate the theoretical consequences of a simple model in
which ‘susceptibles,’ i.e. children who have not yet contracted measles,
come in at a given rate and run a risk of infection proportional to the
number of infected children present. This model was first shown by
Sir William Hamer and later by H. E. Soper?®33 to be sufficient to
produce epidemic waves with a period in time of the right order of
magnitude. Unfortunately, in contradiction to what is observed, these
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waves damp down until an endemic steady state of infection is reached.
If we introduce a seasonal variation in infectivity, a 10 per cent. varia-
tion is amply sufficient to produce the observed seasonal variation in
notifications; it may be shown that the corresponding theoretical varia-
tion in numbers of infected comes out at about 8o per cent. But the
seasonal variation forces its own annual period on the waves, and the
longer natural period, which corresponds to the observed period, still
disappears. Dr Soper believed that the introduction of a definite
incubation period of a fortnight counteracted the damping effect but,
as first pointed out by E. B. Wilson and J. Worcester35, he was misled
by an inaccurate numerical method. From a study of the transmission
of infection in individual households Dr P. Stocks and Miss Mary Karn
were led to the hypothesis that some of the children exposed to risk
acquire a temporary immunity for about a year without visible con-
traction of the disease, and suggested that this could contribute to the
biennial periodic tendency by protecting unattacked children during
the danger period of the following year. But this amended model does
not appear on theoretical examination to eliminate the difficulty, and
I have begun to suspect that a way out from the dilemma must intro-
duce rather different ideas.

The common feature of the calculations on all these models has up
to recently been their straightforward actuarial basis, with no attempt
to incorporate the random or stochastic element. I shall refer to such
models as ‘deterministic’ models. But it may prove necessary to recog-
nise the essentially local and hence stochastic nature of infection
(random overall variation in infectivity due to weather, etc., will of
course also contribute), and on such a new basis continual ‘extinction’
and replenishment of infected individuals within small groups may
create a statistical balance with the damping tendency. In other words,
the endemic steady state cannot be attained because it is stockastically
unstable. To investigate this hypothesis for, say, an entire city is a tall
order, for it means studying the stochastic vicissitudes of infections in
our theoretical model, which must first be expanded to cover ade-
quately the geographical grouping. It is hoped in due course to carry
out such an investigation with the aid of the electronic computer, but
in the meantime I have compromised by investigating the similar but
simpler problem for a fictitious boarding-school, which is treated as an
effectively isolated group of children apart from the influx of children
at the beginning of each term.

The precise conditions assumed for the stochastic model are as
follows:

(1) Influx of Susceptibles. ,
‘Lent term’ (1st week) . e 7

‘Summer term’ (18th week) .. ey
‘Christmas term’ (36th week) .. 23

The numbers are intended to represent a typical case, with much the
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greatest influx at the beginning of the school year. It should be noted
that immune children are to be ignored.

(ii) Influx of Infectives. The entry of infection is assumed to occur by
an occasional one or two incoming susceptibles being already infected;
the actual number for any term is random, following a Poisson fre-
quency law, for convenience cut off at the value 3. The mean of this
distribution is taken proportional to the number of new entrants, but
some provisional assumption is also necessary about the seasonal pro-
portion of infectives in the population from which these new entrants
are drawn. It seems reasonable, in the absence of a complete stochastic
theory for the population outside the school, to base this on the annual
oscillations in numbers which follow, as already noted, from an
assumed seasonal variation in infectivity on the deterministic model.
However, it will be seen that the precise assumptions made about the
entry of infection are not very crucial provided that some new infection
is present from time to time. In the real situation the children would
of course not be completely isolated from the rest of the community
during term. Moreover, the actual dispersal of the children in the
vacations may not only introduce infection through these children but
will effectively terminate school epidemics at the end of each term. In
the model the vacations are entirely ignored.

(iii) Infectivity. The average infection rate per susceptible is as-
sumed to be A, = o-o1[1 4 o1 cos (2mr/52)] per infected person
per week, where r is the number of the week in the calendar year,
1st, 2nd, . . ., 52nd. This gives a maximum seasonal infectivity of
10 per cent. above the average at the beginning of the calendar year,
and a minimum of 10 per cent. below the average in the middle of the
year. The coefficient 0-01 corresponds roughly to the value 1/300 000
originally adopted by Hamer and Soper, based on rates for the increase
in numbers of susceptibles and incidence of infection for the whole of
London. Its value has been scaled by a factor of 3000 to be consistent
with the very much smaller group represented by a single school, the
average number of susceptibles being taken of the order 50 instead of
150 000. This leaves unaltered the approximate period of one and a
half years for the gradually damped-out oscillations which follow an
initial major epidemic in the deterministic model.

In the stochastic model the chance of infection in a small time-
interval 8¢ is taken to be A, N,S, 8, where N, is the number of infectious
children at any time ¢ (measured in weeks), and §, the number of
children susceptible to attack.

(iv) Recovery. The chance of ‘recovery,” by which is meant rather
non-infectivity, corresponds to an average infectivity period of a fort-
night. For simplicity it is assumed that the chance of recovery per
interval 8 is 8¢, and that an infected child is infectious all the time
until such recovery. The actual situation is more complicated; for
instance, part at least of the incubation period of about a fortnight is
non-infectious and this appears to lead in some local measles epidemics
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to a fortnightly periodic structure at the beginning of the epidemic;
but we cannot expect any such ‘fine-structure’ phenomena to appear
in our rather crude model. However, it is emphasised that the primary
object of the investigation is to examine the self-consistency and possible
broad appropriateness of the model; the above oversimplified pattern
of infection and recovery actually exaggerates, by a factor of about 2,
the damping of the epidemic waves in the deterministic model, but
this will not prejudice its relevance if, as in fact is the case, the damping
is eliminated in the stochastic model.

(v) Initial Conditions. An initial ‘epidemic’ was started with 100
susceptibles and 5 infectives, these rather arbitrary numbers ensuring,
with the high chance of about 0-97, that the artificial series began with
a major epidemic.

Complete details of the calculations will not be given, but the way
in which they were made can perhaps be indicated. With a process or
model developing continuously in time two methods of obtaining
artificial realisations of it are possible. With the first, the time is
divided up into small intervals and an approximate model proceeding
in terms of these small steps is used. This was the method by which
the random walk process referred to under the ‘Monte Carlo method’
could be used to obtain an approximate solution of the diffusion
equation, although this equation represents a continuous diffusion of
particles. This method is not very convenient for the epidemiological
problem, for events such as infections multiply rapidly when an epi-
demic is under way and may be few and far between in the quiescent
periods between epidemics. We want in effect our time-scale much
finer during an epidemic than at other times. It is therefore more
convenient to adopt the second method, in which we determine the
random interval between two consecutive events rather than the num-
ber of events in a given interval (cf. reference?®).

Thus the chance of an ‘event’ in a small interval 8¢ on the above

assumptions is
a 8t =\, N,S, 8¢t + 3N, 8t

where the first term on the right represents the chance of a new infec-
tion and the second the chance that the infectives drop by one. The
coefficient A, changes only slowly with time and may be treated as
temporally constant. N; and S;, apart from the influx at the beginning
of terms, cannot by definition change until the next ‘event’ has occurred,
and hence the coefficient a is effectively constant. It follows from the
theory developed earlier in this article that the chance that no event
occurs in the interval ¢ is the initial probability in a Poisson distribution
with mean at, viz. ¢ ~*. This defines the so-called ‘exponential distribu-
tion’ for the interval before a further event occurs, and if we write
T = at, it will be seen that the distribution of the standardised interval
T on this adjusted time-scale is independent of 2. We may thus choose
a random interval 7 by some convenient method, and then convert
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back to the real time scale ¢ by writing ¢ = T/a. The method actually
used to obtain random intervals was to take 7 = (X2 + 1?), where
X and 7 are random standardised normal or Gaussian variables avail-
able in published tables, but any other method of obtaining a random
quantity following the exponential distribution will of course do equally
well. At the end of the interval ¢ = T/a we still have to decide which
event has occurred, but since the relative odds of a new infection and
a recovery are A.S$;N;:iN, = 2A,5, : 1, we can write p = (2,5;)/
(1 + 2A,S;) and from reference to a table of ordinary random numbers
decide whether the event that has occurred is a new infection. Ifit is,
N goes up by one and §; down by one; if it is not, N, goes down by
one and S; up by one.

A further slight approximation is made at the beginning of each
term when, if the last interval goes past this daté when conditions
change, it is ignored and calculations made afresh from this date with
the new conditions. If at any stage N, drops to zero, no change can
of course occur until a new influx of children occurs.

The start of the calculations is shown in Table I covering the first
week, for which A, = o-o1100. The coefficient A, used is that pertain-
ing at the beginning of each week, and it is not changed until the next
week is reached. The number of new cases during the week is the
decrease in the number of susceptibles, viz. 7.

TABLE 1
Random Random t

Interval T @ T]a 4 Number (weeks) Ny St
8-000 o 5 | 100

1-291 25 0161 0688 2952
9534 0161 6 | 99

0077 45 0-008 0685 4167
11-046 0169 7 98

6-223 40 0-563 0683 2730
12:536 0732 8 | 97

0547 85 0044 0681 o560
14:004 0776 9 96

0210 85 0015 0679 2754
15450 0791 1o 95

0°370 00 0024 0676 5870
16-874 0-815 11 94

0°000 50 0°000 0674 9268
15°340 0-815 10 94

0276 25 0018 0674 2002
16-753 o833 | 11 93

0648 65 0°039 0672 9568
15230 0-872 10 93

2645 45 0174 0672 8243
1-046 9 93

By such calculations the mock epidemic series was generated con-
tinuously for a total ‘time’ of 13 years, during which six major outbreaks
were obtained with an average period between these epidemics of 125
weeks. The series was evidently ‘steady’ in the stochastic sense, with
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the last epidemics comparable in magnitude with the first. In addition
there were four minor outbreaks, in which the entry of infection led to
fresh cases but did not lead to a serious epidemic. The results are
summarised in Table II, and the course of the largest epidemic (the
fifth major epidemic) is shown in Fig. 3. It is stressed that these results
are not intended in any sense as a ‘fit’ to observed data, but statistics
for actual measles epidemics in boarding-schools3? appear to have
many similar features if we bear in mind all the further possible com-
plications we have ignored in our model.

TABLE II
Mock epidemic series—summary table
e Percentage
Oubresk | PeGiE ™ | s | Suceptibie
Major Epidemic
I I 98 87
2 105 72 83
3 244 88 85
4 365 67 76
5 504 11y 91
6 625 74 87
Minor Outbreak .
I 140 Vi 18
2 226 Vi 8
3 556 6 14
4 660 5 15
(On eight other occasions infection entered the ‘school’ but did not
lead to any fresh cases.)

The observed attack rate of presumed susceptibles in all the schools
ranged up to 77 per cent. with, however, not such a clear distinction
between major and minor outbreaks. (The actual seasonal incidence
in the five years covered by the MRG Report3? seems, specially
anomalous, with a higher incidence in the summer term than expected
from the average in the population at large or in the corresponding
mock series. But here it is again stressed that the extent to which the
observed statistics can deviate from the average depends on the
mechanism producing them,and for only a five-year period, especially
as the incidence in different schools is likely to be correlated, consider-
able fluctuations would be possible.)

To conclude, while it is certainly not claimed that the mechanism of
this simple model is sufficient to explain all the observed facts, it is
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hoped that this investigation will at least indicate the valie of stochastic
process models in epidemiological theory. In particular its results,
which may be supported by theoretical argument, clearly demonstrate
the possibility of a statistical balance between ‘extinction’ of infectives
in a local group and fresh infection from outside. The period will
partly depend on the ‘isolation’ of the local group, but in any case
a major epidemic cannot occur until the concentration of susceptibles has passed
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F1e. 3. Extract from mock epidemic series. This graph shows a major epidemic beginning

in the autumn of the second ‘school’ year shown and ending in the New Year. A minor

outbreak also occurs the following autumn. The dotted lines indicate the beginning of

terms, when there are a number of new entrants to the school; the arrows indicate dates
when infection also entered.

its critical threshold value. This critical density of susceptibles is not
altogether a new notion to epidemiologists but it is suggested that only
with the stochastic approach, in which a smaller density ensures local
extinction, can it acquire proper theoretical justification.

I am greatly indebted to Mrs A. Linnert for carrying out the detailed
computation for the artificial epidemic series.
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