
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [Lima Neto, Eufrásio de Andrade]
On: 8 April 2011
Access details: Access Details: [subscription number 936098923]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Journal of Statistical Computation and Simulation
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713650378

Bivariate symbolic regression models for interval-valued variables
Eufrásio de A. Lima Netoa; Gauss M. Cordeirob; Francisco de A. T. de Carvalhoc

a Departamento de Estatística, Universidade Federal da Paraíba, João Pessoa (PB), Brazil b

Departamento de Estatística e Informática, Universidade Federal Rural de Pernambuco, Recife (PE),
Brazil c Centro de Informática, Universidade Federal de Pernambuco, Recife (PE), Brazil

First published on: 07 April 2011

To cite this Article Lima Neto, Eufrásio de A. , Cordeiro, Gauss M. and de Carvalho, Francisco de A. T.(2011) 'Bivariate
symbolic regression models for interval-valued variables', Journal of Statistical Computation and Simulation,, First
published on: 07 April 2011 (iFirst)
To link to this Article: DOI: 10.1080/00949655.2010.500470
URL: http://dx.doi.org/10.1080/00949655.2010.500470

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713650378
http://dx.doi.org/10.1080/00949655.2010.500470
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Journal of Statistical Computation and Simulation
iFirst, 2011, 1–18

Bivariate symbolic regression models for
interval-valued variables

Eufrásio de A. Lima Netoa*, Gauss M. Cordeirob and Francisco de A.T. de Carvalhoc

aDepartamento de Estatística, Universidade Federal da Paraíba, Centro de Ciências Exatas e da
Natureza, Cidade Universitária, s/n, CEP 58051-900 João Pessoa (PB), Brazil; bDepartamento de

Estatística e Informática, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de
Medeiros s/n, Dois Irmãos, CEP 52171-900 Recife (PE), Brazil; cCentro de Informática,
Universidade Federal de Pernambuco, Av. Prof. Luiz Freire, s/n, Cidade Universitária,

CEP 50740-540 Recife (PE), Brazil

(Received 29 September 2009; final version received 8 June 2010 )

Interval-valued variables have become very common in data analysis. Up until now, symbolic regression
mostly approaches this type of data from an optimization point of view, considering neither the proba-
bilistic aspects of the models nor the nonlinear relationships between the interval response and the interval
predictors. In this article, we formulate interval-valued variables as bivariate random vectors and introduce
the bivariate symbolic regression model based on the generalized linear models theory which provides
much-needed exibility in practice. Important inferential aspects are investigated. Applications to synthetic
and real data illustrate the usefulness of the proposed approach.

Keywords: bivariate symbolic regression method; generalized linear model; deviance; interval-valued
data; residual analysis; symbolic data analysis

1. Introduction

Symbolic data analysis (SDA) has been introduced as a domain related to multivariate analysis,
pattern recognition and artificial intelligence in order to introduce new methods and to extend
classical data analysis techniques and statistical methods to symbolic data [1–3]. In SDA, a variable
can assume as a value an interval from a set of real numbers, a set of categories, an ordered list of
categories or even a histogram. These new variables could take into account the variability and/or
uncertainty presented in the data.

Interval-valued variables have been mainly studied in the area of SDA, where very often an
object represents a group of individuals and the variables used to describe it need to assume a value
which express the variability inherent to the description of a group. Moreover, interval-valued
data arise in practical situations such as recording monthly interval temperatures in meteorological
stations, daily interval stock prices, among others. Another source of interval data is the aggre-
gation of huge databases into a reduced number of groups, the properties of which are described
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2 Lima Neto et al.

by symbolic interval-valued variables. Therefore, tools for interval-valued data analysis are very
much required.

Nowadays, different approaches have been introduced to analyse interval-valued data. In
the field of SDA, several suitable tools for managing interval-valued data have been discussed in
the literature. Bertrand and Goupil [4] and Billard and Diday [5] introduced central tendency and
dispersion measures suitable for interval-valued data. De Carvalho [6] proposed histograms for
interval-valued data. Concerning factorial methods, Cazes et al. [7] and Lauro and Palumbo [8]
proposed principal component analysis methods suitable for interval-valued data. Palumbo and
Verde [9] and Lauro et al. [10] generalized factorial discriminant analysis to interval-valued data.
Concerning interval-valued time series, Maia et al. [11] have introduced autoregressive integrated
moving average (ARIMA), artificial neural network (ANN) as well as a hybrid methodology that
combines both ARIMA and ANN models in order to forecast interval-valued time series. Other
contributions in the SDA field were proposed by Groenen et al. [12] and Ichino et al. [13],
among others.

SDA provides a number of clustering methods for symbolic data. These methods differ with
regard to the type of symbolic data considered, their cluster structures and/or the clustering criteria
adopted [14–18]. More recently, De Carvalho [19] introduced adaptive and nonadaptive fuzzy c-
means clustering methods for partitioning interval-valued data as well as (fuzzy) cluster and
partition interpretation tools.

In the regression analysis of quantitative data, the items are usually represented as a vector
of quantitative measurements [20–22]. The generalized linear models (GLMs) represent a major
synthesis of regression models by allowing a wide range of types of response data and explanatory
variables to be handled in a single unifying framework. These models are based on the exponential
family of distributions and represent a very important regression tool due to their flexibility
and applicability in practical situations [23]. However, due to recent advances in information
technologies, it is now common to record interval-valued data. Concerning the regression analysis,
Billard and Diday [24] presented the first approach to fit a linear regression model on interval-
valued data sets. Their approach consists of fitting a linear regression model on the midpoint of the
interval values assumed by the variables in the learning set and to apply this model on the lower
and upper boundaries of the interval values of the explanatory variables to predict, respectively,
the lower and upper boundaries of the interval values of the dependent variable. Lima Neto and
De Carvalho [25] improved the former approach by presenting a new method based on two linear
regression models, the first regression model over the midpoints of the intervals and the second
one over the ranges, which reconstruct the boundaries of the interval-values of the dependent
variable in a more efficient way when compared with Billard and Diday’s method. Alfonso et
al. [26] extended the regression model methodology in order to include taxonomy variables as
predictor variables and to take into account hierarchical structures between symbolic variables.
Maia and De Carvalho [27] introduced a least absolute deviation regression model, based on a
new optimization criterion, suitable for managing interval-valued data.

Despite some recent valuable contributions in regression models for interval-valued data, the
usual regression models attack the problem from an optimization point of view and do not take
into account the random nature of the response variable. In this way, the lack of a probabilistic
distribution for the response interval-valued variable has made the use of inference techniques
over the parameter estimates impossible like, for example, hypothesis tests, residual analysis and
diagnostic measures. Another important aspect about the actual symbolic regression methods is
that they do not consider nonlinear relationships between the response interval-valued variable
and the explanatory interval-valued variables.

In this article, we consider an interval-valued variable assumed to be a bivariate random vec-
tor having a joint probability density function belonging to the bivariate exponential family of
distributions. Special cases of the bivariate exponential family are the bivariate Gaussian and
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the bivariate gamma distributions [28]. The symbolic regression models proposed by Billard and
Diday [24] and Lima Neto and De Carvalho [25] do not guarantee mathematical coherence for
the predicted values of the interval boundaries (ŷL ≤ ŷU ). In order to tackle this problem, we
propose bivariate symbolic regression models (BSRM) based on the GLM framework with the
random component having the bivariate exponential family of distributions and link functions that
guarantee mathematical coherence for the interval boundaries. Further, we propose goodness-of-
fit measures, a new definition of residuals for interval and inference techniques such as residual
analysis and diagnostic measures. Alternative ways are discussed for estimating the coefficient of
correlation ρ and the dispersion parameter φ (see [29] for more details concerning the relevance
of these problems).

The article is organized as follows. Section 2 reviews the bivariate exponential family of distri-
butions and some of its properties. Section 3 introduces a BSRM based on the GLM framework
with different vectors of linear parameters. We also discuss the Fisher scoring method to estimate
the linear parameters of the model and alternatives methods to estimate the dispersion parameter
and the coefficient of correlation. We also provide the goodness-of-fit statistics, residuals and
leverage measures. Section 4 introduces another BSRM model with a common vector of linear
parameters. Section 5 presents a comparative study with the methods proposed by Billard and
Diday [24] and Lima Neto and De Carvalho [25] in terms of synthetic and real interval-valued
data sets. Section 6 ends with some concluding remarks.

2. Probabilistic background

Let Y = {y1, . . . , yn} be a set of observations that represents a random sample of the interval-
valued variable Y . Each observation yi = [yLi, yUi] ∈ Y is defined as an interval y ∈ � =
{[yL, yU ] : yL, yU ∈ �, yL ≤ yU } and represents the observed value of the interval variable Y . An
interval of real values is an infinity list of values and it is difficult to take into account the whole
information inside it. Despite the loss of information, we consider an interval-valued variable Y

as a two-dimensional or a bivariate quantitative feature vector yi = (y1i , y2i ), where the variables
Y1 and Y2 are one-dimensional random variables representing, for example, the lower and upper
boundaries or the midpoint and half-range of the intervals or any other pair of interval features
possible to be represented.

Consider that the joint density probability function of the bivariate quantitative feature vector
yi = (y1i , y2i ) belongs to the bivariate exponential family of distributions [28,29] defined by

f (y; θ) = exp[φ−1{y1θ1 + y2θ2 − b(θ1, θ2, ρ)} + c(y1, y2, ρ, φ)], (1)

where θ = (θ1, θ2) is the vector of canonical parameters, φ is a common dispersion parameter
and ρ is a constant correlation parameter between these two random variables. We assume that
the functions b(·, ·, ·) and c(·, ·, ·, ·) are known. The function b(·, ·, ·) is the cumulant generating
function of Equation (1) and the mean and variance of the bivariate random vector Y = (Y1, Y2)

can be obtained from well-known equations of natural exponential families.
The bivariate exponential family of distributions has important properties for the expected

value, variance–covariance matrix and a direct relation with the GLM framework. All these
characteristics will be considered here to fit a symbolic regression model with probabilistic
assumptions.

Let yi = (y1i , y2i ) for i = 1, . . . , n be independent observations taken from Equation (1). The
log-likelihood function for the ith observation can be written as

li = li(θ, φ, ρ) = φ−1{y1iθ1 + y2iθ2 − b(θ1, θ2, ρ)} + c(y1i , y2i , ρ, φ). (2)

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
L
i
m
a
 
N
e
t
o
,
 
E
u
f
r
á
s
i
o
 
d
e
 
A
n
d
r
a
d
e
]
 
A
t
:
 
1
1
:
4
6
 
8
 
A
p
r
i
l
 
2
0
1
1



4 Lima Neto et al.

The mean of the random variable Y1 can be easily obtained from the well-known relationship

E

(
∂l

∂θ1

)
= E

(
y1 − ∂b/∂θ1

φ

)
= μ1 − ∂b/∂θ1

φ
= 0,

and then μ1 = ∂b/∂θ1 = b(1), where b = b(θ1, θ2, ρ) and from now on, the superscripts (1)

and (2) indicate derivatives with respect to the canonical parameters θ1 and θ2, respectively.
Analogously, the mean of Y2 is μ2 = ∂b/∂θ2 = b(2).

The mean parameters μ1 and μ2 are functions of the canonical parameters θ1 and θ2 and of
the correlation parameter ρ. Hence, the canonical parameters are also functions of the mean
parameters μ1 and μ2 and ρ, say

θi = qi(μ1, μ2, ρ)

for i={1,2}. The variance of the random variable Y1 is obtained from the identity

E

(
∂2l

∂θ2
1

)
+ E

(
∂l

∂θ1

)2

= −∂2b/∂θ2
1

φ
+ Var(Y1)

φ2
= 0

and then

−b(11)

φ
+ Var(Y1)

φ2
= 0,

which gives

Var(Y1) = φb(11).

In the same way, the variance of the random variable Y2 is Var(Y2) = φb(22).
The covariance between the random variables Y1 and Y2 follows from the regularity condition

E

(
∂2l

∂θ1∂θ2

)
+ E

(
∂l

∂θ1

∂l

∂θ2

)
= 0

and then

Cov(Y1, Y2) = φb(12).

Hence, the covariance matrix of Y can be written as

� = φ

[
b(11) b(12)

b(21) b(22)

]
= φ

[
V (1) V (12)

V (21) V (2)

]
,

where V (j) is the variance function of the random variable Yj and V (jk) is the covariance function
between the random variables Yj and Yk , for j, k = 1, 2.

3. Bivariate symbolic regression model 1

Initially, we consider an interval-valued random variable Y represented by a pair of intervals
features (Y1, Y2) such as the lower and upper bounds (YL, YU) or the midpoint and half-range
(Ym, Y r) or any other pair of interval features. Then, we consider that this pair of interval features
(Y1, Y2) belongs to a bivariate joint distribution. The choice of the bivariate exponential family
of distributions allows us to extend the GLM framework for the case of interval-valued variables.
Methods based on the midpoint and range of intervals have been discussed in the literature.
D’Urso and Gastaldi [30] suggested that the dependence between the centre and the range is often
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Journal of Statistical Computation and Simulation 5

encountered in real-world applications. Particularly, in the SDA field, Lauro and Palumbo [8]
discussed that some principal component approaches are based on midpoint of intervals, and
Maia and De Carvalho [27] proposed a time series model for interval-valued data, taking into
account the midpoint and range of the intervals. Thus, the BSRM presented here can be easily
defined in terms of any pair of interval features (Y1,Y2) – for example, the lower and upper
boundaries of the interval-valued variable (Section 5).

Let E = {e1, . . . , en} be a set of examples that are described by p + 1 interval-valued
variables Y , T1, . . . , Tp. The interval-valued variable Y is a dependent variable and it is
related to a set of interval-valued variables Tj (j = 1, 2, . . . , p), known as independent vari-
ables. Each example ei ∈ E (i = 1, . . . , n) is denoted by an interval quantitative feature vec-
tor (ti , yi), with ti = (ti1, . . . , tip), where tij = [aij , bij ] ∈ � = {[a, b] : a, b ∈ �, a ≤ b}(j =
1, . . . , p) and yi = [yLi, yUi] ∈ � are the observed values of Tj and Y , respectively.

Now, let Y1, X1j and Y2, X2j (j = 1, 2, . . . , p) be the quantitative variables that represent
the lower and upper bounds or the midpoints and the half-range of the intervals defined by the
interval-valued variables Y and Tj , respectively.

In case where the quantitative variables, Y1, X1j and Y2, X2j (j = 1, 2, . . . , p) represent,
respectively, the lower and upper boundaries of the interval variables Y and Tj , each example ei ∈
E (i = 1, . . . , n) will be denoted by two vectors: (xL

i , yL
i ) and (xU

i , yU
i ), with xL

i = (xL
i1, . . . , x

L
ip)

and xU
i = (xU

i1, . . . , x
U
ip), where xL

ij = aij , xU
ij = bij , yL

i = yLi and yU
i = yUi are the observed

values of the quantitative variables XL
j , XU

j , YL and YU , respectively.
In the same way, for the case where the quantitative variables Y1, X1j and Y2, X2j (j =

1, 2, . . . , p) represent, respectively, the midpoint and half-range of the interval variables Y and
Tj , each example ei ∈ E (i = 1, . . . , n) will be denoted by the vectors (xm

i , ym
i ) and (xr

i , y
r
i ),

with xm
i = (xm

i1, . . . , x
m
ip) and xr

i = (xr
i1, . . . , x

r
ip), where xm

ij = (aij + bij )/2, xr
ij = (bij − aij )/2,

ym
i = (yLi + yUi)/2 and yr

i = (yUi − yLi)/2 are the observed values of the variables Xm
j , Xr

j , Ym

and Y r , respectively.
Following the GLM framework, we consider a BSRM1 with probabilistic support defined by

two components (a random component and a systematic component) to model interval-valued
data. The random component considers the bivariate random vector

Y =
[
Y1

Y2

]
,

having the bivariate exponential family (1). In the systematic component, the explanatory variables
X1j and X2j (j = 1, 2, . . . , p) are responsible for the variability of Y1 and Y2, respectively, and
they are defined by

η1 = g1(μ1) = X1β1 and η2 = g2(μ2) = X2β2, (3)

where X1 and X2 are known model matrices formed by the observed values of the variables X1j

and X2j , respectively, β1 and β2 are vectors of parameters to be estimated, η1 and η2 are the
linear predictors, μ1 and μ2 are the mean of the response variables Y1 and Y2, respectively, with
η1 = (η11 , . . . , η1n

)T, μ1 = (μ11 , . . . , μ1n
)T and β1 = (β10 , . . . , β1p

)T. In the same way, we have
η2 = (η21 , . . . , η2n

)T, μ2 = (μ21 , . . . , μ2n
)T and β2 = (β20 , . . . , β2p

)T. Here, g1(μ1) and g2(μ2)

are well-known link functions that connect the mean of the response variables Y1 and Y2 with the
explanatory variables X1j and X2j (j = 1, . . . , p), respectively.

In the BSRM1, it is possible to choose different link functions. A few functions available for
the BSRM are identity, logarithmic, inverse, power, among others. However, some link functions
have particular properties and may be preferred in some situations. For example, if we consider
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6 Lima Neto et al.

the half-range of intervals in the random component, the logarithmic link function will guar-
antee positiveness for the predicted values of ŷr

i (ŷr
i > 0) and this result implies that ŷL

i ≤ ŷU
i ,

i = 1, . . . , n.

3.1. Parameter estimation

The maximum-likelihood method will be used as a theoretical basis for parameter estimation
in the BSRM1. For maximizing the log likelihood, we first assume that ρ is fixed and then
obtain the likelihood equations for estimating β1 and β2. Both vectors can be estimated without
the knowledge of φ. In principle, φ could also be estimated by maximum likelihood although
there may be practical difficulties associated with this method for some bivariate distributions in
Equation (1). Next, we give a simple way to estimate φ based on the deviance of the model.

An algorithm for estimating these vectors of linear parameters can be developed from the scoring
method. Differentiating the total log likelihood (2) yields the score functions for β1 and β2

U(β1j ) = ∂l(β1, β2)

∂β1j

= 1

φ

n∑
i=1

(y1i − b
(1)
i )

∂θ1

∂β1j

= 1

φ

n∑
i=1

(y1i − μ1i )
1

V
(1)
i g′

1(μ1i )
x1ij

and

U(β2j ) = ∂l(β1, β2)

∂β2j

= 1

φ

n∑
i=1

(y2i − b
(2)
i )

∂θ2

∂β2j

= 1

φ

n∑
i=1

(y2r − μ2i )
1

V
(2)
i g′

2(μ2i )
x2ij

.

In matrix notation, the score functions are

U(β1) = (X1)
TW1z1 and U(β2) = (X2)

TW2z2, (4)

where W1 and W2 are diagonal weighted matrices with corresponding elements

w1i = [V (1)
i g′

1(μ1i )
2]−1 and w2i = [V (2)

i g′
2(μ2i )

2]−1,

and z1 and z2 are modified dependent variables related to y1 and y2 given by

z1 = G1(y1 − μ1) and z2 = G2(y2 − μ2),

where G1 = diag{g′
1(μ11), . . . , g

′
1(μ1n

)} and G2 = diag{g′
2(μ21), . . . , g

′
2(μ2n

)} are n × n diago-
nal matrices.

The expected value of the svth component of the information matrix for the vector of parameters
β1 is

κ1(s,v) = −E

[
∂2β1

∂β1s∂β1v

]
= E

[
∂l(β1)

∂β1s

∂l(β1)

∂β1v

]
= E[U(β1s)U(β1v)].

In matrix notation, the information matrices for β1 and β2 can be written as

K1 = φ−1(X1)
TW1X1 and K2 = φ−1(X2)

TW2X2.

From the information matrices and Equations (4), we can use the scoring method to obtain the
conditional maximum-likelihood estimates (MLEs) of β1 and β2 for a given ρ. We have

β(k+1) = β(k) + (XTW(k)X)−1XTW(k)z(k), (5)
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where

β(k+1) =
[
β

(k+1)
1

β
(k+1)
2

]
, X =

[
X1 0

0 X2

]
,

W(k) =
[

W(k)
1 0

0 W(k)
2

]
and z(k) =

[
z(k)

1

z(k)
2

]
.

Equations (5) have the same form of the estimating equations for the GLMs. In general terms,
we regress the modified dependent variable z(k) on the local model matrix X by taking W(k) as a
modified weighted matrix. At k = 1, an initial approximation β(1) could be used to evaluate W(1)

and z(1) from which Equations (5) yield the next estimate β(2). Hence, we update W(2) and z(2),
and so the iterations continue until the convergence is achieved and then the conditional MLE β̂

is obtained. In general, the convergence speed is fast, but it strongly depends on the choice of the
initial value β(1).

3.2. Goodness-of-fit measures

Conditioned on the parameter ρ, the discrepancy of a BSRM1 can be defined as twice the dif-
ference between the maximum log likelihood achievable and that achieved for the model under
investigation. The discrepancy is known as the deviance of the current model and has the form
of a genuine GLM deviance, since it is a function of the data only and of the MLEs μ̂1i and μ̂2i ,
for i = 1, . . . , n, which are calculated from the data. Hence, the deviance conditioned on ρ, say
D(ρ), can be written as

D(ρ) = 2
n∑

i=1

{y1i[q1(y1i , ρ) − q1(μ̂1i , ρ)] + y2i[q2(y2i , ρ) − q2(μ̂2i , ρ)]

+ [b(q1(μ̂1i , ρ), q2(μ̂2i , ρ), ρ) − b(q1(y1i , ρ), q2(y2i , ρ), ρ)]}. (6)

Another measure of discrepancy of easy interpretation of a BSRM1 is the generalized Pearson
X2 statistic (defined conditioned on the parameter ρ) by

X2(ρ) =
n∑

i=1

[
(y1i − μ̂1i )

2

V (μ̂1i )
+ (y2i − μ̂2i )

2

V (μ̂2i )

]
.

Maximum-likelihood estimation of the dispersion parameter φ directly is a more difficult prob-
lem than the estimation of β and the complexity depends entirely on the functional form of the
function c(y1, y2, ρ, φ). For some BSRMs, the MLE of the dispersion parameter could be very
complicated, but we can use a method of deviance estimator to obtain a consistent estimate of the
dispersion parameter φ from the estimates β̂1 and β̂2 obtained from Equation (5), with dimen-
sions p1 × 1 and p2 × 1, respectively. The deviance can be approximated by a χ2

ν distribution
with ν = 2n − (p1 + p2) degrees of freedom, which leads to a simple estimate of φ

φ̃ = D(ρ)

2n − (p1 + p2)
, (7)

based on the fact that the deviance can be approximated by a chi-squared distribution.
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8 Lima Neto et al.

Substituting the estimates β̂1, β̂2 and φ̃ in Equation (2) yields the profile log likelihood for the
parameter ρ

lp(ρ) = φ−1
n∑

i=1

{y1i θ̂1 + y2i θ̂2 − b(θ̂1, θ̂2, ρ)} +
n∑

i=1

c(y1i , y2i , ρ, φ̃). (8)

In the next step, the procedure calculates the profile log likelihood lp(ρ) in Equation (8) for
a trial series of values of ρ ∈ [−1, 1] and determines numerically the value of the estimate ρ̂

that maximizes lp(ρ). Once the estimate ρ̂ is obtained, it can be substituted into the algorithm
(5) to produce the new conditional estimate β̂ and then substituting in Equation (7) to obtain a
new estimate φ̃. The new values of β̂ and φ̃ can update ρ̂, and so the iterations continue until
convergence is observed. In other words, we use a see-saw algorithm for maximizing the log
likelihood. Holding ρ as a prior constant at the current estimate, the estimate of β̂ is obtained
from Equation (5) and the estimate of φ̃ comes from Equation (7). Holding β̂ and φ̃ fixed at the
current estimates, the estimate of ρ is obtained by maximizing Equation (8). Cycling between
holding both β̂ and φ̃ fixed and holding ρ fixed will lead to the unconditional estimates of β, φ

and ρ. The joint iterative process of estimating these parameters can be carried out by standard
statistical software such as MATLAB, S-PLUS, R and SAS.

3.3. Residuals and diagnostic measures

In this section, we present some residual definitions and diagnostic measures that are useful for
making inferences about the response distribution, identify outliers, among others aspects. An
important contribution in this section is a unique residual definition for an interval-valued data.
Usually, the residuals are defined separately for each boundary of the interval.

The projection matrix H for the BSRM1 takes the form

H = W1/2X(XTWX)−1XTW1/2, (9)

which is equivalent to replacing X by W1/2X, which effectively allows for the change in variance
with the mean. Here,

H =
[
H1 0
0 H2

]
, X =

[
X1 0
0 X2

]
and W =

[
W1 0
0 W2

]
.

The well-known measure of leverage is given by the diagonal elements of the projection matrix.
The leverage measures of the vector yi = (y1i , y2i ) can be represented by the diagonal elementsh1ii

and h2ii
of the matrices H1 and H2, respectively. However, the matrix H depends on the explanatory

variables, the link and variance functions, making the interpretation of these measures much
more difficult. We have

∑
i h1ii

= p1 and
∑

i h2ii
= p2. Hence, the interval-valued observations

for the response variable Y with high leverage are indicated by hi = (h1ii
+ h2ii

) greater than
2(p1 + p2)/n. An index plot of each hi versus i with this lower limit could be an useful informal
tool for looking at leverage.

Some residual measures commonly used in the GLM theory can be easily extended to BSRM1.
The residual related to the ith vector of observations (y1i , y2i ) can be composed by two parts: the
residual for the observation y1i and the residual for the observation y2i . The Pearson residual is
given by

rP
1i = y1i − μ̂1i√

V̂1i

and rP
2i = y2i − μ̂2i√

V̂2i

. (10)
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The Studentized Pearson residual which has a constant variance when φ → 0 can be expressed as

rSP
1i = y1i − μ̂1i√

V (μ̂1i )(1 − ĥ1ii
)

and rSP
2i = y2i − μ̂2i√

V (μ̂2i )(1 − ĥ2ii
)

. (11)

Notice that the Pearson and Studentized Pearson residuals denote the discrepancy between the
observed and predicted values for each boundary of the interval, separately.

On the other hand, the deviance residual can be interpreted as a joint residual measure or a
global residual measure for the vector of observations (y1i , y2i ). The ith deviance residual is
defined in terms of the square root of the contribution of the ith observation to the deviance (6).
Conditioned on ρ, the deviance residual can be expressed as

rD
i = sign[(y1i − μ̂1i ) + (y2i − μ̂2i )]

√
di, (12)

where

di = 2{y1i[q1(y1i , ρ) − q1(μ̂1i , ρ)] + y2i[q2(y2i , ρ) − q2(μ̂2i , ρ)]
+ b(q1(μ̂1i , ρ), q2(μ̂2i , ρ), ρ) − b(q1(y1i , ρ), q2(y2i , ρ), ρ)}.

An overall measure of the influence of the ith vector of observations on the parameter estimates
is the scaled-likelihood distance that can be defined similar to the GLMs [31] as

LDi = 2

p
{l(β̂) − l(β̂(i))}, (13)

where β̂ is the estimate with all vector points and β̂(i) is obtained when the ith vector is deleted.
Following [32], we can expand Equation (13) in Taylor series to rewrite this expression in terms
of the generalized Cook distance. Hence, the generalized Cook distance for the BSRM1 in order
to measure the influence of the ith vector (y1i , y2i ) can be defined by

Di = D1i + D2i , (14)

where

D1i = h1ii

p1(1 − h1ii
)
(rP

1i )
2 and D2i = h2ii

p2(1 − h2ii
)
(rP

2i )
2.

Values of Di higher than χ2
p1+p2,α

/(p1 + p2) can be considered influential, where χ2
p1+p2,α

is the
upper 100(1 − α)% point of the χ2

p1+p2
distribution.

4. Bivariate symbolic regression model 2

The BSRM2 takes the random component following Equation (1) and considers the same vector
of linear parameters in the systematic component given by

η1 = g1(μ1) = X1β and η2 = g2(μ2) = X2β, (15)

where X1 and X2 are known model matrices, β = (β0, . . . , βp)T is the vector of parameters to be
estimated, η1 and η2 are the linear predictors and μ1 and μ2 are the mean of the response variables
Y1 and Y2, respectively, with the same dimensions as defined in Section 3.
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10 Lima Neto et al.

The jth component of the score function U(β) for the common vector of parameters β is given by

U(βj ) = ∂l(β)

∂βj

= 1

φ

n∑
i=1

[
(y1i − b

(1)
i )

∂θ1

∂μ1

∂μ1

∂η1

∂η1

∂βj

+ (y2i − b
(2)
i )

∂θ2

∂μ2

∂μ2

∂η2

∂η2

∂βj

]
,

= 1

φ

n∑
i=1

[
(y1i − μ1i )

x1ij

V
(1)
i g′

1(μ1i )
+ (y2i − μ2i )

x2ij

V
(2)
i g′

2(μ2i )

]
.

In matrix notation, the score functions reduce to

U(β) = (X1)
TW1z1 + (X2)

TW2z2, (16)

where W1 and W2 are diagonal weighted matrices, and z1 and z2 are modified dependent variables
related to y1 and y2, respectively, as defined in Section 3.1. The information matrix for β is

K = 1

φ
[(X1)

TW1X1 + (X2)
TW2X2]. (17)

The scoring method to obtain the MLE of β becomes

β(k+1) = β(k) + (X̃
T
W(k)X̃)−1X̃

T
W(k)z(k), (18)

where

X̃ =
[

X1

X2

]
, W(k) =

[
W(k)

1 0

0 W(k)
2

]
and z(k) =

[
z(k)

1

z(k)
2

]
.

4.1. Model checking and residuals

The formulae derived in Section 3 for the deviance of a BSRM1 and to estimate the dispersion
parameter φ can be applied for the systematic component (15). Further, the computational proce-
dure to estimate ρ and the see-saw algorithm are still valid here. However, the projection matrix
H now reduces to

H̃ = W1/2X̃(X̃
T
WX̃)−1X̃

T
W1/2, (19)

where

X̃ =
[

X1

X2

]
and W =

[
W1 0
0 W2

]
.

The leverage measure for the ith vector (y1i , y2i ) is defined by the element h̃i = (h̃1ii
+ h̃2ii

),
where h̃1ii

and h̃2ii
are obtained directly from the matrix H̃. We have

∑
i h̃i = ∑

i (h̃1ii
+ h̃2ii

) = p.
Hence, we can consider an interval-valued observation with a high leverage measure when h̃i is
greater than 2p/n. Unlike the expression (9), the projection matrix H̃ in Equation (19) is not a
block-diagonal matrix.

The formulae for the Pearson, Studentized Pearson and deviance residuals given in Section 3.3
continue to hold here by replacing h by h̃. The same occurs with the influence measure Di .
However, we now consider influential observations for which the values of Di are higher than
those of χ2

2p,α/(2p).
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5. Numerical study and applications

To show the usefulness of the proposed models, experiments with synthetic interval-valued data
sets are now presented. The prediction performance of the BSRMs will be compared with the
methods proposed by Billard and Diday [24] and Lima Neto and De Carvalho [25] for these
interval data sets. The performance assessment of these approaches will be compared in terms
of the root mean-square error for each interval boundaries in a K-fold cross-validation scheme.
A statistical nonparametric hypothesis test will be applied to measure the statistical difference
between the models fitted to interval-valued data sets. Finally, the models will be fitted to real
interval-valued data and their performance will be compared.

5.1. Synthetic interval-valued data sets

Consider standard quantitative data sets with n = 300 points. Each data set is partitioned into 10
disjoint subsets. The learning set is composed by nine disjoint subsets and the test set by the last
one. Each data point belonging to the standard data set is a seed for an interval data. Thus, the
interval-valued data sets are obtained from these standard data sets.

The construction of the standard data sets and the corresponding interval-valued data sets are
carried out in the following steps:

(s1) Let us suppose that each explanatory variable Xm
j (j = {1, 3}) is normally distributed with

mean 30 and standard deviation 1; at each iteration, n values of each variable Xm
j are randomly

selected.At this step, the midpoint of the explanatory interval-valued variables are generated.
(s2) Let us suppose that each explanatory variable Xr

j (j = {1, 3}) is normally distributed with
mean 10 and standard deviation 0.5; at each iteration, n values of each variable Xr

j are
randomly selected. At this step, the ranges of the explanatory interval-valued variables are
generated.

(s3) The linear predictor for the midpoints of intervals is defined in terms of the explanatory
variables Xm

j according to ηm
i = βm

0 + ∑{1,3}
j=1 βm

j xm
ij , where βm

j ∼ U [0.9, 1.1]. In the same
way, the linear predictor for the ranges of the intervals is defined in terms of the explanatory
variables Xr

j according to ηr
i = βr

0 + ∑{1,3}
j=1 βr

j x
r
ij , where βr

j ∼ U [0.9, 1.1].
(s4) Let us suppose that the link functions that connect the mean of the response variables with the

linear predictors are identity functions for the midpoint (μm = ηm) and the range (μr = ηr ).
(s5) Consider that each component (ym

i , yr
i )of the random vector (Ym, Y r)belongs to the bivariate

normal distribution with mean μ = (ηm
i , ηr

i )
T and variance–covariance matrix � given by

σm =
√

σ 2
ηm , σ r =

√
σ 2

ηr and cov(Ym, Y r) = ρσmσ r .

(s6) The interval-valued data set is partitioned into learning (nine disjoint subsets) and test (one
disjoint subset) data sets in a 10-fold cross-validation scheme.

5.2. Experimental evaluation

The performance assessment of the BSRMs and the methods proposed by Billard and Diday [24]
and Lima Neto and De Carvalho [25] will be based on the following measures, evaluated in the
test interval-valued data sets: the lower boundary root mean-square error (RMSEL) and the upper
boundary root mean-square error (RMSEU ). These measures, calculated from the observed values
yi = [yLi, yUi] of Y and their corresponding predicted values ŷi = [ŷLi, ŷUi], are defined by

RMSEL =
√∑n

i=1(yLi − ŷLi)2

n
and RMSEU =

√∑n
i=1(yUi − ŷUi)2

n
. (20)
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12 Lima Neto et al.

These measures are determined for each method in a 10-fold cross-validation scheme with 10
replications, for each number of explanatory variables (p = {1,3}) and values for the correlation
coefficient (ρ = {0.00, 0.50, 0.75, 0.95}). At each fold and replication, we fit a symbolic regres-
sion model in the training interval-valued data set by considering the BSRMs and the methods
proposed by Billard and Diday [24] and Lima Neto and De Carvalho [25]. Thus, the fitted regres-
sion models are used to predict the interval values of the variable Y in the test interval-valued
data set and these measures are calculated. For each measure, the Mann–Whitney nonparametric
statistical test is applied to compare the prediction performance between the BSRMs and the
methods proposed by Billard and Diday [24] and Lima Neto and De Carvalho [25].

For any two compared methods (A and B, in this order) concerning the RMSEL and RMSEU

measures (the higher the measures, the worse the method), the null and alternative hypotheses
are structured as: H0 : Method A = Method B versus H1: Method A ≤ Method B. We consider a
significance level of 1% for rejection of the null hypothesis H0.

5.3. Prediction performance for the BSRM methods

Table 1 presents the prediction performance measures RMSEL and RMSEU , in the test data sets,
for the BSRM1 against the methods proposed by Billard and Diday [24] and Lima Neto and De
Carvalho [25], denoted by CM and CRM, respectively, in terms of the 10-fold cross-validation
scheme with 10 replications. The fitted BSRM1 considers the lower limit (YL) and the upper limit
(YU ) of the intervals in the random component. The results show the superiority of the BSRM1
over the CM since the p-values are inside of the rejection area of H0, at the significance level of
1%, for all configurations considered. On the other hand, the comparison between the BSRM1 and
the CRM methods gives evidence that the new approach present the same prediction performance
due to the nonrejection of the null hypothesis. However, for the BSRM1, it is possible to use
inference techniques over the parameter estimates, apply model diagnostic techniques and make
the residual analysis. These results indicate that the new models present advantages in relation to
the CM and CRM methods.

Table 2 compares the prediction performance of the BSRM2 against the CM and CRM methods.
For the BSRM2, we consider the midpoint (Ym) and the half-range (Y r ) of the interval-valued data
sets in the random component of the model, e.g. Y = (Ym, Y r ). The results show the superiority of
the BSRM2 over the CM method due to the rejection of the null hypothesis H0 for different num-
bers of explanatory variables and different values of the correlation coefficient. In the comparison
between the BSRM2 and the CRM methods, the experiments show that both approaches present

Table 1. Comparison of the prediction performance, in the test data sets, between the BSRM1 and
the CM and CRM methods in a 10-fold cross-validation scheme.

CM CMR

n p ρ RMSEL RMSEU RMSEL RMSEU

300 1 0.00 6.10 × 10−10 2.16 × 10−9 1.0000 0.9523
0.50 2.20 × 10−16 9.93 × 10−16 0.9756 0.9290
0.75 4.61 × 10−15 1.70 × 10−9 0.9737 0.9659
0.95 2.20 × 10−16 3.47 × 10−8 0.8422 0.9542

3 0.00 2.07 × 10−5 1.55 × 10−5 0.9756 0.9776
0.50 3.54 × 10−9 1.26 × 10−5 0.9328 0.9406
0.75 1.57 × 10−15 2.01 × 10−7 0.9386 0.9659
0.95 2.20 × 10−16 2.18 × 10−11 0.7797 0.8670

P -values for the Mann–Whitney statistical test.
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Table 2. Comparison of the prediction performance, in the test data sets, between the BSRM2 and
the CM and CRM methods in a 10-fold cross-validation scheme.

CM CMR

n p ρ RMSEL RMSEU RMSEL RMSEU

300 1 0 7.09 × 10−8 3.24 × 10−8 0.9581 0.9990
0.5 9.79 × 10−13 2.83 × 10−9 0.9717 0.9815
0.75 5.06 × 10−12 7.00 × 10−7 0.9523 0.9386
0.95 1.42 × 10−13 5.51 × 10−7 0.9250 0.8940

3 0 2.20 × 10−16 2.20 × 10−16 0.9678 0.8940
0.5 7.29 × 10−8 9.57 × 10−7 0.7815 0.8155
0.75 1.76 × 10−15 1.87 × 10−8 0.8960 0.8960
0.95 7.23 × 10−13 1.47 × 10−5 0.8536 0.9756

P -values for the Mann–Whitney statistical test.

the same prediction performance. However, the BSRM2 allows the use of inference techniques
and it presents advantages in relation to the CM and CRM methods.

5.4. Applications to real interval-valued data sets

The models developed in Sections 3 and 4 are now applied to two real interval-valued data
sets to show their usefulness in practical applications. We calculate the MLEs of the parameters
and the goodness-of-fit statistics, residuals and diagnostic measures. The selection of the bivariate
distribution for the random component, the link functions and the use of the intervals bounds (lower
and upper limits) or the midpoint and half-range in the bivariate random vector Y = (Y1, Y2) is
merely exploratory. This type of model selection also occurs in the GLM theory when we choose
the distribution and link function and, if necessary, transformations for the response variable or
explanatory variables. Thus, the use of exploratory methods can suggest some relevant information
about these questions.

5.4.1. Mushroom interval-valued data set

The first data set gives the values of the pileus cap width (Y ), stipe length (T1) and stipe thickness
(T2) for 23 mushroom species. Our aim is to predict the interval values of the dependent variable
Y in terms of the explanatory variables Tj (j = 1, 2). The data set given in Table 3 was obtained
from [1]. We assume the random component Y = (Y1, Y2) structured in terms of the midpoint Ym

Table 3. Mushroom interval-valued data set.

Species Y T1 T2 Species Y T1 T2

1 [3.0–8.0] [4.0–9.0] [0.50–2.50] 13 [3.5–8.0] [4.0–10.0] [1.00–2.00]
2 [6.0–21.0] [4.0–14.0] [1.00–3.50] 14 [7.0–14.0] [8.0–14.0] [1.50–2.50]
3 [4.0–8.0] [5.0–11.0] [1.00–2.00] 15 [8.0–20.0] [9.0–19.0] [3.00–5.00]
4 [6.0–7.0] [4.0–7.0] [3.00–4.50] 16 [2.5–4.0] [2.5–4.5] [0.40–0.70]
5 [5.0–12.0] [2.0–5.0] [1.50–2.50] 17 [7.0–19.0] [8.0–15.0] [2.00–3.50]
6 [5.0–15.0] [4.0–10.0] [2.00–4.00] 18 [5.0–15.0] [6.0–15.0] [2.50–3.50]
7 [4.0–11.0] [3.0–7.0] [0.40–1.00] 19 [8.0–12.0] [6.0–12.0] [1.50–2.00]
8 [5.0–10.0] [3.0–6.0] [1.00–2.00] 20 [2.0–6.0] [3.0–7.0] [0.40–0.80]
9 [2.5–4.0] [3.0–5.0] [0.40–0.70] 21 [6.0–12.0] [6.0–12.0] [1.50–2.00]

10 [2.5–6.0] [1.5–3.5] [1.00–1.50] 22 [6.0–12.0] [6.0–16.0] [1.00–2.00]
11 [1.5–2.5] [3.0–6.0] [0.25–0.35] 23 [5.0–17.0] [4.0–14.0] [1.00–3.50]
12 [4.0–15.0] [4.0–15.0] [1.50–2.50]
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14 Lima Neto et al.

and the half-range Y r of the interval-valued variable Y , respectively. We also assume the bivariate
normal [33] and bivariate gamma [28] distributions for the response variable Y , which are natural
members of the bivariate exponential family.

We adopt the identity link function for the bivariate normal model and the log link function for
the bivariate gamma model. The algorithm to obtain the estimates of the linear parameters and the
scalars φ and ρ and the calculations to yield the goodness-of-fit statistics, residuals and diagnostic
measures for both BSRMs was implemented through the software R (http://www.r-project.org).
The results of the fitted BSRMs are given in Table 4.

Table 4. Fitted BSRMs to the mushroom interval-valued data set.

Model Error (link) Normal (identity) Gamma (log)

BSRM1
φ̂ 1.4120 0.1605066
ρ̂ 0.574 0.090
D 56.48 6.42
X2 59.26 5.76
β̂ β̂m = (0.964, 0.619, 1.335) β̂m = (1.119, 0.074, 0.192)

β̂r = (−0.219, 0.781, 2.199) β̂r = (−0.041, 0.258, 0.616)

Iteration 5 18

BSRM2
φ̂ 1.3808 0.1926977
ρ̂ 0.611 0.015
D 55.23 7.71
X2 58.13 4.89
β̂ β̂ = (0.573, 0.659, 1.391) β̂ = (0.648, 0.118, 0.256)

Iteration 4 17

Figure 1. Mushroom data set: residual analysis for the BSRM2 with bivariate normal distribution.
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Table 5. Comparison between the symbolic regression methods.

Method RMSEL RMSEU

BSRM2 (normal) 1.167 2.589
BSRM2 (gamma) 3.774 3.722
BSRM1 (normal) 1.197 2.601
BSRM1 (gamma) 1.179 2.640
CM 1.333 2.721
CRM 1.194 2.501

The BSRM2 with bivariate normal distribution provides the best fit to these data based on the
analysis of the residuals, goodness-of-fit statistics and correlation coefficient estimates. Figure 1
shows the residual analysis for this model through a qq-plot for the deviance residual and the
identification of outliers, leverage and influential interval-valued observations.

Table 5 compares the BSRM against the CM and CRM methods. Based on the RMSEL and
RMSEU measures, the BSRM2 with bivariate normal distribution presents the best performance
between the bivariate symbolic regression methods, whereas the BSRM2 with bivariate gamma
distribution presents the worst performance. The results also indicate that the BSRM2 with bivari-
ate normal distribution outperforms the CM method and presents a very similar performance in
comparison with the CRM method. These results support the conclusions obtained in the analysis
of the synthetic interval-valued data sets (Section 5.3).

5.4.2. Soccer interval data set

This data set gives the records of the weight (Y ), height (T1) and age (T2) for 531 soccer players
grouped into 20 teams of the French Football Professional Championship. We use the BSRMs to
predict the dependent variable Y from the explanatory variables Tj (j = 1, 2). Table 6 gives the
data which can be accessed for free at http://www.ceremade.dauphine.fr/ touati/foot2.htm.

We consider the bivariate random vector in terms of the lower bound YL and upper bound YU of
the interval-valued variable Y . For both BSRMs, we assume the bivariate normal distribution [33]
with identity link function and the bivariate gamma distribution [28] with log link function. The
algorithm to obtain the estimates of all parameters and the calculations of the goodness-of-fit
statistics, residuals and diagnostic measures was implemented through the software R. Table 7
gives the results for the fitted models.

Figure 2 provides the residual analysis for the BSRM1 with bivariate gamma distribution. In
special, the qq-plot shows that the deviance residuals are normally distributed. Further, there are
no outliers, leverage and influential interval-valued observations for these data.

Table 6. Soccer interval data set.

Team Y T1 T2 Team Y T1 T2

A [58–85] [164–192] [21–35] K [62–86] [164–191] [18–34]
B [67–84] [171–190] [20–30] L [62–80] [168–189] [19–35]
C [65–88] [170–186] [18–36] M [63–85] [167–190] [18–31]
D [60–83] [162–188] [19–31] N [65–95] [168–196] [20–35]
E [60–84] [170–189] [18–34] O [63–83] [170–187] [18–35]
F [67–83] [173–190] [18–36] P [60–87] [170–197] [18–37]
G [69–90] [176–193] [19–34] Q [67–85] [168–190] [18–32]
H [65–85] [170–193] [19–31] R [62–83] [169–192] [18–35]
I [63–84] [168–188] [18–34] S [63–84] [172–192] [18–33]
J [58–88] [167–197] [19–35] T [63–85] [169–194] [20–34]
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Table 7. Fitted BSRMs to the soccer interval-valued data set.

Model Error (link) Normal (identity) Gamma (log)

BSRM1
φ̂ 5.7425 0.0009582
ρ̂ 0.376 0.050
D 195.24 0.0325781
X2 200.16 1.193861
β̂ β̂L = (−46.285, 0.632, 0.143) β̂L = (2.406, 0.010, 0.0022)

β̂U = (−20.811, 0.527, 0.147) β̂U = (3.211, 0.0061, 0.0018)

Iteration 3 89

BSRM2
φ̂ 5.3724 0.0015035
ρ̂ 0.482 0.020
D 182.66 0.0511194
X2 190.18 0.0514307
β̂ β̂ = (−60.403, 0.683, 0.447) β̂ = (2.430, 0.0095, 0.0057)

Iteration 4 86

Figure 2. Soccer data set: residual analysis for the BSRM1 with bivariate gamma distribution.

Table 8 compares the BSRM with the CM and CRM methods. The results show that all the
BSRM outperform the CM method and that the BSRM methods present a very similar performance
to the CRM method. These results support the analysis of the synthetic interval-valued data sets
(Section 5.3). The BSRM1 with bivariate gamma distribution (log link function) provides the best
performance, between the bivariate symbolic regression methods, under the measures RMSEL

and RMSEU .
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Table 8. Comparison between the symbolic regression methods

Method RMSEL RMSEU

BSRM1 (gamma) 2.232 2.570
BSRM1 (normal) 2.241 2.575
BSRM2 (gamma) 2.245 2.835
BSRM2 (normal) 2.261 2.697
CM 7.540 7.681
CRM 1.946 2.661

6. Concluding remarks

An interval of real values is an infinity list of values and it is difficult to take into account the role
information inside it. Despite the loss of information, we represent an interval-valued variable Y

as a two-dimensional or a bivariate quantitative feature vector yi = (y1i , y2i ), where the variables
Y1 and Y2 are one-dimensional random variables. We propose a new class of models so-called
the BSRMs which can be useful in statistical analysis of interval-valued data. This new class
of models closely follows the framework of the GLMs. We assume that the joint distribution of
the response interval-valued variable Y = (Y1, Y2) belongs to the bivariate exponential family of
distributions. This family extends the GLM theory for the case of interval-valued variables. The
random component of the BSRMs can be represented in terms of the midpoint and half-range of
the intervals or the lower and upper boundaries of the intervals or in terms of any other pair of
interval features. We show that the BSRMs are an important tool for solving problems related to
SDA since they can fit interval-valued data well.

The mean of the response variable is related to a set of known explanatory interval-valued
variables through a link function. We define a profile log-likelihood function to estimate the
coefficient of correlation ρ between Y1 and Y2. We give a see-saw algorithm for maximum-
likelihood estimation of the model parameters. In addition, we define goodness-of-fit statistics,
deviance measures, residuals and leverage measures for the proposed models. For the first time,
as for as we know, we discuss a joint residual measure for interval-valued observations.

We fit the BSRMs to synthetic interval-valued data and to real interval-valued data to compare
with the symbolic regression methods proposed by [24,25] denoted by CM and CRM, respectively.
The results show that the new models outperform the CM method. In comparison with the CRM
method, the BSRM presents a similar performance. However, the new models have advantages in
relation to the CM and CRM methods as far as inference techniques are concerned and indicate
that they can be very useful in analysing interval-valued data in the SDA field.
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