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SOME PROBLEMS CONNECTED WITH STATISTICAL INFERENCE 

BY D. R. Cox 

Birkbeck College, University of London1 

1. Introduction. This paper is based on an invited address given to a joint 
meeting of the Institute of Mathematical Statistics and the Biometric Society 
a t  Princeton, N. J., 20th April, 1956. It consists of some general comments, few 
of them new, about statistical inference. 

Since the address was given publications by Fisher [ll],  [12], [13], have pro- 
duced a spirited discussion [7], [21], [24], [31] on the general nature of statistical 
methods. I have not attempted to revise the paper so as to comment point by 
point on the specific issues raised in this controversy, although I have, of course, 
checked that the literature of the controversy does not  lead me to change the 
opinions expressed in the h a 1  form of the paper. Parts of the paper are con- 
troversial; these are not put forward in any dogmatic spirit. 

2. Inferences and decisions. A statistical inference will be defined for the 
purposes of the present paper to be astatement about statistical populations made 
from given observations with measured uncertainty. An inference in general is 
an uncertain conclusion. Two things mark out statistical inferences. First, 
the information on which they are based is statistical, i.e. consists of observations 
subject to random fluctuations. Secondly, we explicitly recognise that our con-
clusion is uncertain, and attempt to measure, as ebjectively as possible, the un- 
certainty involved. Fisher uses the expression 'the rigorous measurement of 
uncertainty'. 

A statistical inference carries us from observations to conclusions about the 
populations sampled. A scientific inferknce in the broa.der sense is usually con- 
cerned with arguing from descriptive facts about populations to some deeper 
understanding of the system under investigation. Of course, the more the statisti- 
cal inference helps us with this latter process, the better. For example, consider 
an experiment on the effect of various treatments on the macroscopic properties 
of a polymer. The statistical inference is concerned with what can be inferred 
from the experimental results about the true treatment effects. The scientific 
inference might concern the implications of these effects for the molecular 
structure of the polymer; the statistical uncertainty is only a part, sometimes 
small, of the uncertainty of the final inference. 

Statistical inferences, in the sense meant here, involve the data, a specification 
of the set of possible populations sampled and a question concerning the true 
populations. No consideration of losses is usually involved directly in the in- 
ference, although these may affect the question asked. If the population sampled 
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has itself been selected -by a random procedure with known prior probabilities, 
it seems to be generally agreed that inference should be made using Bayes's 
theorem. Otherwise, prior information concerning the parameter of direct 
interest2 will not be involved in a statistical inference. The place of prior in- 
formation is discussed some more when we come to talk about decisions, but the 
general point is that prior information that is not statistical cannot be included 
without abandoning the frequency theory of probability, and information that 
is derived from other statistical data can be handled by methods for the com- 
bination of data. 

The theory of statistical decision deals with the action to take on the basis of 
statistical information. Decisions are based on not only the considerations listed 
for inferences, but also on an assessment of the losses resulting from wrong 
decisions, and on prior information, as well as, of course, on a specification of the 
set of possible decisions. Current theories of decision do not give a direct measure 
of the uncertainty involved in making the decision; as'explained above, a sta- 
tistical inference is regarded here as having an explicitly measured uncertainty, 
and this is to be thought of as an essential distinction between statist,ical de- 
cisions and statistical inferences. 

Thus, significance tests and confidence intervals, if looked a t  in the way ex- 
plained below, are inference procedures. Discriminant analysis, considered as a 
method for classifying individuals into one of two groups, is a decision pro- 
cedure; considered as a tool for assigning a score to an individual to say how 
reasonable it is that the individual comes from one group rather than the other, 
it, is an inference procedure. Strict point estimation represents a decision; esti- 
mation by point estimate and standard error is a condensed and approximate 
form of interval estimation and is an inference procedure. Estimation by a 
posterior distribution derived from an agreed prior distribution is an inference 
procedure. A test of a hypothesis, considered in the literal Neyman-Pearson 
sense as a rule for taking one of two decisions concerning a statistical hy- 
pothesis, is a decision procedure, in which prior knowledge and losses enter im- 
plicitly. The reader may find it helpful to consider the extent to which the specifi- 
cation, implicitly or explicitly, of losses and prior knowledge is essential for 
solution of the problems just listed as ones of decision. 

For example, consider the analysis of an experiment to compare two in- 
dustrial processes, A and B. The statistical inference might be that, under cer- 
tain assumptions about the populations, process A gives a yield higher than that 
of process B, the difference being statisti~ally significant past the 1/1000 level, 
90, 95 and 99 per cent confidence intervals for the amount of the true difference 
being such and such. The decision might be that having regard to the differences 
in yield of practical importance, and our prior knowledge, we will consider that 
the experiment has established, under the conditions examined, that process A 
has a higher yield than B and will take future action accordingly. 

2 i.e. relevant information about the parameter of interest, other than that contained 
in the data and in the specification of the set of possible parameter vallles. 
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An inference without a prior distribution can be considered as answering the 
question: 'What do these data entitle us to say about a particular aspect of the 
populations that interest us?' It is, however, irrational to take action, scientific 
or technological, without considering both all available relevant information, 
including for example the prior reasonableness of different explanations of a set 
of data, and also the consequences of doing the wrong thing. Why then, do we 
bother with inferences which go, as it were, only part of the way towards the final 
decision? 

Even in problems where a clear-cut decision is the main object, it very often 
happens that the assessment of losses and prior information is subjective, so 
that i t  will help to get clear first the relatively objective matter of what the 
data say, before embarking on the more controversial issues. In  particular, it 
may happen either that the data are little aid in deciding the point a t  issue, or 
that the data suggest one conclusion so strongly that the only people in doubt 
about what to do are those with prior beliefs, or opinions about losses, heavily 
biased in one direction. In  some fields, too, it may be argued that one of the main 
calls for probabilistic statistical methods arises from the need to have agreed 
rules for assessing strength of evidence. 

A full discussion of this distinction between inferences and decisions will not 
be attempted here. Three more points are, however, worth making briefly. 
First, some people have suggested that what is here called inference should be 
considered as 'summarization of data'. This choice of words seems not to recog- 
nise that an essential element is the uncertainty involved in passing from the 
observations to the underlying populations.3 Secondly, the distinction drawn 
here is between the applied problem of inference and the applied problem of 
decision-making; it is possible that a satisfactory set of techniques for inference 
could be constructed from a mathematical structure very similar to that used in 
decision theory. 

Finally, it might be argued that in making an inference we are 'deciding' 
to  make a statement of a certain type about the populations and that therefore, 
provided that the word decision is not interpreted too narrowly, the study of 
statistical decisions embraces that of inference. The point here is that one of the 
main general problems of statistical inference consists in deciding what types of 
statement can usefully be made and exactly what they mean. In  statistical de- 
cision theory, on the other hand, the possible decisions are considered as already 
specified. 

3. The sample space. Statistical methods work by referring the observations 
S to a sample space Z of observations that might have been obtained. Over 2: 
one or more probability measures are defined and calculations in these probability 
distributions give our significance limits, confidence intervals, etc. I; is usually 
taken to be the set of all possible samples having the same size and structure 
as the observations. 

A referee has suggested the term 'summarization of evidence,' which seems a good one. 
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Fisher (see, for example, [ l l ])  and Barnard [4] have pointed out that 2 may 
have no direct counterpart in indefinite repetition of 'the experiment. For ex- 
ample, if the experiment were repeated, it may be that the sample size would 
change. Therefore what happens when the experiment is repeated is not suffi- 
cient to determine 2, and the correct choice of B may need careful consideration. 

As a comment on this point, it may be helpful to see an example where the 
sample size is fixed, where a definite space 2 is determined by repetition of the 
experiment and yet where probability calculations over B do not seem relevant 
to statistical inference. 

Suppose that we are interested in the mean e of a normal population and that, 
by an objective randomization device, we draw either (i) with probability $, 
one observation, x, from a normal population of mean 6 and variance U? or (ii) 
with probability 4,one observation x, from a normal population of mean e and 
variance ui, where u?, ui  are known, u: >> U: and where we know in any particular 
instance which population has been sampled. 

More realistic examples can be given, for instance in terms of regression prob- 
lems in which the frequency distribution of the independent variable is known. 
However, the present example illustrates the point a t  issue in the simplest terms. 
(A similar example has been discussed from a rather different point of view in 
161, ~ 9 1 ) .  

The sample space formed by indefinite repetition of the experiment is clearly 
defined and consists of two real lines 21, 22, each having probability $, and 
conditionally on 2, there is a normal distribution of mean 0 and variance o: . 

Now suppose that we ask, accepting for the moment the conventional formu- 
lation, for a test of the null hypothesis 0 = 0, with size say 0.05, and with maxi- 
mum power against the alternative Of, where 8' IV 6 1  >> u2 . 

Consider two tests. First, there is what we may call the conditional test, in 
which calculations of power and size are made conditionally within the particular 
distribution that is known to have been sampled. This leads to the critical 
regions x > 1.64 u1 or x > 1.64 u2, depending on which distribution has been 
sampled. 

This is not, however, the most powerful procedure over the whole sample space. 
An application of the Neyman-Pearson lemma shows that the best test depends 
slightly on el, u1 , uz , but is very nearly of the following form. Take as the critical 
region 

x > 1 . 2 8 ~ ~  if the first population has been sampled; , 

x > 5u2, if the second population has been sampled. 

Qualitatively, we can achieve almost complete discrimination between 8 = 0 
and e = 0' when our observation is from Z2 ,  and therefore we can allow the 
error rate to rise to very nearly 10% under . It is intuitively clear, and can 
easily be verified by calculation, that this increases the power, in the region of 
interest, as compared with the conditional test. 

Now if the object of the analysis is to make statements by a rule with certain 



361 STATISTICAL INFERENCE 

specified long-run properties, the unconditional test just given is in order, 
although i t  may be doubted whether the specification of desired properties is in 
this case very sensible. If, however, our object is to say 'what we can learn from 
the data that we have', the unconditional test is surely no good. Suppose that 
we know we have an observation from Z1 . The unconditional test says that we 
can assign this a higher level of significance than we ordinarily do, because if 
we were to repeat the experiment, we might sample some quite different distri- 
bution. But this fact seems irrelevant to the interpretation of an observation 
which we know came from a distribution with variance C T ~. That is, our calcula- 
tions of power, etc. should be made conditionally within the distribution known 
to have have been sampled, i.e. if we are using tests of the conventional type, 
the conditional test should be chosen. 

To sum up, if we are to use statistical inferences of the conventional type, the 
sample space Z must not be determined solely by considerations of power, or by 
what would happen if the experiment were repeated indefinitely. If difficulties 
of the sort just explained are to be avoided, Z should be taken to consist, so far 
as is possible, of observations similar to the observed set S ,  in all respects which 
do not give a basis for discrimination between the possible values of the unknown 
parameter 8 of interest. Thus, in the example, information-as to whether it was 
Z1 or Zz that we sampled tells us nothing about 0, and hence we make our in- 
ference conditionally on Z1 or Zz . 

Fisher has formalized this notion in his concept of ancillary statistics [lo], 
[23], [27]. His def i~ t ions  deal with the situation without nuisance parameters 
and before outlining an extension that attempts to cope with nuisance pa- 
rameters, it is convenient to state a slight modification of the original definitions. 
Let m be a minimal set of sufficient statistics4 for the unknown parameter of 
interest, 8, and suppose that m can be written (t, a), where the distribution of a 
is independent of 8, and that no further components can be extracted from t 
and incorporated in a. That is, we divide, if possible, the space of m into sets 
each similar to the sample space, and take the finest such division, assumed here 
to be unique subject to regularity conditions. Then a is called an ancillary statistic 
and we agree to make inferences conditionally on the observed a. 

EXAMPLES.(i) In the example of section 3, a minimal set consists of the 
observation, x, and an indicator variable to show which population has been 
sampled. The latter satisfies the conditions for being an ancillary statistic. Pro- 
vided that the possible values of the mean 8 include an interval, there is no set 
of x values with the same probability for all 0 .  

(ii) Under the ordinary assumptions of norma! linear regression theory, plus 
the assumption that the independent variable has any known distribution (with- 
out unknown parameters), the values of the independent variable form an 
ancillary statistic. 

(iii) The fol,lowing example is derived from one put forward by a referee. 

4 The terms used by Fisher are that  a minimal set of sufficient statistics with more com- 
ponents than there are parameters is called exhaustive and a minimal set with the same 
number of components as there are parameters is called suficient. 
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Let x be a single observation with density 1 + 202, - 3 $ x S +,-1 I;e $ 1. 
Then we can write x = [sgn x, lxl] and 1x1 has the same density for all 0. Hence 
we argue conditionally on the observed value of 1x1. For example in testing 
6 = 0 against 6 > 0, the possible P values (see section 5) are 1and 4. This may 
seem a curious result but is, I think, reasonable if one regards a significance 
test as concerned with the extent to which the data are consistent with the null 
hypothesis. 

Suppose now that there are nuisance parameters +. Let m be a minimal set 
of sufficient statistics for estimating (6, 4) and suppose that m can be partitioned 
into [t, s, a] in such a way that 

(i) functions of t and 6, so-called pivotal quantities, exist with a distribution 
conditionally on a that is independent of +. If any component of s is added to 
t or a, this independence from + no longer holds. Further, no components can be 
extracted from t and incorporated in a ;  

(ii) the values of a and s give no direct information about 9 in the sense to be 
defined below. Then we agree to make inferences about 6 from the conditional 
distribution of fi). 

We need then to define what is meant by saying that a quantity y gives no 
direct information about 8, when nuisance parameters + are present. One con- 
dition that might be considered is that the density p@; 6, +) should be inde- 
pendent of 6. This seems too strong, as does also the requirement that for every 
different pair 61 ,82 and for every y, p(y; 61 , +) / p(y; 62 , +) should run through 
all positive real values as 4 varies. An appropriate condition seems to be that 
given admissible values y, 61 ,O2 ,+, there exist admissible 6, 41 , $2 , such that 

The import of the condition is that any contemplated distinction between two 
values of 6 might just as well be regarded as a distinction between two values 
of +. 

For example, suppose that x is a single observation from a normal distribution 
of unknown mean + and variance 6. Then x gives no direct information about 8 
in the sense of (I), provided that + is completely unknown. Another example is 
normal regression theory with the independent variable having an arbitrary 
unknown distribution, not irivolving the regression parameters of interest [lo]. 
Here a is the set of values of the independent variable and s is the sum squares 
about the regression line, assuming that the residual variance about the re- 
gression line, +, is a nuisance parameter. 

For a third example, let rl , r2 be randomly drawn from Poisson distributions 
of means P I ,  pz and let p2 /pl = e be the parameter of interest; that  is write 
the means as 4, 46, where + is a nuisance parameter. The likelihood of T I ,  r2 
can be written 
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where t = TI  , a = rl + r2 and with s null. The equation (1) is satisfied, telling 
us that a gives us no direct information about 8. Therefore significance and 
confidence calculations are to be made conditionally on the observed value of a ,  
as is the conventional procedure 1251. 

To apply the definitions we have to regard our observations as generated by a 
random process; the idea of ancillary statistics simply tells us how to cut down 
the sample space to those points relevant to the interpretation of the observations 
we have. 

In  the problems without nuisance parameters, i t  is known that methods of 
inference [5], that use only observed values of likelihood ratios, and not tail 
areas, avoid the difficulties discussed above, since the likelihood ratio is the 
same whether we argue conditionally or not. Lindley, using concepts from [18], 
has recently shown that for a broad class of problems with nuisance parameters, 
the conditional methods are optimum in the Neyman-Pearson sense. 

Another important problem connected with the choice of the sample space, 
not discussed here, concerns the possibility and desirability of making infer, wces 
within. finite sample spaces obtained by permuting the observations; see, for 
example, 1161. 

4. Interval estimation. Much controversy has centred on the distinction 
between fiducial and confidence estimation. Here follow five remarks, not about 
the mathematics, but about the general aims of the two methods. 

(i) The fiducial approach leads to a distribution for the unknown parameter, 
whereas the method of confidence intervals, as usually formulated, gives only 
one interval a t  some preselected level of probability. This seems a t  first sight a 
distinct point in favour of the fiducial method. For when we write down the 
confidence interval (2  - 1.96 rid;, 2 + 1.96 cr ldn)  for a completely unknown 
normal mean, there is certainly a sense in which the unknown mean 8 is likely to 
lie near the centre of the interval, and rather unlikely to lie near the ends and 
in which, in this case, even if 9 does lie outside-the interval, i t  is probably not 
far outside. The usual theory of confidence intervals gives no direct expression 
of these facts. 

Yet this seems to a large extent a matter of presentation; in the common 
simple cases, where the upper a limit for 9 is monotone in a ,  there seems no 
reason why we should not work with confidence distributions for the unknown 
parameter. These can either be defined directly, or can be introduced in terms 
of the set of all confidence intervals a t  different levels of probability. Statements 
made on the basis of this distribution, pi-ovided we are careful about their form, 
have a direct frequency interpretation. In  applications it will often be enough 
to specify the confidence distribution, by for example a pair of intervals, and 
this corresponds to the common practice of quoting say both the 95 per cent 
and the 99 per cent confidence intervals. 

I t  is not clear what can be done in those complex cases [8], [26], where say 
the upper 5 per cent limit for 9 is larger than the upper 1 per cent limit, or 
indeed whether confidence interval estimation is a t  all satisfactory in such cases. 
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Within the class of distributions with monotone likelihood ratio [15], such 
difficulties will, however, be avoided. 

If we consider that the object of interval estimation is to give a rule for making 
on the basis of each set of data, a statement about the unknown parameter, a 
certain preassigned proportion of the statements to be correct in the long run, 
consideration of the confidence distribution may seem unnecessary and possibly 
invalid. The attitude taken here is that the object is to attach, on the basis of 
data S, a measure of uncertainty to different possible values of 8, showing what 
can be inferred about 8 from the data. The frequency interpretation of the 
confidenceintervals is the way by which the measure of uncertainty is given a 
concrete interpretation, rather than the direct object of the inference. From this 
point of view it is difficult to see an objection to the consideration of many 
confidence statements simultaneously. 

If the whole set' of intervals is regarded as the fundamental concept, and if 
we are interested both in upper and in lower limits for 8, we may conveniently 
specify the set by giving say the upper and lower 23 % points, etc., it being a 
useful convention, and no more, that the 95% interval so obtained should have 
equal probabilities associated with each tail. The elaborate discussion that is 
sometimes necessary in the conventional theory to decide which particular 
combination of upper and lower tail areas is best to get a 95% interval seems, 
from this point of view, irrelevant. 

(ii) It is sometimes claimed as an advantage of fiducial estimation that it is 
restricted to methods that use 'all the information in the data', while confidence 
estimation includes any method giving the requisite frequency interpretation. 
This claim is lent some support by those accounts of confidence interval theory 
which use the words 'valid' or 'exact' for a method of calculating intervals 
that has, under a given mathematical set-up, an exact frequency interpretation, 
no matter how inadequate the intervals may be in telling us what can be learnt 
from the data. 

However, good accounts of the theory of confidence intervals stress equally 
the need to cover the true value with the required probability and the require- 
ment of having the intervals as narrow as possible in a suitable sense [21]. Very 
special importance, therefore, attaches to intervals based on exhaustive esti- 
mates. I t  is true that there are differences between the approaches in that the 
fiducial method takes the use of exhaustive estimates as a primary requirement, 
whereas in the theory of confidence intervals the use of exhaustive estimates is 
deduced from some other condition. This does not seem however to amount to 
a major difference between the methods. 

(iii) The uniqueness of inferences obtained by the fiducial method has re- 
ceived much discussion recently, [9], [20], [28]. Uniqueness is important be- 
cause, once the mathematical form of the populations is sufficiently well specified, 
it should be possible to give a single answer of a given type to the question 
'what do the data tell us about 81'. 
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The present position is that several cases are known where the fiducial method 
leads to non-unique answers, although it is, of course, entirely possible that a 
way will be found of formulating fiducial calculations to make them unique. A 
comparison with confidence intervals is difficult here, because in many of the 
multi-parameter problems, the single parameters for which confidence estima- 
tion is known to be possible at  all are very limited. No cases of non-unique 
optimum confidence intervals seem to have been published. 

(iv) If sufficient estimation, in Fisher's sense, is possible for a group of pa- 
rameters, fiducial inference Rill usually be possible about any one of them or 
any combination of them, since the joint fiducial distribution of all the pa- 
rameters can be found and the unwanted parameters integrated out. Exact 
confidence estimation is in general possible only for restricted combinations of 
parameters. An example is the Behrens-Fisher problem, where exact fiducial 
inference is possible. The situation about confidence estimation in this case is 
far from clear, but may be that the asymptotic expansion proposed by Welch 
[30], while giving a close approximation to an 'exact' system of confidence inter- 
vals, has frequency properties depending slightly on the nuisance parameters. 
Nothing seems to be known about possible optimum properties in the Neyman- 
Pearson sense. In the language of testing hypotheses, Welch's procedure is to 
look for a region of constant size a,independently of the nuisance parameters. 
It is conceivable that greater power against some alternatives is attained by 
having a size only bounded by a;indeed, this is made plausible by [12]. 

(v) The final consideration concerns the question of frequency verification. 
Fisher has repeatedly stated that the immediate object of fiducial inference is 
not the making of statements that will be correct with given frequency in the 
long run. One may readily accept this in that one really wants to measure the 
uncertainty corresponding to different ranges of values for el and it is quite 
conceivable that one could construct a satisfactory measure of uncertainty that 
has not a direct frequency interpretation. Yet one must surely insist on some 
pretty clear-cut practical meaning to the measure of uncertainty and this 
fiducial probability has never been shown to have, except in those cases where 
it is equivalent to confidence interval estimation. J. W. Tukey's [25] recent 
unpublished work on fiducial probability and its frequency .verification may be 
mentioned here. 

A different justification of fiducial distributions that is sometimes advanced 
is to derive them from Bayes's theorem, using a conventional form of prior 
distribution. To remain within the framework of the frequency theory of proba- 
bility, it would then be necessary to distinguish between proper frequency dis- 
tributions and hypothetical ones. The physical interpretation of the measure 
of uncertainty of statements about 0 is that i f  0 had such and such a prior fre- 
quency distribution, then the posterior frequency distribution of e would be 
such and such. This all amounts to a reinterpretation of Jeffreys's theory [17]. 
An important advantage of this approach is that it ensures independence from 
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the sampling rule (see [2]) and from the difficulties of section 3. On the other 
hand i t  seems a clumsy way of dealing with simple one-parameter problems, 
especially when the choice of prior distribution is difficult. 

If the above considerations are accepted, it seems reasonable to base interval 
estimation on a slightly revised form of the theory of confidence intervals. 

Estimation by confidence or fiducial distribution may be contrasted with the 
proposal [5] , [13]to plot the likelihood of the unknown parameter 8 in the light 
of the data, standardized by the maximum likelihood over 8. Advantages of the 
latter method are mathematical simplicity and independence from the sampling 
rule. Disadvantages are that it is not clear how to deal with nuisance parameters, 
that it is not clear that division by the maximum value of the likelihood makes 
values in different situations genuinely comparable, and that there is some 
difficulty in giving practical interpretation to the ratios so obtained. It might 
be argued that this last difficulty arises solely from lack of familiarity with the 
method. 

6. Significance tests. Suppose now that we have a null hypothesis Ho 
concerning the population or populations from which the data S were drawn 
and that we enquire 'what do the data tell us concerning the possible truth or 
falsity of Ho?'Adopt as a measure of consistency with the null hypothesis 

data showing as much or more 
evidence against Ho as S 

That is, we calculate, at  least approximately, the actual level of significance 
attained by the data under analysis and uqe this as a ineasure of conformity 
with the null hypothesis. The value obtained in this way is often, particularly 
in the biological literature, called the P-value. Significance tests are often used 
in practice like this, although many formal accounts of the theory of tests sug- 
gest, implicitly or explicitly, quite a different procedure. Namely, we should, 
after considering the consequences of wrongly accepting and rejecting the null 
hypothesis, and the prior knowledge about the situation, fix a significance level 
in advance of the data. This is then used to form a rigid dividing line between 
samples for which we accept the null hypothesis and those for which we reject 
the null hypothesis. A decision-type of this sort is clearly something quite 
different from the application just contemplated. 

Two aspects of significance tests will beadiscussed briefly here. First there is 
the question of when significance tests are useful and secondly there is the 
justification of (2) as a measure of conformity. 

We shall for simplicity, consider situations in which the possible populations 
correspond to values of a continuously varying parameter 8, the null hypothesis 
being say 8 = 80. There may be nuisance parameters. 

A practical distinction can be made between cases in which the null value Bo 
is considered because it divides the parameter range into qualitatively different 
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sections and those cases in which it is thought that there is a reasonable prospect 
that the null value is very nearly the true one. For example, in the comparison 
of two alternative industrial processes we might quite often have no particular 
expectation that the treatment difference is small. I n  such cases,the significance 
test is concerned with whether we can, f r m  the data under analysis, claim the 
existence of a difference in the same direction as that observed. Or, to look a t  
the matter slightly differently, the significance level tells us a t  what levels the 
confidence intervals for the true difference include only values with the same 
sign as the sample difference. This idea that the significance level is concerned 
with the possibility that the true effect may be in the opposite direction from 
that observed, occurs in a different way in [17]. 

The answer to the significance test is rarely the only thing we should consider: 
whether or not significance is attained a t  an interesting level (say a t  the 10% 
level or better), some consideration should be given to whether differences that 
may exist are of practical importance, i.e. estimation should be considered as 
well as significance testing. A likely exception to this is in the analysis of rather 
limited amounts of data, where i t  can be taken for granted that differences of 
practical importance are consistent with the data. The point of the statistical 
analysis is in such cases to see whether the direction of any effects has been 
reasonably well established, i.e. whether a qualitative conclusion about the 
effects has been demonstrated. 

The problem dealt with by a significance test, as just considered, is different 
from that of deciding which of two treatments is to be recommended for future 
use or further investigation. This cannot be tackled without consideration of 
the differences of practical importance, the losses consequent on wrong decisions 
and the prior knowledge. Depending on these and on sample size, the level of P 
for practical action may vary widely. 

The second type of application of significance tests is to situations where 
there is a definite possibility that the null hypothesis is nearly true. (Exact 
truth of a null hypothesis is very unlikely except in a genuine uniformity trial). 
A full analysis of such a situation would involve consideration of what departure 
from the null hypothesis is considered of practical importance. However, i t  is 
often convenient to test the null hypothesis directly; if significant departure 
from it is obtained, consideration must then be given to whether the departure 
is of practical importance. Of course, in any case we will probably wish to 
examine the problem as one of estimation as well as of significance testing, asking 
for example, for the maximum true difference consistent with the data. 

Consider now the choice of (2) as the quantity to measure significance. To 
use the definition, we need to order the points of the sample space in terms of 
the evidence they provide against the null hypothesis. 

The most satisfactory way is the introduction, as in the usual development 
of the Neyman-Pearson theory, of the requirement of maximum sensitivity in 
the detection of certain types of departure from the null hypothesis. That  is, 
we wish, in the simplest case, to maximise, if possible for all fixed c, 



D. R.  COX 

probo(attaining significance a t  the 6 level), 

where 0 represents a set-up which we desire to distinguish from the null hy- 
pothesis. That is we choose the procedure that makes the random variable (2) 
as stochastically small as possible when the alternative hypotheses are true. 
This leads in simple cases, to a unique specification of the significance proba- 
bility (2). 

In  the simple case when there is a single alternative hypothesis, i t  seems a t  
least of theoretical interest to distinguish between the problem of discrimina- 
tion and that of significance testing. In  discrimination, the two populations are 
on an equal footing and there are strong arguments for considering that only 
the observed value of the likelihood ratio is relevant. The question asked is 
'which of these populations do the observations come from?' I n  significance 
testing the question is 'are the data consistent with having come from HO?' The 
alternative hypothesis serves merely to mark out the sample points giving evi- 
dence against Ho . 

The next question to consider is why we sum over a whole set of sample 
points rather than work in terms only of the observed point. This has been 
much discussed. The advantage of (2) is that it has a clear-cut physical inter- 
pretation in terms of the formal scheme of acceptance and rejection contem- 
plated in the Neyman-Pearson theory. To obtain a measure depending only on 
the observed sample point, one way is to take the likelihood ratio, for the ob- 
served point, of the null hypothesis versus some conventionally chosen alterna- 
tive (see [ 5 ] ) , and while a practical meaning can be given to this, i t  has less 
direct appeal. But consider a test of the following discrete null hypotheses: 

Sample value prob. under HO prob. under H: 
0 0.80 0.75 
1 0.15 0.15 
2 0.05 0.05 
3 0.00 0.04 
4 0.00 0.01 

and suppose that the alternatives are the same in both cases and are such that 
the probabilities (2) should be calculated by summing the probabilities of values 
as great or greater than that observed. Suppose further that the observation 2 
is obtained; under Ho the significance level is 0.05, while under H ;  i t  is 0.10. 
Yet i t  is difficult to see why we should say that our observation is more con- 
sistent with Ho than with H ; ;  this point has often been made before [4], [16]. 
On the other hand, if we are really interested in the confidence interval type 
of problem, i.e. in covering ourselves against the possibility that the 'effect' is 
in the direction opposite to that observed, the use of the tail area seems more 
reasonable. As noted in section 3 the use of likelihood ratios rather than summed 
probabilities avoid difficulties connected with the choice of the sample space, 8. 
We are faced with a conflict between the mathematical and logical advantages 
of the likelihood ratio, and the desire to calculate quantities with a clear prac- 
tical meaning in terms of what happens when they are calculated. 
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In  general the role that tail areas ought to play in statistical inference is far 
from clear and further discussion is very desirable. The reader may refer to [I] 
and [19]. 

In  this and the preceding section the problems of interval estimation and 
significance testing have been considered. There is not space to give a parallel 
discussion of the other types of statistical procedure. 

6. The role of the assumptions. The most important general matter con-
nected with inference not discussed so far, concerns the role of the assumptions 
made in calculating significance, etc. Only a very brief account of this matter 
will be given here. 

Assumptions that we make, such as those concerning the form of the popula- 
tions sampled, are always untrue, in the sense that, for example, enough obser- 
vations from a population would surely show some systematic departure from 
say the normal form. There are two devices available-for mitigating this difEculty, 
namely 

(i) the idea of nuisance parameters, i.e. of inserting sufficient unknown 
parameters into the functional form of the population, so that a better approxi- 
mation to the true population can be attained; 

(ii) the idea of robustness (or stability), i.e. that we may be able t o  show 
that the answer to the significance test or estimation procedure would have been 
essentially unchanged had we started from a somewhat different population 
form. Or, to put i t  more directly, we may attempt to say how far the population 
would have to depart from the assumed form, to change the final conclusions 
seriously. This leaves us with a statement that has to be interpreted qualita- 
tively in the light of prior information about distributional shape, plus the 
information, if any, to be gained from the sample itself. This procedure is fre- 
quently used in practical work, although rarely made explicit. 

In inference for a single population mean, examples of (i) are, in order of 
complexity, to  assume 

(a) a normal population of unknown dispersion; 
(b) a population given by the first two terms of an Edgeworth expansion; 
(c) in the limit, either. an arbitrary population, or an arbitrary continuous 

population (leading to a distribution-free procedure). 
The last procedure has obvious attractions, but it should be noted that it is 

not possible to give a firm basis for choice between numerous alternative methods, 
without bringing in strong assuniptions about the power properties required, 
and also that i t  often happens that no reasonable distribution-free method exists 
for the problem of interest. Thus if we are concerned with the mean of a popu- 
lation of unknown shape and dispersion, no distribution-free method is available 
[3]; when the property measured is extensive, the mean is often the uniquely 
appropriate parameter. 

A rather artificial example of method (ii) is that if y e  were given a single 
observation from a normal population and asked to assess the significance of the 
difference from zero, we could plot the level attained against the population 
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standard deviation a. Then we could interpret this qualitatively in the light of 
whatever prior information about a was available. A less artificial example con- 
cerns the comparison of two sample variances. The ratio might be shown to be 
highly significant by the usual F test and a rough calculation made to show that 
provided that neither /3z exceeded /3:, significance a t  least say a t  the 1 per cent 
level would still occur. 

I n  practical situations we usually employ a mixture of (i) and (ii) depending 
on 

(a) the extent to which our prior knowledge limits the population form in 
respects other than those of direct interest; 

(b) the amount of information in the data about the population character- 
istic that may be used as a nuisance parameter; 

(c) the extent to which the final conclusion is sensitive to the particular 
population characteristic of interest. 

Thus, in (a) if we have a good idea of the population form, we are probably 
not much interested in the fact that a distribution-free method has certain de- 
sirable properties for distributions quite unlike that we expect to encounter. To 
comment on (b), we would probably not wish to studentize with respect to a 
minor population characteristic about which hardly any information was con- 
tained in the sample, e.g. an estimate of variance with one or two degrees of 
freedom. I n  small sample problems there is frequently little information about 
population shape contained in the data. Finally, there is consideration (c). If 
the final conclusion is very stable under changes of distribution form, i t  is 
usually convenient to take the most appropriate simple theoretical form as a 
basis for the analysis and to use method (ii). 

Now it is very probable that in many instances investigation would show 
that the same answer would, for practical purposes, result from the alternative 
types of method we have been discussing. But suppose that in a particular 
instance there is disagreement, e.g. that the result of applying a t test differs 
materially from that of applying some distribution-free procedure. What should 
we do? 

It can be argued that, even if we have no good reason for expecting a normal 
population, we should not be willing to accept the distribution-free answer un- 
conditionally. A serious difference between the results of the two tests would 
indicate that the conclusion we draw about the population mean depends on the 
population shape in an important way, e.g. depends on the attitude we take to 
certain outlying observations in the sample. I t  seems more satisfactory for a full 
discussion of the data, to  state this and to assemble whatever evidence is avail- 
able about distributional form, rather than simply to use the distfibution-free 
approach. Distribution-free methods are, however, often very useful in small 
sample situations where little is known about population form and where elabo- 
rate treatment of the results would be out of place. 

An interesting discussion of the role of assumptions in debision theory is given 
in [14]. 



371 STATISTICAL INFERENCE 

I am much indebted to the two referees for detailed and constructive criticism 
of the paper. 
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