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a b s t r a c t

A bathtub-shaped failure rate function is very useful in survival analysis and reliability
studies. The well-known lifetime distributions do not have this property. For the first
time, we propose a location-scale regression model based on the logarithm of an extended
Weibull distribution which has the ability to deal with bathtub-shaped failure rate
functions. We use the method of maximum likelihood to estimate the model parameters
and some inferential procedures are presented.We reanalyze a real data set under the new
model and the log-modifiedWeibull regressionmodel.Weperformamodel check based on
martingale-type residuals and generated envelopes and the statistics AIC and BIC to select
appropriate models.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The traditional lifetime distributions (Weibull, log-logistic and log-normal) are unable to capture the behavior of a
lifetime data that exhibits a bathtub-shaped failure rate curve. These standard distributions are suitable only in situations
where the failure rate function is constant,monotone or unimodal. However, this functionmay frequently present a bathtub-
shaped form. The distributions that exhibit bathtub-shaped failure rate are usually complex and, therefore, difficult to be
modeled. Thus, it is important to propose new distributions that do present much practicability to model this type of failure
rate.
Some distributions have been introduced to model bathtub-shaped data, such as the generalized gamma distribution

(Stacy, 1962), the generalized F distribution (Prentice, 1974), the IDB distribution (Hjorth, 1980), the exponential-power
family (Smith and Bain, 1975), among others. A good review of these models is presented in Rajarshi and Rajarshi (1988).
In the last decade, new classes of distributions have been proposed based on extended forms of theWeibull distribution for
modeling data of this kind from a desire to provide a better fitting than theWeibull distribution. Most of the generalizations
or modifications of the Weibull distribution that appeared since 2004 have been discussed by Pham and Lai (2007).
Although many distributions are discussed in the literature to accommodate the bathtub-shaped failure rate, a few

regression models have been proposed with this objective, among them, the log-exponentiated-Weibull (Cancho et al.,
1999), generalized log-F (Kalbfleisch and Prentice, 2002), generalized log-gamma (Lawless, 2003) and log-modifiedWeibull
(Carrasco et al., 2008) regression models.
Regression models can be proposed in different forms in survival analysis. For example, the location-scale regression

model (Klein and Moeschberger, 1997; Lawless, 2003) is distinguished and it is frequently used in clinical trials. In this
paper, we propose a new regression model using the logarithm of the extended Weibull distribution (Xie et al., 2002). The
modification of the existing distribution leads to a location-scale regressionmodel suitable for fitting censored survival times
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with bathtub-shaped hazard rates referred to as the log-extended Weibull (LEW) regression model. We can also check the
distributional assumptions of themodel by examining the residuals (see, for example, Barlow and Prentice (1988), Therneau
et al. (1990) and Collett (2003)).
In Section 2, we define the LEW distribution and derive its moments. In Section 3, we propose a LEW regression model

of location-scale form and obtain the maximum likelihood estimates. We also review a generalized likelihood ratio test that
can be used for comparing nonnestedmodels. In Section 4, we provide expressions of martingale-type residuals for the LEW
regression model. We show in Section 5 that the proposed model is more adequate to fit the lung cancer data analysis than
log-modified Weibull (LMW) regression model proposed by Carrasco et al. (2008), by checking the residual plots for both
models and discriminating between the models using three different statistics. Section 6 ends with some conclusions.

2. A log-extended Weibull distribution

Most generalized Weibull distributions have been proposed in reliability literature to provide a better fitting of certain
data sets than the traditional two- or three-parameterWeibullmodel. See, for example, the distributions listed anddiscussed
in Tables I and II given by Pham and Lai (2007). A very complicated generalized Weibull distribution often diminishes the
probability of interpreting the parameters and a generalization that has more than three parameters is undesirable. Xie
et al. (2002) introduced a three-parameter Weibull distribution, the so-called the extended Weibull distribution, with the
probability density function (pdf) defined by

f (t; λ, τ , α) = λτ
(
t
α

)τ−1
exp

{(
t
α

)τ
+ λα

[
1− exp

((
t
α

)τ)]}
, t ≥ 0, (1)

where λ > 0 and α > 0 are scale parameters and τ > 0 is a shape parameter. The corresponding survival and failure rate
functions are, respectively, given by

S(t; λ, τ , α) = exp
{
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[
1− exp
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)τ)]}
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(
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)τ]
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The failure rate function of the extended Weibull distribution has a bathtub shape when τ < 1 and an increasing
function when τ ≥ 1 (Xie et al., 2002). This distribution is mainly related to the model studied by Chen (2000) with an
additional scale parameter α. When α → ∞, 1 − exp[(t/α)τ ] ≈ −(t/α)τ , so that the survival function converges to
the limit S(t; λ, τ , α) ≈ exp{−λα1−τ tτ }, which is the Weibull distribution with shape parameter τ and scale parameter
ατ−1λ−1. Hence, the extended Weibull distribution has the Weibull distribution as a special and asymptotic case.
The extended Weibull distribution is easily simulated using the inverse probability method. If U is a uniform random

variable on the interval (0, 1), then the random variable defined by T = {ατ log[1 − (λα)−1 log(1 − U)]}
1
τ follows the

extended Weibull distribution (1). The distribution of the logarithm Y = log(T ) of the random variable T is called the LEW
distribution, parameterized in terms of the parameters σ = τ−1, µ = log(α) and λ, and its pdf has the form

f (y; λ, σ , µ) =
λ

σ
exp
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σ

)
exp
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µ+ exp
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where−∞ < y <∞, λ > 0, σ > 0 and−∞ < µ <∞. The corresponding survival function reduces to

S(y; λ, σ , µ) = exp
{
λ exp(µ)

[
1− exp

[
exp

(
y− µ
σ

)]]}
.

Further, after suitable transformation, we define the standard random variable Z = (Y − µ)/σ with density function

f (z; λ,µ) = λ exp{z + µ+ exp(z)+ λ exp(µ)[1− exp[exp(z)]]}, −∞ < z <∞. (3)

Plots of the density function (3) for selected parameter values are shown in Fig. 1. Eq. (3) for the standardized LEW
distribution will be used in Section 3 to specify the error distribution of an accelerated failure time model.
The sth moment of the extended Weibull density (1) when s/τ = m is an integer was recently obtained by Nadarajah

(2005) as

µ′s = mα
s exp(λα)

∂m−1(λα)−νγ (ν, λα)

∂νm−1

∣∣∣∣
ν=0
, (4)

where γ (ν, λα) =
∫ λα
0 wν−1e−wdw is the well-known incomplete gamma function. Some special cases of Eq. (4) for

τ = 1/2 and 1/3 and s = 1 and 2 are given by Nadarajah (2005). By expanding Y s = log(T )s in Taylor series around
µ′1, the sth moment of Y can be written as

E(Y s) = log(µ′1)
s
+

∞∑
i=2

G(i)(µ′1) µi
i!

,
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Fig. 1. Plots of the density (3) for λ = 0.8 or 2 and µ = 0.2 or 2.

where G(i)(µ′1) is the ith derivative of G(µ
′

1) = log(µ
′

1)
s with respect to µ′1 and µi = E(T − µ

′

1)
i is the ith central moment

of T . Expressing the central moments of T in terms of their ordinary moments, the sth ordinary moment of Y can be written
as weighted infinite sums of products of suitable ordinary moments of T by powers of the expected value µ′1, namely

E(Y s) = log(µ′1)
r
+

∞∑
i=2

i∑
k=0

(−1)kG(i)(µ′1)µ
′

i−kµ
′k
1

(i− k)!k!
, (5)

where the moments µ′i−k and µ
′

1 are readily obtained from Eq. (4). Formula (5) holds for any sth moment only when s/τ is
an integer. The derivatives of G(µ′1) = log(µ

′

1)
s are easily calculated in Maple up to any order. For example, we obtain

G(4)(µ′1) = s{(s
3
− 6s2 + 11s− 6)δs−4 − 6(s2 − 3s+ 2)δs−3 + 11(s− 1)δs−2 − 6δs−1}/µ′41 ,

where δ = log(µ′1).
Hence, the ordinary moments of the LEW distribution is a function of the parameters µ, σ and λ. Clearly, the moments

of Z can be easily obtained from the moments of Y .

3. A log-extended Weibull regression model

In many practical applications, the lifetimes are affected by explanatory variables such as the cholesterol level, blood
pressure, weight andmany others. Parametric models for estimating univariate survival functions and for the censored data
regression problems are widely used. When the parametric models provide a good fit to the lifetime data set, they tend
to give more precise estimates of the quantities of interest because these estimates are based on fewer parameters. Let
x = (x1, . . . , xp)T be the explanatory variable vector associated with the ith response variable yi = log(ti), note that, yi is
the logarithm of the survival time ti. Based on the LEW distribution, a linear regression model linking the response variable
yi and the explanatory variable vector xi can be defined by

yi = xTi β+ σ zi, i = 1, . . . , n, (6)

where the random error zi follows the density function (3), β = (β1, . . . , βp)T, σ > 0 and λ > 0 are unknown parameters
and xTi = (xi1, . . . , xip) is the explanatory variable vectormodeling the linear predictorµi = xTi β. Hence, the linear predictor
vector µ = (µ1, . . . , µn)

T of the LEW regression model is simply µ = Xβ, where X = (x1, . . . , xn)T is a known model
matrix. The log-Weibull (or extreme value) regression model is obtained as a special case from (6) when α→∞.
Consider a sample (y1, x1), . . . , (yn, xn) of n-independent observations, where each random response is defined by

yi = min{log(ti), log(ci)}. We assume non-informative censoring and that the observed lifetimes and censoring times are
independent. Let F and C be the sets of individuals for which yi is the log-lifetime or log-censoring, respectively. The total
log-likelihood function for the model parameters θ = (λ, σ , βT)T follows from (3) and (6) as

l(θ) = r log(λ)− r log(σ )+
∑
iεF

xTi β+
∑
iεF

zi +
∑
iεF

exp(zi)

+

∑
iεF

λ exp(xTi β) {1− exp[exp(zi)]} +
∑
iεC

λ exp(xTi β) {1− exp[exp(zi)]} , (7)
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where r is the number of uncensored observations (failures) and zi = (yi−xTi β)/σ . Themaximum likelihood estimate (MLE)
θ̂ of the parameter vector θ = (λ, σ , βT)T of the LEW regression model can be obtained by maximizing the log-likelihood
function (7). The estimation process is straightforward and we use the matrix programming language Ox (MAXBFGS
subroutine) (see Doornik (2007)) to compute the estimate θ̂.
After fitting themodel (6), the survival function for Y (the survival function for T comes easily by inverting the equation),

say P(Y ≥ y) = S(y; λ, σ , βT), can be readily estimated by

S(y; λ̂, σ̂ , β̂
T
) = exp

{
λ̂ exp(xT̂β)

[
1− exp

[
exp

(
y− xT̂β
σ̂

)]]}
.

Under conditions that are fulfilled for the parameter vector θ in the interior of the parameter space but not on the
boundary, the asymptotic distribution of

√
n(̂θ − θ) is multivariate normal Np+2(0, K(θ)−1), where K(θ) is the expected

informationmatrix. The asymptotic covariancematrix K(θ)−1 of θ̂ can be approximated by the inverse of the (p+1)×(p+1)
observed informationmatrix−L̈θθ and then the asymptotic inference for the parameter vector θ can be based on the normal
approximation Np+2(0,−L̈

−1
θθ ) for θ̂. The elements of the observed information matrix

−L̈θθ = {−L̈r,s} =

−Lλλ −Lλσ −Lλβj
. −Lσσ −Lσβj
. . −Lβjβs


for j, s = 1, . . . , p are given in Appendix.
The asymptotic multivariate normal Np+2(0,−L̈

−1
θθ ) distribution can be used to construct approximate confidence

intervals for some parameters in θ and for the hazard and survival functions. In fact, an 100(1− γ )% asymptotic confidence
interval for each parameter θr can be expressed as

ACIr =
(
θ̂r − zγ /2

√
−̂L̈
r,r
, θ̂r + zγ /2

√
−̂L̈
r,r
)
,

where −̂L̈
r,r
denotes the rth diagonal element of the inverse of the estimated observed information matrix −̂L̈

−1

θθ and zγ /2
is the quantile 1− γ /2 of the standard normal distribution. The asymptotic normality is also useful for testing goodness of
fit of some sub-models and for comparing some special sub-models using the likelihood ratio (LR) statistic.
We consider the partition θ = (θT1, θ

T
2)
T, where θ1 is a subset of the parameters of interest and θ2 is a subset of the

remaining parameters. The LR statistic for testing the null hypothesis H0 : θ1 = θ
(0)
1 versus the alternative hypothesis

H1 : θ1 6= θ
(0)
1 is given by w = 2{`(̂θ) − `(̃θ)}, where θ̃ and θ̂ are the estimates under the null and alternative hypotheses,

respectively. The statistic w is asymptotically (as n → ∞) distributed as χ2k , where k is the dimension of the subset of
parameters θ1 of interest.

3.1. Discriminating among nonnested models

Carrasco et al. (2008) introduced a location-scale regressionmodel based on themodifiedWeibull distribution that has a
bathtub-shaped failure rate function. Thus, the LEW regressionmodel (6) seems a good alternative to their model. However,
these two models are nonnested. For comparison of nonnested survival models, Klein and Moeschberger (1997) suggested
the criterions AIC (Akaike information criterion) and BIC (Bayesian information criterion) given by

AIC = −2 log(likelihood)+ 2(p+ 2+ k) and BIC = −2 log(likelihood)+ (p+ k) log(n),

where p is the number of estimated parameters and k = 2 for both models. The model with the smallest criterion (AIC or
BIC value) can be selected as the preferred model.
An alternative generalized LR statistic which can be used for discriminating among nonnested models is discussed in the

book of Cameron and Trivedi (1998, p. 184). Consider choosing between two nonnested models - model Fθ with density
function f (yi|xi, θ) and model Gγ with density function g(yi|xi, γ). This statistic is a distance between the two models
measured in terms of the Kullback–Liebler information criterion. It is defined by

TLR,NN =

{
1
√
n

n∑
i=1

log
f (yi|xi, θ̂)
g(yi|xi, γ̂)

}
÷

1n
n∑
i=1

(
log
f (yi|xi, θ̂)
g(yi|xi, γ̂)

)2
−

(
1
n

n∑
i=1

log
f (yi|xi, θ̂)
g(yi|xi, γ̂)

)2 . (8)

For strictly nonnested models, the statistic (8) converges in distribution to a standard normal distribution under the null
hypothesis of equivalence of the models. Thus, the null hypothesis is not rejected if |TLR,NN | ≤ z α2 . On the other hand, we
reject at significance level α the null hypothesis of equivalence of the models in favor of model Fθ being better (or worse)
than model Gγ if TLR,NN > zα (or TLR,NN > −zα).
We shall use (8) in Section 5 for comparing the fitted LEW and LMWmodels.
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4. Residual analysis

As is already known, departures from the error assumption as well as the presence of outliers in regression models
involve examining the residuals. The martingale residuals are recommended in counting processes and they are defined by
rMi = δi + log{S(yi; θ̂)}, where δi = 0 (δi = 1) denotes a censored (uncensored) observation and S(yi; θ̂) was presented in
Section 3. A disadvantage of the martingale residual is that the distribution of rMi is markedly skewed, and so it fails to have
similar properties to those of the normal distribution. In fact, rMi ranges from a minimum value −∞ to a maximum value
+1. For lifetime regression models some extensions are needed to the above definition for model checking procedures. A
transformation to make the distribution of the transformed residual as normal as possible would be more appropriate for
performing residual analysis.
Therneau et al. (1990) discussed a possible transformation of the martingale residual based on the deviance component

residual for Cox’s proportional hazard model with no time-dependent explanatory variables. It turns out that the ith
martingale-type residual can be written as

rDi = sign(rMi){−2[rMi + δi log(δi − rMi)]}
1
2 ,

where rMi is the corresponding martingale residual. A motivation for this transformation is to obtain a new residual
symmetrically distributed around zero. A more extensive examination of this residual is given by Leiva et al. (2007) and
Ortega et al. (2008). Hence, the martingale-type residual for the LEW regression model is equal to

rDi =



√
2 sign

{
1+ λ̂ exp(µ̂)

[
1− exp{exp(ẑi)}

]} {
−1− λ̂ exp(µ̂)

[
1− exp(exp(ẑi))

]
− log

{
−λ̂ exp(µ̂)

[
1− exp(exp(ẑi))

]}} 12
if i ∈ F

√
2 sign

{
λ̂ exp(µ̂)

[
1− exp(exp(ẑi))

]} {
−λ̂ exp(µ̂)

[
1− exp(exp(ẑi))

]} 12
if i ∈ C .

We have developed some Monte Carlo simulations for the LEW regression model that indicate that the empirical
distribution of the martingale-type residual is in agreement with the standard normal distribution. Further, Ortega et al.
(2008) showed that the same result holds for the log-Weibull regression model. We can use normal probability plots for rDi
with simulated envelopes for both LEW and LMWmodels, as suggested by Atkinson (1985), obtained as follows: (i) fit the
model and generate a sample of n-independent observations using the fitted model as if it was the true model; (ii) fit the
model to the generated sample using (δi, xi) as the data set and compute the values of the residuals; (iii) repeat steps (i) and
(ii) m times; (iv) obtain ordered values of the residuals, r∗(i)v, i = 1, 2, . . . , n and v = 1, 2, . . . ,m; (v) consider n sets of m
ordered statistics and for each set compute themean,minimumandmaximumvalues; (vi) plot these values and the ordered
residuals of the original sample against the normal scores. The minimum and maximum values of the m ordered statistics
yield the envelope. Observations corresponding to residuals outside the limits provided by the simulated envelope need
further investigation. Additionally, if a considerable proportion of points falls outside the envelope, then we have evidence
against the adequacy of the fitted model. Plots of such residuals against the fitted values can also be useful.

5. Lung cancer survival data

In order to demonstrate the proposedmethodology, we use the lung cancer data set reported by Prentice (1973) referring
to the survival time (t) and the explanatory variables: performance status at diagnosis (x1), a measure of general fitness on
a scale from 0 to 100, the age of the patient (x2) and the number of months from diagnosis of cancer (x3). In addition, each
patient was assigned one of two chemotherapy treatments (standard or test) and the tumors were classified into four types:
large, adeno, small and squamous. The data contain n = 40 observations of which 3 are censored. Lawless (2003) fitted a
Weibull regression model to analyze these data which was reasonable as a first model.
Initially, we consider a device called the total time on test (TTT) plot (Aarset, 1987), which can help us in choosing a

particular model. The TTT plot is obtained by plottingG(r/n) = [
∑r
i=1 Ti:n+ (n− r)Tr:n]/

∑n
i=1 Ti:n, where r = 1, . . . , n and

Ti:n, for i = 1, . . . , n, are the order statistics of the sample, against r/n (Mudholkar et al., 1996). Fig. 2 shows the TTT plot for
these data.
We centered only the explanatory variables x1, x2 and x3 (Lawless, 2003) and work with the following model

yi = β0 + β1(xi1 − x1)+ β2(xi2 − x2)+ β3(xi3 − x3)+
7∑
p=4

βpxip + σ zi, i = 1, . . . , 40, (9)

where variable yi = log(ti) follows the LEW distribution given in (2), the random error zi is specified by the standard LEW
distribution (3) and

xi4 = 1 if tumor type is squamous, 0 otherwise;
xi5 = 1 if tumor type is small, 0 otherwise;
xi6 = 1 if tumor type is adeno, 0 otherwise;
xi7 = 0 if treatment is test, 1 otherwise.
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Fig. 2. TTT plot on lung cancer survival data.

Table 1
Estimates of the parameters for the LEW and LMW regression models fitted to the complete lung cancer data set.

Parameter LEW LMW
Estimate SE p-value Estimate SE p-value

λ 0.0020 0.0007 – – – –
α – – – −4.5636 0.7811 –
σ 1.3116 0.2772 – 1.2930 0.2676 –
β0 4.3363 0.8442 <0.0001 5.4027 0.5656 <0.0001
β1 0.0647 0.0065 <0.0001 0.0673 0.0090 <0.0001
β2 0.0433 0.0180 0.0161 0.0331 0.0184 0.0727
β3 0.0972 0.0210 <0.0001 0.0830 0.0224 0.0002
β4 3.4403 2.0213 0.0888 2.6831 1.9948 0.1786
β5 −0.5825 0.2973 0.0501 −0.5324 0.3360 0.1131
β6 −2.3091 0.5074 <0.0001 −2.0155 0.5457 0.0002
β7 −0.4672 0.3213 0.1459 −0.3640 0.3571 0.3080

We fitted the LMW and LEW regression models to these data. Table 1 gives the estimates (and their standard errors) of
the parameters for both regression models. Then, we select the best model based on the values of the statistics AIC and BIC .
The statistic AIC yields the value 130.248 for the LMWmodel and 128.208 for the LEWmodel, whereas the statistic BIC yields
139.551 for the LMWmodel and 137.51 for the LEW model. The values of these statistics indicate that the LEW regression
model is more adequate to explain the data set than the LMW model. Additionally, we perform the LR test of nonnested
models as described in Section 3.1, where here f (yi|xi, θ) and g(yi|xi, γ) denote the density function (2) of our model and
the density (5) of Carrasco et al.’s (2008) model, respectively. The generalized LR test statistic yields TRLR,NN = 16.1520.
Since TRLR,NN > 1.96, we reject at significance level 0.05 the null hypothesis of equivalence of the LMW and LEW models.
Further, the value of this statistic is in agreement with the previous result and really help us in selecting the LEW regression
model.
The current estimates of the regression parameters are similar for the LEWand LMWmodels but their standard errors are

different. Thus, the conclusionsmay be different for bothmodels.We continue the analysis through the residual plots, which
are useful to evaluate both fitted models. In order to detect possible outliers and departures from the error distributional
assumptions of the LMW and LEW models, Figs. 3 and 4 show the plots of the residuals against the fitted values and the
normal plots, where both generated envelopes are calculated for the martingale-type residuals.
Fig. 3(a) indicates that the residuals are not randomly scattered around zero for the LMW model. This plot also shows

that the residuals of the observations 10 and 25 are possible outliers, i.e. are not in the interval (−3, 3). These observations
are uncensored and have smaller survival times. The appearance of Fig. 3(b) gives a much better randomly scattered plot
of the residuals around zero for the LEW model. It also shows that the LEW regression model is more appropriate to fit the
data since it does not present outliers.
Further, the envelope plots in Fig. 4(a) and (b) of the martingale-type residuals against the order statistics of the normal

distribution for both models clearly indicate that the LEW distribution is more suitable for modeling the current data than
the LEW distribution.
In summary, we recommend using the LEW regression model based on the above analysis. Table 1 suggests that x1, x2

and x3 are significant and we can interpret the estimated coefficients as follows: the expected survival time should increase
approximately 4%(e0.0433 × 100%) as the center age (x2) increases one unit, the other variables being fixed. Similar analysis
could be done for the variables x1 and x3. In addition, the treatment does not appear to have sizeable effects, but the adeno
tumor type is an important feature. As the estimate ofβ6 is negative, the patientswhose tumor type is adeno present smaller
survival probabilities than those patients with large tumor types.
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a b

Fig. 3. Plots of the Martingale-type residuals against the adjusted values from the (a) LMW regression model and (b) LEW regression model.

a b

Fig. 4. Plots of the martingale-type residuals against the order statistics of the normal distribution from the (a) LMW regression model and (b) LEW
regression model.

6. Concluding remarks

There is an extensive literature on theWeibull distribution formodeling lifetime data. However, theWeibull distribution
does not exhibit a bathtub-shaped failure rate function and thus it cannot be used tomodel several lifetime data sets. To cope
with this situation, several generalizations or modifications of the Weibull distribution have been published recently (see,
Phamand Lai (2007)). Xie et al. (2002) introduced amodifiedWeibull distributionwhich exhibits bathtub-shaped failure rate
functions. We define a new distribution via the logarithm of the modified Weibull distribution, the so-called log-extended
Weibull (LEW) distribution, which is able to capture the behavior of a lifetime data set that has a bathtub-shaped failure rate
function. Further, based on this new distribution, we develop a LEW regressionmodel to be competitive to the log-modified
Weibull (LMW) regression model proposed by Carrasco et al. (2008). A lung cancer real data set is reanalyzed to show the
performance of the proposed regression model. In fact, we show that the LEW regression model has better performance
than the LMW regression model for these data. The codes of the programs used for fitting the LEW regression model are
available from the authors upon request.
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Appendix. Matrix of second derivatives L̈θθ

We give the necessary formulas to obtain the second-order partial derivatives of the log-likelihood function. After some
algebraic manipulations, we obtain

Lλλ = −
r
λ2
,

Lλσ =
1
σ

n∑
i=1

zihi exp(xTi β),

Lλβj =
n∑
i=1

xij exp(xTi β)+
1
σ

n∑
i=1

xij exp(xTi β)hi [1− σ exp(−zi)] ,

Lσσ =
r
σ 2
+
1
σ 2

∑
iεF

{zi [2+ exp(zi)(zi + 2)]} +
λ

σ 2

n∑
i=1

zi exp(xTi β)hi [−2− zi(1+ exp(zi))] ,

Lσβj =
1
σ 2

∑
iεF

xij [1+ exp(zi)(1+ zi)]+
λ

σ 2

n∑
i=1

xij exp(xTi β)hi [−1+ zi(σ − 1− exp(zi))] ,

Lβjβs =
1
σ 2

∑
iεF

xijxis exp(zi)+ λ
n∑
i=1

xijxis exp(xTi β)+
λ

σ 2

n∑
i=1

xijxis exp(xTi β)hi
[
2σ − 1− σ 2 exp(−zi)− exp(zi)

]
,

for j, s = 1, 2, . . . , p, where hi = exp{zi + exp(zi)} and zi =
yi−xTi β
σ
.
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