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Introduction

This technical note is written for reviewers who may not have suf-
ficient statistical expertise to provide an informed critique during the
peer-reviewed process, but would like to recommend rejection on the
basis of inappropriate or invalid statistical analysis. This guidance fol-
lows the 10 simple rules format and hopes to provide useful tips and
criticisms for reviewers who find themselves in this difficult position.
These rules are presented for reviewers in an ironic way' that makes
it easier (and hopefully more entertaining) to discuss the issues from
the point of view of both the reviewer and author — and to caricature
both sides of the arguments. Some key issues are presented more for-
mally in (non-ironic) appendices.

There is a perceived need to reject peer-reviewed papers with the
advent of open access publishing and the large number of journals
available to authors. Clearly, there may be idiosyncratic reasons to
block a paper - to ensure your precedence in the literature, personal
rivalry etc. - however, we will assume that there is an imperative to
reject papers for the good of the community: handling editors are
often happy to receive recommendations to decline a paper. This is
because they are placed under pressure to maintain a high rejection
rate. This pressure is usually exerted by the editorial board (and pub-
lishers) and enforced by circulating quantitative information about
their rejection rates (i.e.,, naming and shaming lenient editors). All
journals want to maximise rejection rates, because this increases
the quality of submissions, increases their impact factor and under-
writes their long-term viability. A reasonably mature journal like
Neuroimage would hope to see between 70% and 90% of submissions

! The points made in this paper rest heavily on irony (Irony from the Ancient Greek
& povelo eironeia, meaning dissimilation or feign ignorance). The intended meaning
of ironic statements is the opposite of their literal meaning.
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rejected. Prestige journals usually like to reject over 90% of the papers
they receive. As an expert reviewer, it is your role to help editors de-
cline papers whenever possible. In what follows, we will provide 10
simple rules to make this job easier:

Rule number one: dismiss self doubt

Occasionally, when asked to provide an expert opinion on the de-
sign or analysis of a neuroimaging study you might feel under quali-
fied. For example, you may not have been trained in probability
theory or statistics or - if you have - you may not be familiar with to-
pological inference and related topics such as random field theory. It
is important to dismiss any ambivalence about your competence to
provide a definitive critique. You have been asked to provide com-
ments as an expert reviewer and, operationally, this is now your
role. By definition, what you say is the opinion of the expert reviewer
and cannot be challenged — in relation to the paper under consider-
ation, you are the ultimate authority. You should therefore write
with authority, in a firm and friendly fashion.

Rule number two: avoid dispassionate statements

A common mistake when providing expert comments is to pro-
vide definitive observations that can be falsified. Try to avoid phrases
like “I believe” or “it can be shown that”. These statements invite a re-
buttal that could reveal your beliefs or statements to be false. It is
much safer, and preferable, to use phrases like “I feel” and “I do not
trust”. No one can question the veracity of your feelings and convic-
tions. Another useful device is to make your points vicariously; for ex-
ample, instead of saying “Procedure A is statistically invalid” it is
much better to say that “It is commonly accepted that procedure A
is statistically invalid”. Although authors may be able to show that
procedure A is valid, they will find it more difficult to prove that it
is commonly accepted as valid. In short, trying to pre-empt a
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prolonged exchange with authors by centring the issues on convic-
tions held by yourself or others and try to avoid stating facts.

Rule number three: submit your comments as late as possible

It is advisable to delay submitting your reviewer comments for as
long as possible — preferably after the second reminder from the
editorial office. This has three advantages. First, it delays the editorial
process and creates an air of frustration, which you might be able to
exploit later. Second, it creates the impression that you are extremely
busy (providing expert reviews for other papers) and indicates that
you have given this paper due consideration, after thinking about it
carefully for several months. A related policy, that enhances your
reputation with editors, is to submit large numbers of papers to
their journal but politely decline invitations to review other people's
papers. This shows that you are focused on your science and are
committed to producing high quality scientific reports, without the
distraction of peer-review or other inappropriate demands on your
time.

Rule number four: the under-sampled study

If you are lucky, the authors will have based their inference on less
than 16 subjects. All that is now required is a statement along the
following lines:

“Reviewer: Unfortunately, this paper cannot be accepted due to the
small number of subjects. The significant results reported by the
authors are unsafe because the small sample size renders their design
insufficiently powered. It may be appropriate to reconsider this work
if the authors recruit more subjects.”

Notice your clever use of the word “unsafe”, which means you are
not actually saying the results are invalid. This sort of critique is
usually sufficient to discourage an editor from accepting the paper;
however - in the unhappy event the authors are allowed to respond
- be prepared for something like:

“Response: We would like to thank the reviewer for his or her com-
ments on sample size; however, his or her concerns are statistically
misplaced. This is because a significant result (properly controlled
for false positives), based on a small sample indicates the treatment
effect is actually larger than the equivalent result with a large sample.
In short, not only is our result statistically valid. It is quantitatively
stronger than the same result with a larger number of subjects.”

Unfortunately, the authors are correct (see Appendix 1). On the
bright side, the authors did not resort to the usual anecdotes that
beguile handling editors. Responses that one is in danger of eliciting
include things like:

“Response: We suspect the reviewer is one of those scientists who
would reject our report of a talking dog because our sample size
equals one!”

Or, a slightly more considered rebuttal:

“Response: Clearly, the reviewer has never heard of the fallacy of classi-
cal inference. Large sample sizes are not a substitute for good hypothesis
testing. Indeed, the probability of rejecting the null hypothesis under
trivial treatment effects increases with sample size.”

Thankfully, you have heard of the fallacy of classical inference (see
Appendix 1) and will call upon it when needed (see next rule). When
faced with the above response, it is often worthwhile trying a slightly
different angle of attack; for example?

2 This point was raised by a reviewer of the current paper.

“Reviewer: I think the authors misunderstood my point here: The
point that a significant result with a small sample size is more
compelling than one with a large sample size ignores the increased
influence of outliers and lack-of-robustness for small samples.”

Unfortunately, this is not actually the case and the authors may
respond with:

“Response: The reviewer's concern now pertains to the robustness of
parametric tests with small sample sizes. Happily, we can dismiss this
concern because outliers decrease the type I error of parametric tests
(Zimmerman, 1994). This means our significant result is even less
likely to be a false positive in the presence of outliers. The intuitive
reason for this is that an outlier increases sample error variance
more than the sample mean; thereby reducing the t or F statistic
(on average).”

At this point, it is probably best to proceed to rule six.

Rule number five: the over-sampled study

If the number of subjects reported exceeds 32, you can now try a
less common, but potentially potent argument of the following sort:

“Reviewer: I would like to commend the authors for studying such a
large number of subjects; however, I suspect they have not heard of
the fallacy of classical inference. Put simply, when a study is over-
powered (with too many subjects), even the smallest treatment effect
will appear significant. In this case, although I am sure the population
effects reported by the authors are significant; they are probably triv-
ial in quantitative terms. It would have been much more compelling
had the authors been able to show a significant effect without resort-
ing to large sample sizes. However, this was not the case and I cannot
recommend publication.”

You could even drive your point home with:

“Reviewer: In fact, the neurological model would only consider a find-
ing useful if it could be reproduced three times in three patients. If |
have to analyse 100 patients before finding a discernible effect, one
has to ask whether this effect has any diagnostic or predictive value.”

Most authors (and editors) will not have heard of this criticism
but, after a bit of background reading, will probably try to talk their
way out of it by referring to effect sizes (see Appendix 2). Happily,
there are no rules that establish whether an effect size is trivial or
nontrivial. This means that if you pursue this line of argument dili-
gently, it should lead to a positive outcome.

Rule number six: untenable assumptions (nonparametric analysis)

If the number of subjects falls between 16 and 32, it is probably
best to focus on the fallibility of classical inference — namely its
assumptions. Happily, in neuroimaging, it is quite easy to sound
convincing when critiquing along these lines: for example,

“Reviewer: I am very uncomfortable about the numerous and unten-
able assumptions that lie behind the parametric tests used by the
authors. It is well-known that MRI data has a non Gaussian (Rician)
distribution, which violates the parametric assumptions of their
statistical tests. It is imperative that the authors repeat their analysis
using nonparametric tests.”

The nice thing about this request is that it will take some time to
perform nonparametric tests. Furthermore, the nonparametric tests
will, by the Neyman-Pearson lemma,® be less sensitive than the

3 The Neyman-Pearson lemma states that when performing a hypothesis test, the
likelihood-ratio test is the most powerful test for a given size and threshold.
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Table 1

Some common effect-sizes for a one sample t-test: this simple model has been chosen to highlight the relationship among various forms or measures of effect size. The key things to
take from this table are (i) effect sizes can be unstandardised or standardised — where standardised effect sizes require both the size of the treatment effect and its standard de-
viation; (ii) all standardised effect sizes can be computed from the unstandardised effect size and standard deviation — and constitute different ways of quantifying the same thing;
and (iii) implicitly, all standardised effect sizes can be computed from test statistics, given the degrees of freedom or number of observations. Effect sizes can be true or estimated,
where (point) estimators of unstandardised effect size and standard deviation can be based upon the data used to infer a treatment effect — giving in-sample effect sizes or based

upon independent data - giving out-of-sample predictions of effect size.

Name Form Comment Standardised
Model parameter u The size of the treatment effect — usually reported as a model parameter or regression coefficient (here, the group No
mean)
Cohen's d d= f‘—, = V—% A standardised measure of effect size — the t-statistic divided by the square root of the number of samples Yes
Coefficient of R = uiﬁzaz The proportion of variance explained by the treatment effect Yes
determination
Correlation p=VR? A measure of association — the square root of the coefficient of determination Yes

original likelihood ratio tests reported by the authors — and their sig-
nificant results may disappear. However, be prepared for the follow-
ing rebuttal:

“Response: We would like to thank the reviewer for his or her helpful
suggestions about nonparametric testing; however, we would like to
point out that it is not the distribution of the data that is assumed to
be Gaussian in parametric tests, but the distribution of the random
errors. These are guaranteed to be Gaussian for our data, by the Cen-
tral limit theorem,* because of the smoothing applied to the data and
because our summary statistics at the between subject level are linear
mixtures of data at the within subject level.”

The authors are correct here and this sort of response should be
taken as a cue to pursue a different line of critique:

Rule number seven: question the validity (cross validation)

At this stage, it is probably best to question the fundaments of the
statistical analysis and try to move the authors out of their comfort
zone. A useful way to do this is to keep using words like validity
and validation: for example,

“Reviewer: I am very uncomfortable about the statistical inferences
made in this report. The correlative nature of the findings makes it
difficult to accept the mechanistic interpretations offered by the au-
thors. Furthermore, the validity of the inference seems to rest upon
many strong assumptions. It is imperative that the authors revisit
their inference using cross validation and perhaps some form of mul-
tivariate pattern analysis.”

Hopefully, this will result in the paper being declined or - at least
- being delayed for a few months. However, the authors could re-
spond with something like:

“Response: We would like to thank the reviewer for his or her helpful
comments concerning cross validation. However, the inference made
using cross validation accuracy pertains to exactly the same thing as
our classical inference; namely, the statistical dependence (mutual
information) between our explanatory variables and neuroimaging
data. In fact, it is easy to prove (with the Neyman-Pearson lemma)
that classical inference is more efficient than cross validation.”

This is frustrating, largely because the authors are correct® and it is
probably best to proceed to rule number eight.

4 The central limit theorem states the conditions under which the mean of a suffi-
ciently large number of independent random variables, each with finite mean and var-
iance, will be (approximately) normally distributed.

5 Inferences based upon cross validation tests (e.g., accuracy or classification perfor-
mance) are not likelihood ratio tests because, by definition, they are not functions of
the complete data whose likelihood is assessed. Therefore, by the Neyman-Pearson
lemma, they are less powerful.

Rule number eight: exploit superstitious thinking

As a general point, it is useful to instil a sense of defensiveness in
editorial exchanges by citing papers that have been critical of neuro-
imaging data analysis. A useful entree here is when authors have
reported effect sizes to supplement their inferential statistics (p
values). Effect sizes can include parameter estimates, regression
slopes, correlation coefficients or proportion of variance explained
(see Table 1 and Appendix 2). Happily, most authors will have
reported some form of effect size, exposing themselves to the follow-
ing critique:

“Reviewer: It appears that the authors are unaware of the dangers of
voodoo correlations and double dipping. For example, they report effect
sizes based upon data (regions of interest) previously identified as sig-
nificant in their whole brain analysis. This is not valid and represents a
pernicious form of double dipping (biased sampling or the non-
independence problem). I would urge the authors to read Vul et al.
(2009) and Kriegeskorte et al. (2009) and present unbiased estimates
of their effect size using independent data or some form of cross
validation.”

Do not be deterred by the fact that reporting effect sizes is gen-
erally considered to be good practice — the objective here is to cre-
ate an atmosphere in which punitive forces could expose the
darkest secrets of any author, even if they did not realise they had
them. The only negative outcome will be a response along the fol-
lowing lines:

“Response: We thank the reviewer for highlighting the dangers of
biased sampling but this concern does not apply to our report: by def-
inition, the effect size pertains to the data used to make an inference —
and can be regarded as an in-sample prediction of the treatment effect.
We appreciate that effect sizes can overestimate the true effect size; es-
pecially when the treatment effect is small or statistical thresholds are
high. However, the (in-sample) effect size should not be confused with
an out-of-sample prediction (an unbiased estimate of the true effect
size). We were not providing an out-of-sample prediction but simply
following APA guidelines by supplementing our inference (“Always
present effect sizes for primary outcomes.” Wilkinson and APA Task
Force on Statistical Inference, 1999, p. 599).”

In this case, the authors have invoked the American Psychological
Association (APA) guidelines (Wilkinson and APA Task Force on Sta-
tistical Inference, 1999) on good practice for statistical reporting in
journals. It is difficult to argue convincingly against these guidelines
(which most editors are comfortable with). However, do not be too
disappointed because the APA guidelines enable you to create a
Catch-22 for authors who have not reported effect sizes:

“Reviewer: The authors overwhelm the reader with pretty statistical
maps and magnificent p-values but at no point do they quantify the
underlying effects about which they are making an inference. For
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example, their significant interaction would have profoundly different
implications depending upon whether or not it was a crossover inter-
action. In short, it is essential that the authors supplement their infer-
ence with appropriate effect sizes (e.g., parameter estimates) in line
with accepted practice in statistical reporting (“Always present effect
sizes for primary outcomes.” Wilkinson and APA Task Force on Statis-
tical Inference, 1999, p. 599).”

When they comply, you can apply rule eight — in the fond hope
they (and the editors) do not appreciate the difference between in-
sample effect sizes and out-of-sample predictions.

Rule number nine: highlight missing procedures

Before turning to the last resort (rule number ten). It is worth-
while considering any deviation from usual practice. We are particu-
larly blessed in neuroimaging by specialist procedures that can be
called upon to highlight omissions. A useful critique here is:

“Reviewer: The author's failure to perform retinotopic mapping ren-
ders the interpretation of their results unsafe and, in my opinion, un-
tenable. Please conform to standard practice in future.”

Note how you have cleverly intimated a failure to conform to stan-
dard practice (which most editors will assume is good practice). In
most cases, this sort of critique should ensure a rejection; however,
occasionally, you may receive a rebuttal along the following lines:

“Response: We would like to thank the reviewer for his or her helpful
comments: however, we like to point out that our study used ol-
factory stimuli, which renders the retinotopic mapping somewhat
irrelevant.”

Although you could debate this point, it is probably best to pro-
ceed to rule number ten.

Rule number ten: the last resort

If all else fails, then the following critique should secure a
rejection:

“Reviewer: Although the authors provide a compelling case for their
interpretation; and the analyses appear valid if somewhat impene-
trable, I cannot recommend publication. I think this study is interest-
ing but colloquial and would be better appreciated (and assessed) in
a more specialised journal.”

Notice how gracious you have been. Mildly laudatory comments of
this sort suggest that you have no personal agenda and are deeply ap-
preciative of the author's efforts. Furthermore, it creates the impression
that your expertise enables you not only to assess their analyses, but
also how they will be received by other readers. This impression of
benevolence and omnipotence makes your final value judgement
all the more compelling and should secure the desired editorial
decision.

Conclusion

We have reviewed some general and pragmatic approaches to cri-
tiquing the scientific work of others. The emphasis here has been on
how to ensure a paper is rejected and enable editors to maintain an
appropriately high standard, in terms of papers that are accepted
for publication. Remember, as a reviewer, you are the only instrument
of selective pressure that ensures scientific reports are as good as they
can be. This is particularly true of prestige publications like Science
and Nature, where special efforts to subvert a paper are sometimes
called for.
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Appendix 1. The fallacy of classical inference

These appendices revisit some of the issues in the main text in
greater depth — and non-ironically. The first appendix presents an
analysis of effect size in classical inference that suggests the optimal
sample size for a study is between 16 and 32 subjects. Crucially, this
analysis suggests significant results from small samples should be
taken more seriously than the equivalent results in oversized studies.
Furthermore, studies with more than 50 subjects may expose them-
selves to trivial effects, which can be mediated by inconsistent and
low-prevalence effects. The somewhat counterintuitive implication
is that overpowered studies can lose integrity and should be inter-
preted with caution. This loss of integrity is due to a fallacy of classical
inference; which states that - with sufficient power - the null hy-
pothesis will be rejected with probability one in the presence of a
trivial effect. These points are illustrated quantitatively in terms of ef-
fect sizes and loss-functions.

Sample sizes

The question “how many subjects constitute a study?” preoc-
cupies many fields of empirical study and yet there is a surprising
small literature on the subject (Lenth, 2001). General references in-
clude Cohen (1988), Desu and Raghavarao (1990), Lipsey (1990),
Shuster (1990), and Odeh and Fox (1991). See Maxwell et al.
(2008) for a recent review of sample size planning in relation to pa-
rameter estimation in psychology and Friston et al. (1999) for a treat-
ment of group studies in neuroimaging. Recently, there has been a
pressure to increase sample sizes in functional neuroimaging; both
in terms of editorial requirements and the incidence of large cohort
studies (e.g., Lohrenz et al.,, 2007). What follows provides a peer-
reviewed citation that allows researchers to defend themselves
against the critique that their study is underpowered. This is particu-
larly relevant for functional neuroimaging, where the cost of large
sample studies can be substantial.

Sample size “must be big enough that an effect of such magnitude
as to be of scientific significance will also be statistically significant. It
is just as important, however, that the study not be too big, where an ef-
fect of little scientific importance is nevertheless statistically detectable”
(Lenth, 2001; our emphasis). In what follows, we address the balance
between these requirements in terms of effect sizes. In brief, we will
appeal to a fallacy of classical inference to show that studies can be
overpowered and that these studies are sensitive to trivial effects.
The arguments presented below are elementary and general: they
do not depend upon domain-specific treatment effects (e.g., activa-
tions) or levels of noise. In fact, the arguments are sufficiently simple
they can be articulated with a couple of heuristics and equations. We
first review the notion of standardised effect sizes and see how effect
and sample size combine to affect sensitivity. This appendix con-
cludes with a straightforward loss-function analysis that suggests
there is an optimal sample size for any given study.

Sample sizes and functional neuroimaging

Between-subject analyses are now commonplace in most applica-
tions of neuroimaging. These are usually based upon the summary
statistic approach (Holmes and Friston, 1998), where estimates of ac-
tivations or treatment effects are harvested from within-subject
(first-level) analyses and then passed to between-subject (second-
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level) t-tests. The basic idea is to test for treatment effects that are
large in relation to inter-subject variation. In classical inference, this
usually proceeds by modelling each sample or subject-specific mea-
surement as a random Gaussian deviation about a group mean effect
1. An effect is declared significant when the probability of obtaining
the samples - under the null hypothesis that the mean is zero - is suf-
ficiently small, usually p<0.05. However, the fallacy of this approach
is that the null hypothesis is always false (because the probability of
two groups being exactly the same is zero) and can always be
rejected with sufficient degrees of freedom or power. To understand
this more formally, one can quantify deviations from the null hypoth-
esis — this is the effect size:

Effect size

Effect size measures the strength of a deviation from the null hy-
pothesis. Usually, the term effect size refers to the estimate of an un-
known true effect size based on the data at hand. In this appendix, we
will distinguish between true and estimated effect sizes where neces-
sary and assume that effect sizes are standardised. In other words, the
(true) size of the effect is expressed relative to its (true) standard de-
viation:

d=H 1
o

For simplicity, we only consider effect sizes in the context of a
one-sample t-test, noting that most classical inferences under para-
metric assumptions can be reduced to a t-test. The standardised effect
size is the underlying deviation from the mean under the null hypoth-
esis — which we will assume is zero - divided by the standard devia-
tion over samples or subjects. Cohen's d can be regarded as a point
estimator of (the true) effect size and is based on the sample mean
and sample standard deviation. Standardised effect sizes allow us to
talk in general terms without having to worry about the amplitude
of treatment and random effects. Furthermore, because we are deal-
ing with between-subject comparisons, we can ignore the distinction
between fixed and mixed-effects models and the composition of
random effects — these issues have been considered previously
from a Bayesian and classical perspective (Friston et al., 2002, 2005,
respectively).

Cohen (1988) divides effect sizes into large, medium and small.
We will extend this to cover trivial effect sizes; where large effect
sizes are about one (the mean has the same size as the standard devi-
ation), medium effect sizes are about a half, small effect sizes are a
quarter and trivial effect sizes are one eighth (see Table 2). In what
sense are trivial effect sizes trivial? Consider the following example:
imagine we compared the intelligence quotient (IQ) between the pu-
pils of two schools. When comparing two groups of 800 pupils, we
found mean IQs of 107.1 and 108.2, with a difference of 1.1. Given
that the standard deviation of IQ is 15, this would be a trivial effect
size (less than two). In short, although the differential IQ may be ex-
tremely significant, it is scientifically uninteresting — to all intents
and purposes, the pupils at both schools have the same 1Q. Now ima-
gine that your research assistant had the bright idea of comparing the

Table 2

Banding of standardised effect sizes and the associated discriminability (expressed in
terms of classification accuracy) and consistency (population prevalence, under a bino-
mial model).

Effect size Cohen's d Classification accuracy Population prevalence
Large ~1 ~70% ~50%

Medium ~1/2 ~60% ~20%

Small ~1/4 ~55% ~6%

Trivial ~1/8 ~52.5% ~1%

None 0 50% 0%

IQ of students who had and had not recently changed schools. On
selecting 16 students who had changed schools within the past
5 years and 16 matched pupils who had not, she found an IQ differ-
ence of 11.6, where this medium effect size just reached significance.
This example highlights the difference between an uninformed over-
powered hypothesis test that gives very significant, but uninforma-
tive results and a more mechanistically grounded hypothesis that
can only be significant with a meaningful effect size.

Another quantitative interpretation of effect size appeals to diag-
nosis or classification: effect sizes are small when they cannot dis-
criminate between subjects that do and do not show an effect. This
is shown in Fig. 1, where the distributions of (standardised) samples
from populations with different true effect sizes are plotted, under
Gaussian assumptions. If we use the optimal threshold or criterion
of d/2 - to classify a subject as showing an effect - we can quantify

sample distributions
0.4 T
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Fig. 1. Upper panel: distributions of samples from populations with different (standar-
dised) effect sizes. These canonical effect sizes correspond to “large”, “medium”,
“small”, “trivial” and “none” (denoted by the vertical broken lines). Lower panel: clas-
sification accuracy as a function of effect size. This is the area under the distributions to
the right of an optimal threshold; this threshold is half-way between the mean of each
group and zero.
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the accuracy of classification in terms of effect size. The accuracy is
simply the area above threshold under each distribution:

o

fN(Z:d,l)dz. 2
d2

The lower panel of Fig. 1 shows classification accuracy as a func-
tion of true effect size. For large effect sizes, we would correctly clas-
sify a responsive subject about 70% of the time. However, if we
consider trivial effect sizes, we would be just above chance classifica-
tion at about 52.5% (see Table 2). In other words, given a trivial effect
size, we can (effectively) do no better than chance in deciding wheth-
er a given subject showed a treatment effect or not. Note that this
way of framing the magnitude of effect sizes does not care about
the source of random effects. These could be true variations in the un-
derlying response from subject to subject or reflect noisy measure-
ments of a consistent response. Operationally, the composition or
source of these random fluctuations is irrelevant — both conspire to
make trivial effect sizes too small for diagnosis or discrimination.

The quantitative nature of effect sizes can also be seen if we as-
sume that subjects are sampled from one of two groups at random.
In this binomial model, one group expresses the effect and the other
does not. The random effects here depend on how subjects are select-
ed from one group relative to another. Under this binomial model, we
can express the effect size in terms of the proportion of the popula-
tion that shows the effect +y. This is given by

d= Y . 3
VYA=y? ¥y (1-y)

Fig. 2 shows the true effect size as a function of the prevalence of
subjects showing an effect. Here, an effect size of one means that only
half the subjects show an effect (e.g. activation). In other words, to
say that a response occurred more often than not - in a subject sam-
pled at random - we would require a large effect size or more. A small
effect size corresponds to a prevalence of about 6%. In other words, a
small effect size means that a small minority of subjects exhibit an ef-
fect, under this binomial model. Crucially, only 1% of the population

prevalence and effect-size
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Fig. 2. Standardised effect size as a function of prevalence or the proportion of a popu-
lation who express an effect. In this example, subjects are selected from one of two
groups that express an effect, or not, with no measurement error (the binomial
model in the main text).

needs to show an effect to induce a trivial effect size. Clearly, this
model of random effects violates parametric assumptions and
would call for nonparametric tests. However, it serves as a useful heu-
ristic to show that small effect sizes can arise when the population
shows inconsistent, low-prevalence effects.

The Lindley paradox and the fallacy of classical tests

So why are we worried about trivial effects? They are important
because the probability that the true effect size is exactly zero is itself
zero and could cause us to reject the null hypothesis inappropriately.
This is a fallacy of classical inference and is not unrelated to Lindley's
paradox (Lindley, 1957). Lindley's paradox describes a counterintui-
tive situation in which Bayesian and frequentist approaches to hy-
pothesis testing give opposite results. It occurs when; (i) a result is
significant by a frequentist test, indicating sufficient evidence to re-
ject the null hypothesis d=0 and (ii) priors render the posterior
probability of d =0 high, indicating strong evidence that the null hy-
pothesis is true. In his original treatment, Lindley (1957) showed that
- under a particular form of prior on the effect size - the posterior
probability of the null hypothesis being true, given a significant test,
approaches one as sample-size increases. This behaviour is cited
when cautioning against oversized studies: “Moreover, one should
be cautious that extremely large studies may be more likely to find
a formally statistical significant difference for a trivial effect that is
not really meaningfully different from the null” (Ioannidis, 2005).
Lindley's paradox can be circumnavigated by precluding frequentist
inferences on trivial effect sizes. The main point of this appendix is
that we get this protection for free, if we avoid oversized studies. In
what follows, we pursue this issue in terms of sensitivity of frequen-
tist tests to trivial effects.

Sensitivity and effect sizes

Here, we examine how sensitivity under classical inference de-
pends upon effect and sample sizes. Given a single-sample t-test
and Gaussian assumptions about random effects, it is easy to approx-
imate the sensitivity (1 — ) as a function of effect and sample size n.
Sensitivity is simply the probability of rejecting the null hypothesis
correctly for a fixed specificity, here a=0.05. t-Statistics based on
samples from a population with a true effect size d have a non-
central t-distribution T(t:6,v) with non-centrality parameter 6=
dv/n and degrees of freedom v=n— 1. This means sensitivity is

1-B(d) = TT(t:d\/ﬁn—l)dt
uLoz) 4
a(0) = [ T(t:0,n—1)dt.
u(o)

Where (3(d) is the probability of a Type 1 error and u(a) is the
threshold for the Students t-statistic that controls the false-positive
rate a(0) or specificity under the null hypothesis that d = 0. This sen-
sitivity is shown in image format in Fig. 3 (upper panel). It can be seen
that sensitivity reaches 100% for high effect and sample-sizes. This
iso-sensitivity line (at 60% sensitivity) shows that as sample size in-
creases, one becomes sensitive to smaller effect sizes. This is impor-
tant for two reasons.

First, it shows that if one finds a significant effect with a small
sample size, it is likely to have been caused by a large effect size.
This is important because it means that a significant result in a
small study requires a larger effect size than the equivalent result in
a large-sample study. More formally, for any given t-statistic, Cohen's
effect size d = t//n decreases with the number of subjects. In other
words, if your scientific report is critiqued because your significant re-
sult was based on a small number of subjects, you can point out:
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A loss-function analysis

One way of optimising sample size is to consider what we want to
make an inference about. If we are interested in non trivial effects, we
could create a loss-function that placed sensitivity to large effect sizes
in opposition to sensitivity to trivial effect sizes. For example, if the
cost of detecting an effect was one for trivial and minus one for
large effect sizes. The expected loss would be

This loss-function assumes that the gain in sensitivity to large ef-
fect sizes is offset by an increase in sensitivity to trivial effect sizes.
The ensuing cost function is shown in Fig. 4 (upper panel) and has a
minimum at around n=16. In short, if we wanted to optimise the
sensitivity to large effects but not expose ourselves to trivial effects,
sixteen subjects would be the optimum number. One could argue
that sensitivity to medium effects was as important as insensitivity
to trivial effects (the ensuing loss-function ¢ = B(3)—pB(1) is shown

sample size in the lower panel and has a minimum at 50 subjects, which concurs
1 —=
Loss-function
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Fig. 3. Upper panel: sensitivity as a function of effect and sample-size. White corre-
sponds to 100% sensitivity. The solid line is an iso-contour at 60% sensitivity. Lower 1
panel: selected sensitivity curves as a function of sample-size for the four canonical ef-
fect sizes in Fig. 1. 0.8 E 1 1
=P = LB
“The fact that we have demonstrated a significant result in a relative-
ly under-powered study suggests that the effect size is large. This 041 .
means, quantitatively, our result is stronger than if we had used a
larger sample-size.” 0.2 T
0 - -
The conflation of significance and power is not an infrequent mis-
take. Lenth discusses some common misconceptions like: -0.2F 7
“Not only is it significant, but the test is really powerful!” or “The re- aadl |
sults are not significant ... because the test is not very powerful.” 06k i
(Lenth, 2001). ’
-0.8} 4
The second key observation from Fig. 3 is that the sensitivity to

trivial effect sizes increases with sample size (lower panel). Ultimate-
ly, with very large sample sizes, this sensitivity will reach 100%. This
means that large cohort designs are sensitive to trivial effects and
should be interpreted with caution. This suggests that there is some
optimal compromise between under and overpowered designs:

A . . . . . .
0 20 40 60 80 100 120 140

sample size

Fig. 4. Loss-functions pitting sensitivity to large (upper panel) and medium (lower
panel) effects against sensitivity to trivial effects.
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with the conclusions of Simon, 1987). However, recall that medium
effect sizes only support a 60% classification accuracy and could be
caused by a prevalence of just 20% under our binomial heuristic
(see Table 2).

It is easy to estimate the standardised effect size, this is just the t-
value divided by the square root of the number of subjects. This fol-
lows because the t-statistic t = \/nd, where d=t/\/n is Cohen's
point estimator of effect size. Fig. 5 shows d = u(a)/+/n for a specific-
ity of «=0.05. It can be seen that with 16 subjects one would always
report effect sizes that were estimated to be about 0.4 or above (i.e.
small to medium). However, with 50 subjects it is possible to report
estimated effect sizes that are trivial to small. It is important to note
that the true effect size could be lower because there is uncertainty
about the estimate (see Appendix 2).

Protected inference

Hitherto, we have assumed that inference is based on controlling
false positive rates under the null hypothesis. In the lower panel of
Fig. 3, this control is reflected in the flat line (labelled ‘none’), show-
ing that the sensitivity to null effect sizes is 0.05. In other words, spec-
ificity is the same as sensitivity to null-effects. This somewhat
unconventional perspective on specificity suggests something quite
interesting. It means we can suppress sensitivity, not to null effects
sizes but to trivial effect sizes. This is easy to do by replacing a(0) in
Eq. (4) with

a(d) = ]i T(t:dvn,n—1)dt. 6

u(a)

This fixes the sensitivity of the t-test to a constant and small level
«a(d) if the true effect size is d. Fig. 6 shows the sensitivity to different
effects sizes using a specificity of a(§) = 0.05. This application of clas-
sical inference protects against trivial effects by ensuring sensitivity
to trivial effect sizes is small and does not increase with sample size.
However, it means sensitivity to null effects decreases with sample
size — this is the classical specificity a(0), shown at a different scale
in the lower panel. In other words, to protect oneself against inferring
an effect is present, when it is trivial, one can increase classical spec-
ificity with sample size. Under this protected inference, there is no

minimum Cohen’s

d =u(a)/\n
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Fig. 5. Estimated effect size as a function of sample-size for t-values that control spec-
ificity at 0.05.
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Fig. 6. Upper panel: selected sensitivity curves as a function of sample-size for the four
canonical effect sizes — using protected inference that ensures the sensitivity to trivial
effect sizes is 0.05. Lower panel: the equivalent sensitivity in classical terms (c.f. the
sensitivity to null effects — “none” in the upper panel).

marginal cost to increasing the number of samples because 3(3) =
0.05 is fixed (see Eq. (6)) and one could sample as many subjects as
possible.

Conclusion

In conclusion, we have framed a fallacy of classical inference in
terms of effect sizes and have argued that the optimum experimental
design should sensitize inference to large effect sizes, while desensi-
tizing inference to trivial effect sizes. For classical inference based
on «(0), this leads to an optimal number of subjects of about 16.
Clearly, the arguments above are heuristic and rely upon a fairly
rough categorization of effect sizes. However, this treatment is gener-
al and reinforces the concept that designs can be overpowered. In
short, if you cannot demonstrate a significant effect with sixteen sub-
jects, it is probably not worth demonstrating. Having said this, the
adage “you can never have enough data” is also true, provided one
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takes care to protect against inference on trivial effect sizes — for ex-
ample using protected inference as described above.

One could argue that small or even trivial effects are interesting, if
they are expressed consistently over subjects but measured inaccu-
rately. This is because a trivial standardised effect size could reflect
a large effect size that has been dwarfed by noise. However, there is
no way of knowing whether inter-subject variability is due to true
variations in an effect or measurement noise. Without an indepen-
dent way of partitioning the error variance, one cannot infer whether
the true effect size differs from that measured. In this sense, it is prob-
ably best not to report p-values associated with trivial effect sizes, un-
less they are qualified.

Can true but trivial effect sizes can ever be interesting? It could be
that a very small effect size may have important implications for un-
derstanding the mechanisms behind a treatment effect — and that
one should maximise sensitivity by using large numbers of subjects.
The argument against this is that reporting a significant but trivial ef-
fect size is equivalent to saying that one can be fairly confident the
treatment effect exists but its contribution to the outcome measure
is trivial in relation to other unknown effects — that have been mod-
elled as random effects.

In summary, “the best-supported alternative hypothesis changes
with the sample size, getting closer and closer to the null as the sam-
ple size increases. Thus, p-values should not be considered alone, but
in conjunction with point estimates and standard errors or confi-
dence intervals or, even better, likelihood functions” (Senn, 2001;
p202).

Appendix 2. Effect sizes and predictions

In recent years, there has been some disquiet about reporting ef-
fect sizes in neuroimaging. In particular, some authors (and re-
viewers) have expressed concerns about reporting effect sizes in
voxels or regions of interest that have been selected on the basis of
their p-values (Kriegeskorte et al., 2009; Vul et al., 2009). It is not un-
common to ask whether the effect size should be estimated using in-
dependent data and whether the reporting of a p-value and effect size
represents some form of biased sampling or ‘double dipping’. The
purpose of this appendix is to clarify the distinction between infer-
ence and estimation and distinguish between (in-sample) effect
sizes and (out-of-sample) predictions. This distinction resolves ten-
sions between reporting effect sizes and unbiased predictions of
treatment effects.

Inference and (in-sample) effect sizes

We shall be concerned with two sorts of statistical procedures —
inference and estimation. Classical inference means (here) the use
of inferential statistics such as p-values to test hypotheses about
treatment effects. Conversely, estimation is concerned with predict-
ing new outcomes from data in hand — of the sort seen in machine
learning and cross validation. Heuristically, inference is used to test
hypotheses about the presence of a treatment effect (e.g., do subjects
respond to a drug), whereas estimation is concerned with predicting
a treatment effect (e.g., what effect will a drug have on a responsive
patient). The goals of inference and estimation are distinct and call
on different procedures.

Classical inference involves rejecting the null hypothesis based on
an inferential statistic, such as a t-statistic and a suitably adjusted p-
value. It is standard practice to complement the inferential statistic
with an (in-sample) effect size — a practice encouraged by the APA
Task Force on Statistical Inference (Wilkinson and APA Task Force
on Statistical Inference, 1999). In this context, an in-sample effect
size is a descriptive statistic that measures the magnitude of a treat-
ment effect, without making any statement about whether this mea-
sure reflects a true effect. These effect sizes complement inferential

statistics such as p-values and facilitate the quantitative interpreta-
tion of a result: see Ferguson (2009) for a fuller discussion. Crucially,
the in-sample effect size is a statement about the data in hand — not
about the true effect size or an estimate given independent (new)
data.

As noted above, effect sizes can be standardised or unstandardised
(see Table 1). Examples of standardised effect sizes include Cohen's d,
the correlation coefficient and coefficient of determination (or pro-
portion of variance explained). Unstandardised effect sizes include
parameter estimates and regression coefficients. Standardised effect
sizes express treatment effects relative to random effects and therefore
have a less direct quantitative interpretation — “we usually prefer an
unstandardised measure (regression coefficient or mean difference)
to a standardized measure” (Wilkinson and APA Task Force on Statisti-
cal Inference, 1999, p. 599).

Clearly, large effect sizes and small p-values go hand-in-hand. In
terms of point estimators, the in-sample effect size is proportional
to the corresponding test statistic (see Table 1). This means that (on
average) the in-sample effect size is an overestimate of the true effect
size, because we only report in-sample effect sizes for data with large
test statistics — some of which could be large by chance. This inherent
bias increases for higher (more conservative) thresholds or, alterna-
tively, small effects (Brand et al., 2008). Fig. 7 tries to illustrate this
point using simulated data. It can be seen (in the upper panel) that in-
creasing the threshold will select results that, by chance, have bigger
test statistics and effect sizes. The ensuing bias can be particularly
acute when performing large numbers of univariate tests (as in the
analysis of neuroimaging data) because high thresholds are required
to control false positive rates. In short, high thresholds necessarily in-
flate type Il errors (false negatives) and in-sample effect sizes. This is
the price paid for controlling family wise error rates when testing
multiple hypotheses.

Estimation and (out-of-sample) predictions

The inherent bias above only arises because we fail to report the
effect sizes when the statistical test is not significant. However,
there are situations where this is unavoidable — for example in neu-
roimaging, where one has to select voxels or regions in which to esti-
mate the effect size. In these situations, one can select regions using
inferential statistics and estimate the true size of the effect using in-
dependent data or cross validation schemes; such as split half or
leave-one-out procedures. These estimates of effect size are referred
to as out-of-sample predictions and provide unbiased estimates of
the true effect size. However, if some of the data are used to detect ef-
fects and the remaining data are used for out-of-sample predictions,
significant effects will be missed. This is because the efficiency of
the detection (inference) is comprised by only testing some of the
data — by the Neyman-Pearson lemma. Fig. 7 illustrates this point
and shows that one can either test for effects efficiently, accepting ef-
fect sizes are biased; or one can estimate effect sizes in an unbiased
fashion, accepting that inference is inefficient. Formally, this can be
regarded as an instance of the well-known bias-efficiency (variance)
trade-off. Put informally, you cannot have (detect) your cake and eat
(estimate) it.

Conclusion

The difference between (in-sample) effect sizes and (out-of-
sample) predictions has led to some confusion about how to report
statistical results properly. This confusion can be resolved by distin-
guishing between the use of inferential statistics to detect treatment
effects and the use of out-of-sample predictions to estimate treatment
effects. In short, one can either use classical inference to report signif-
icant effects in terms of p-values and (in-sample) effect sizes. Alterna-
tively, one can use cross validation schemes to provide out-of-sample
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effect sizes and inferential statistics
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Fig. 7. An illustration of the trade-off between bias and efficiency: these results are based upon a simple treatment effect — namely, a large effect size observed in the presence of
random Gaussian effects with a standard deviation of one. Data were simulated for 100 subjects (or regions), each generating 32 samples. The true effect was set at zero for half of
the subjects (or regions) and two thirds for the other half. The data were then analysed using a one sample t-test to test the null hypothesis that the treatment effect was zero. The
data were then split into two (16 sample) halves. The first (training) dataset was used to compute t-statistics, which were thresholded with Bonferroni correction to identify sub-
jects (or regions) for subsequent out-of-sample estimates of the treatment effect. The upper panel shows the in-sample predictions (effect size) plotted against the inferential sta-
tistic (t-statistic). The circled dots correspond to subjects (or regions) that truly expressed an effect. The horizontal line corresponds to the true treatment effect and the vertical line
to the Bonferroni corrected threshold on the t-statistic. This scatterplot shows that effect sizes and inferential statistics are highly correlated and that, necessarily, effect sizes are
generally larger than the true treatment effect — when reported for tests that survive a high threshold. The lower panels compare and contrast the predictions from the classical
inference (full) and a split-half (cross validation) procedure. The left panel (left dots) shows the effect size (in-sample prediction of the treatment effect) for all significant subjects
or voxels. The circled dots correspond to subjects (or regions) showing true effects. The corresponding out-of-sample predictions based on parameter estimates from the second
(test) dataset, selected on the basis of a significant t-test of the first (training) data are shown on the right. These results demonstrate that the out-of-sample predictions are an
unbiased estimate of the true treatment effect — however, there are many fewer subjects (or regions) for which predictions are made, because their detection was less efficient.
The right panel illustrates this in terms of inferential statistics: the dots on the left are the t-statistics from the full analysis of all subjects (or regions) showing a true effect. The
corresponding distribution on the right shows the t-statistics from the same analyses of the training data in the split-half procedure. Not only is the threshold for the split-half
t-statistic higher but also the statistics are generally lower. These results illustrate the fact that one can either have an unbiased (out-of-sample) prediction of the treatment effect,
or an efficient test for discovering treatment effects but not both at the same time.
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