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Abstract

Bayes (1763) introduced the observed likelihood function to statistical inference and pro-

vided a weight function to calibrate the parameter; he also introduced a confidence distribu-

tion on the parameter space but did not provide present justifications. Of course the names

likelihood and confidence did not appear until much later: Fisher (1922) for likelihood and

Neyman (1937) for confidence. Lindley (1958) showed that the Bayes and the confidence

results were different when the model was not location. This paper examines the occurrence

of true statements from the Bayes approach and from the confidence approach, and shows

that the proportion of true statements in the Bayes case depends critically on the presence

of linearity in the model; and with departure from this linearity the Bayes approach can be a

poor approximation and be seriously misleading. Bayesian integration of weighted likelihood

thus provides a first-order linear approximation to confidence, but without linearity can give

substantially incorrect results.

1



1 Introduction

Statistical inference based on the observed likelihood function was initiated by Bayes

(1763). This was however without the naming of the likelihood function or the apparent

recognition that likelihood L0(θ) = f(y0; θ) directly records the amount of probability at an

observed data point y0; such appeared much later (Fisher, 1922).

Bayes’ proposal applies directly to a model with translation invariance that in current

notation would be written f(y− θ); it recommended that a weight function or mathematical

prior π(θ) be applied to the likelihood L(θ), and that the product π(θ)L(θ) be treated as if

it were a joint density for (θ, y). Then with observed data y0 and the use of the conditional

probability lemma, a posterior distribution π(θ|y) = cπ(θ)L0(θ) was obtained; this was

viewed as a description of possible values for θ in the presence of data y = y0. For the

location model as examined by Bayes approach, translation invariance suggests a constant

or flat prior π(θ) = c which leads to the posterior distribution π(θ|y0) = f(y0−θ) and, in the

scalar case, gives the posterior survival probability s(θ) =
∫∞
θ
f(y0−α)dα recording alleged

probability to the right of a value θ.

The probability interpretation that would seemingly attach to this conditional calculation

is as follows: if the θ values that might have been present in the application can be viewed

as coming from the frequency pattern π(θ) with each θ value in turn giving rise to a y value

in accord with the model and if the resulting y values that are close to y0 are examined, then

the associated θ values have the pattern π(θ|y0).

The complication is that π(θ) as proposed is a mathematical construct and correspond-

ingly π(θ|y0) is just a mathematical construct. The argument using the conditional probabil-

ity lemma does not produce probabilities from no probabilities: the probability lemma when

invoked for an application has two distributions as input and one distribution as output;

and it asserts the descriptive validity of the output on the basis of the descriptive validity of

the two inputs; if one of the inputs is absent and an artifact is substituted then the lemma

says nothing, produces no probabilities. Of course other lemmas and other theory may offer

something appropriate.

We will see, however, that something different is readily available and indeed available

2



without the special translation invariance. We will also see that the procedure of augmenting

likelihood L0(θ) with a modulating factor that expresses model structure is a powerful first

step in exploring information contained in Fisher’s likelihood function.

An alternative to the Bayes proposal was introduced by Fisher (1930) as a confidence

distribution. For the scalar-parameter case we can record the percentage position of the

data point y0 in the distribution having parameter value θ,

p(θ) = p(θ; y0) =

∫ y0

−∞
f(y − θ)dy.

This records the proportion of the θ population that is less than the value y0; and for a

general data point y we have of course that p(θ; y) is uniformly distributed on (0, 1); and

correspondingly p(θ) from the data y0 gives the upper-tail distribution function or survivor

function for confidence, as introduced by Fisher (1935). A basic way of presenting confidence

is in terms of quantiles. If we set p(θ) = .95 and solve for θ we obtain θ = θ̂.95 which is

the value with right tail confidence 95% and left tail confidence 5%; this would typically

be called the 95% lower confidence bound, and (θ̂.95,∞) would be the corresponding 95%

confidence interval.

For two sided confidence the situation has some subtleties that are often overlooked. With

the large data sets that have come from the colliders of High Energy Physics, a Poisson count

can have a mean at a background count level or at a larger value if some proposed particle

is actually present. A common practice in the High Energy Physics literature (Mandelkern,

2002) has been to form two-sided confidence intervals and to allow the confidence contribu-

tions in the two tails to be different, thereby accommodating some optimality criterion; see

also some discussion in Section 4. In practice this meant that the confidence lower bound

shied away from the critical parameter lower bound describing just the background radia-

tion. This mismanaged the detection of a new particle. Accordingly our view is that two

sided intervals should typically have equal or certainly designated amounts of confidence

in the two tails. With this in mind we now restrict the discussion to the analysis of the

confidence bounds as described in the preceding paragraph and view confidence intervals as

being properly built on individual confidence bounds with designated confidence values.
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Figure 1: Normal(µ, 1) model: The density of y given µ in (a); the posterior density of µ
given y0 in (b): the p-value p(µ) from (a) is equal to the survivor value s(µ) in (b).

As a simple example consider the Normal (µ, σ2
0), and let φ(z) and Φ(z) be the standard

normal density and distribution functions. The p-value from data y0 is

p(µ) =

∫ y0

−∞
φ

(
y − µ
σ0

)
dy = Φ

(
y0 − µ
σ0

)
,

which has normal distribution function shape dropping from 1 at −∞ to 0 at +∞; it records

the probability position of the data with respect to a possible parameter value µ; see Figure

1(a). From the confidence viewpoint, p(µ) is recording the right tail confidence distribution

function, and the confidence distribution is Normal (y0, σ2
0).

The Bayes posterior distribution for µ using the invariant prior has density cφ{(y0 −
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µ)/σ0}; this is Normal (y0, σ0). The resulting posterior survivor function value is

s(µ) =

∫ ∞
µ

φ

(
y0 − α
σ0

)
dα = Φ

(
y0 − µ
σ0

)

and its values are indicated in Figure1(b); the function provides a probability-type evaluation

of the right tail interval (µ,∞) for the parameter. For this we have used the letter s to suggest

the ’survivor’ aspect of the Bayes analogue of the present one-sided frequentist p-value.

For a second example consider the model y = θ+z where z has the standard extreme value

distribution with density g(z) = e−zexp{−e−z} and distribution function G(z) = exp(−e−z).

The p-value from data y0 is

p(θ) =

∫ y0

−∞
g(y − θ)dy = G(y0 − θ) = exp{−e−(y0−θ)},

which records the probability position of the data in the θ distribution; it can be viewed as

a right tail distribution function for confidence. The posterior distribution for θ using the

Bayes invariant prior has density g(y0− θ) and can be described as a reversed extreme value

distribution centered at y0. The posterior survivor function is

s(θ) =

∫ ∞
θ

g(y0 − α)dα = exp{−e−(y0−θ)},

and again agrees with the p-value p(θ); see Figure 2.

Of course, in general for a location model f(y − θ) as examined by Bayes, we have

p(θ) =

∫ y0

−∞
f(y − θ)dy =

∫ y0−θ

−∞
f(z)dz =

∫ ∞
θ

f(y0 − α)dα = s(θ),

and thus the Bayes posterior distribution is equal to the confidence distribution. Or more

directly the Bayes posterior distribution is just standard confidence.

Lindley (1958) presented this result and under suitable change of variable and parameter

showed more: that the p-value and s-value are equal if and only if the model f(y; θ) is a

location model f(y − θ). In his perspective then, this argued that the confidence approach

was flawed, confidence as obtained by inverting the p-value function as a pivot. From a
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(a)

(b)

Figure 2: The extreme value EV(θ,1) model: the density of y given θ in (a); the posterior
density of θ given y0 in (b): the p-value p(θ) from (a) is equal to the survivor value s(θ) in
(b).
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different perspective, however, it argues equally that the Bayes approach is flawed, and does

not have the support of the confidence interpretation unless the model is location.

Lindley objected also to the term probability being attached to the original Fisher word

for confidence, viewing probability as appropriate only in reference to the conditional type

calculations used by Bayes. By contrast, repetition properties for confidence had been clari-

fied by Neyman (1937). As a consequence in the discipline of statistics the terms probability

and distribution were then typically not used in the confidence context, but were in the Bayes

context. The repetition properties however do not extend to the Bayes calculation except

for simple location cases, as we will see; but they do extend for the confidence inversion. We

take this as strong argument that the term probability is less appropriate in the Bayesian

weighted likelihood context than in the frequentist inversion context.

The location model, however, is extremely special in that the parameter has a fundamental

linearity and this linearity is expressed in the use of the flat prior with respect to the location

parameter. Many extensions of the Bayes mathematical prior have been proposed trying to

achieve the favorable behavior of the original Bayes, for example, Jeffreys (1939, 1946),

Bernardo (1979). We refer to such priors as default priors, priors to elicit information

from an observed likelihood function. And we will show that if the parameter departs from a

basic linearity then the Bayes posterior can be seriously misleading. Specifically we will show

that with moderate departures from linearity the Bayes calculation can give an acceptable

approximation to confidence, but that with more extreme departure from linearity or with

large parameter dimension it can give unacceptable approximations.

John Tukey actively promoted a wealth of simple statistical methods as a means to explore

data; he referred to them as quick and dirty methods. They were certainly quick using

medians and ranges and other easily accessible characteristics of data. And they were dirty

in the sense of ignoring characteristics that in the then currently correct view were considered

important. We argue that Bayes posterior calculations can appropriately be called quick and

dirty, quick and dirty confidence.

There are also extensions of the Bayes approach allowing the prior to reflect the viewpoint

or judgment or prejudice of an investigator; or to reflect the elicited considerations of those

familiar with the context being investigated. Arguments have been given that such a view-
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point or consideration can be expressed as probability; but the examples that we present

suggest otherwise.

There are of course contexts where the true value of the parameter has come from a source

with a known distribution; in such cases the prior is real, it is objective, and could reasonably

be considered to be a part of an enlarged model. Then whether to include the prior becomes

a modelling issue. Also, in particular contexts, there may be legal, ethical or moral issues as

to whether such outside information can be included. If included, the enlarged model is a

probability model and accordingly is not statistical: as such it has no statistical parameters

in the technical sense and thus predates Bayes and can be viewed as being probability itself

not Bayesian. Why this would commonly be included in the Bayesian domain is not clear;

it is not indicated in the original Bayes, although it was an area neglected by the frequentist

approach. Such a prior describing a known source is clearly objective and can properly be

called an objective prior; this conflicts however with some recent Bayesian usage where the

term objective is misapplied and refers to the mathematical priors that we are calling default

priors.

In Section 2 we consider the scalar variable scalar parameter case and determine the de-

fault prior that gives posteriors with reliable quantiles; some details for the vector parameter

case are also discussed. In Section 3 we argue that the only satisfactory way to assess dis-

tributions for unobserved quantities is by means of the quantiles of such distributions; this

provides the basis then for comparing the Bayesian and frequentist approaches.

In Sections 4, 5 and 6 we explore a succession of examples that examine how curvature in

the model or in the parameter of interest can destroy any confidence reliability in the default

Bayes approach, and thus in the Bayesian use of just likelihood to present a distribution

purporting to describe an unknown parameter value.

In Section 7 and 8 we discuss the merits of the conditional probability formula when used

with a mathematical prior and also the merits of the optimality approach; then Section 9

records a brief discussion and Section 10 a summary.
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2 But if the model is nonlinear

With a location model the confidence approach gives p(θ) and the default Bayes approach

gives s(θ), and these are equal. Now consider things more generally and initially examine

just a statistical model f(y; θ) where both y and θ are scalar or real valued as opposed to

vector valued, but without the assumed linear relationship just discussed.

Confidence is obtained from the observed distribution function F 0(θ) and a posterior is

obtained from the observed density function f 0(θ). For convenience we assume minimum

continuity and that F (y; θ) is stochastically increasing and attains both 0 and 1 under

variation in y or θ. The confidence p-value is directly the observed distribution function,

p(θ) = F 0(θ) = F (y0; θ),

which can be rewritten mechanically as

p(θ) =

∫ ∞
θ

−F;θ(y
0;α)dα;

the subscript denotes partial differentiation with respect to the corresponding argument.

The default Bayes s-value is obtained from likelihood, which is the observed density function

f(y0; θ) = Fy(y
0; θ):

s(θ) =

∫ ∞
θ

π(α)Fy(y
0;α)dα.

If p(θ) and s(θ) are in agreement then the direct comparison of the integrals implies that

π(θ) =
−F;θ(y

0; θ)

Fy(y0; θ)
.

This presents π(θ) as a possibly data-dependent prior. Of course data dependent priors have

a long but rather infrequent presence; for example Box & Cox (1964), Wasserman (2000),

Fraser et al (2010b). The preceding expression for the prior can be rewritten as

π(θ) =
dy

dθ

∣∣∣
y0
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by directly differentiating the quantile function y = y(u, θ) corresponding to u = F (y; θ), or

by taking the total differential of F (y; θ); Lindley’s (1958) result follows by noting that the

differential equation dy/dθ = a(θ)/b(y) integrates to give a location model.

Now suppose we go beyond the simple case of the scalar model and allow that y is a vector

of length n and θ is a vector of length p. In many applications n > p; but here we assume

that dim y has been reduced to p by conditioning (see for example Fraser et al, 2010c),

and that a smooth pivot z(y, θ) with density g(z) describes how the parameter affects the

distribution of the variable. The density for y is available by inverting from pivot to sample

space:

g(z)dz = f(y; θ)dy = g{z(y; θ)}|zy(y; θ)|dy,

where the subscript again denotes partial differentiation.

For confidence a differential element is obtained by inverting from pivot to parameter

space:

g(z)dz = g{z(y0; θ)}|z;θ(y
0; θ)|dθ.

And for posterior probability the differential element is obtained as weighted likelihood

g(z)dz = g{z(y0; θ)}|zy(y0; θ)|π(θ)dθ.

The confidence and posterior differential elements are equal if

π(θ) =
|z;θ(y

0; θ)|
|zy(y0; θ)|

;

we call this the default prior for the model f(y; θ) with data y0. As dy/dθ = z−1
y (y0; θ)z;θ(y

0; θ)

for fixed z, we will have confidence equal to posterior if π(θ) = |dy/dθ|y0 , a simple extension

of the scalar case. The matrix dy/dθ|y0 can be called the sensitivity of the parameter at the

data point y0 and the determinant provides a natural weighting or scaling function π(θ) for

the parameter; this sensitivity is just presenting how parameter change affects the model

and is recording this just at the relevant point, the observed data.
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3 How to evaluate a posterior distribution

(i) Distribution function or quantile function. In the scalar parameter case, both p(θ)

and s(θ) have the form of a right tail distribution function or survivor function. In the

Bayesian framework, the function s(θ) is viewed as a distribution of posterior probability. In

the frequentist framework, the function p(θ) can be viewed as a distribution of confidence,

as introduced by Fisher (1930) but originally called fiducial; it has widely been a familiar

theme that it is inappropriate to treat such a function as a distribution describing possible

values for the true parameter.

For a scalar parameter model with data, the Bayes and the confidence approaches with

data each lead to a probability-type evaluation on the parameter space; and these can be

different as Lindley (1958) demonstrated and as we have quantified in the preceding section.

Surely then, they both cannot be correct. So, how to evaluate such posterior distributions

for the parameter?

A probability description is a rather complex thing even for a scalar parameter: ascribing

a probability-type assessment to one-sided intervals, two-sided intervals, and more general

sets. What seems more tangible but indeed is equivalent is to focus on the reverse, the

quantiles: choose an amount β of probability and then determine the corresponding quantile

θ̂β, a value with the alleged probability 1 − β to the left and with β to the right. We then

have that a particular interval (θ̂β,∞) from data has the alleged amount β. Here we focus

on such quantiles θ̂β on the scale for θ. In particular we might examine the 95% quantile

θ̂0.95, the median quantile θ̂0.50, the 5% quantile θ̂0.05, and others, all as part of examining an

alleged distribution for θ obtained from data.

For the Normal (µ, σ2
0) example with data y0, the confidence approach gives the β-level

quantile

µ̂β = y0 − zβσ0

where Φ(zβ) = β as based on the standard normal distribution function Φ. In particular,

the 95%, 50% and 5% quantiles are

µ̂.95 = y0 − 1.64σ0, µ̂.50 = y0, µ̂.05 = y0 + 1.64σ0;
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and the corresponding confidence intervals are

(y0 − 1.64σ0,∞), (y0,∞), (y0 + 1.64σ0,∞),

with the lower confidence bound in each case recording the corresponding quantile.

Now more generally suppose we have a model f(y; θ) and data y0, and that we want

to evaluate a proposed procedure, Bayes, frequentist or other, that gives a probability-type

evaluation of where the true parameter θ might be. As just discussed we can focus on some

level say β and then examine the corresponding quantile θ̂β or the related interval (θ̂β,∞).

In any particular instance, either the true θ is in the interval (θ̂β,∞), or it is not. And yet

the procedure has put forward a numerical level β for the presence of θ in (θ̂β,∞). What

does the asserted level β mean?

(ii) Evaluating a proposed quantile. The definitive evaluation procedure is in the literature:

use a Neyman (1937) diagram. The model f(y; θ) sits on the space S × Ω which here is the

real line for S cross the real line for Ω; this is just the plane R2. For any particular y the

procedure gives a parameter interval (θ̂β(y),∞); if we then assemble the resulting intervals

we obtain a region

Aβ =
⋃
{y} × (θ̂(y),∞) = {(y, θ) : θ in (θ̂(y),∞)}

on the plane. For the confidence procedure in the simple Normal (θ, 1) case, Figure 3

illustrates the 97.5% quantile θ̂.975 for that confidence procedure; the region Aβ = A.975 is to

the upper left of the angled line and it represents the β = 97.5% allegation concerning the

true θ, as proceeding from the confidence procedure.

Now, more generally for a scalar parameter, we suggest that the sets Aβ present precisely

the essence of a posterior procedure: how the procedure presents information concerning the

unknown θ value. We can certainly examine these for various values of β and thus investigate

the merits of any claim implicit in the alleged levels β.

The level β is attached to the claim that θ is in (θ̂β(y),∞), or equivalently that (y, θ) is

in the set Aβ. In any particular instance, there is of course a true value θ, and either it is
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Figure 3: The 97.5% allegation for the Normal confidence procedure, on the (y, θ)-space

in {θ̂β(y),∞} or it is not in {θ̂β(y),∞}. And the true θ did precede the generation of the

observed y in full accord with the probabilities given by the model. Accordingly, a value θ

for the parameter in the model implies an actual Proportion of true assertions consequent

to that θ value:

Propn(Aβ; θ) = Pr{Aβ includes (y, θ); θ}.

This allows us to check what relationship the actual Proportion bears to the value β asserted

by the procedure: is it really β or is it something else?

Of course there may be contexts where in addition we have that the θ value has been

generated by some random source described by an available prior density π(θ), and we

would be interested in the associated Proportion,

Propn(Aβ; π) =

∫
Propn(Aβ; θ)π(θ)dθ,

presenting the average relative to the source density π(θ).

(iii) Comparing proposed quantiles. For the Bayes procedure with the special original
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linear model f(y − θ) we have by the usual calculations that

Propn(Aβ; θ) ≡ β

for all θ and β: the alleged level β agrees with the actual Proportion of true assertions that

are made. And more generally if the θ value has been generated by a source π(θ), then it

follows that the alleged level β does agree with the actual Proportion: thus Propn(Aβ; π) ≡ β

For the standard confidence procedure in the context of an arbitrary continuous scalar

model f(y; θ) we have by the standard calculations that

Propn(Aβ; θ) ≡ Pr{(y, θ) in Aβ; θ} ≡ Pr{F (y; θ) ≤ β; θ} ≡ β

for all θ and β. Of course in the special Bayes location model f(y − θ) the Bayes original

procedure does coincide with the confidence procedure: the original Bayes was confidence in

disguise.

Now for some proposed procedure having a region Aβ with alleged level β, there is of

course the possibility that the actual Proportion is less than β for some θ and is greater

than β for some other θ and yet when averaged with a particular prior π(θ) gives a revised

Propn(Aβ; π) that does have the value β; the importance or otherwise of this we will discuss

later.

But we now ask, what is the actual Proportion for a Bayes procedure in non-location

models? Towards this we next examine a succession of examples where the linearity is

absent to varying degrees, where the parameter to variable relationship is non-linear!

4 Nonlinearity and bounded parameter:

the errors are O(1)

We first examine an extreme form of nonlinearity, where the range of the parameter

is bounded. This is a familiar problem in the current High Energy Physics of particle

accelerators and the related search and detection of possible new particles: a particle count
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has a Poisson (θ) distribution but θ is bounded below by θ0, which represents the contribution

from background radiation. For some discussion see Mandelkern (2002), Reid & Fraser

(2003), and Fraser et al (2004).

The critical issues are more easily examined in a continuous context. For this, suppose

that y is Normal(θ, σ2
0) and that it is known that θ ≥ θ0 with an interest in detecting whether

θ is actually larger than θ0; let y0 be the observed data point; this continuous version was

also mentioned in Mandelkern (2002), Woodroofe & Wang (2000) and Zhang & Woodroofe

(2003). For convenience here and without loss of generality we take the known σ0 = 1 and

the lower bound θ0 = 0.

From a frequentist viewpoint, there is the likelihood

L0(θ) = cφ(y0 − θ)

recording probability at the data, again using φ(z) for the standard normal density. And

also there is the p-value

p(θ) = Φ(y0 − θ)

recording probability left of the data. They each offer a basic presentation of information

concerning the parameter value θ; see Figure 4(a) and 4(b). Also note that p(θ) does not

reach the value 1 at the lower limit θ0 for θ; of course the p-value is just recording the

statistical position of the data y0 under possible θ values, so there is no reason to want or

expect such a limit.

First consider the confidence approach. The interval (0, β) for the p-value function gives

the interval {max(θ0, y
0 − zβ),∞} for θ when we acknowledge the lower bound, or gives the

interval (y0 − zβ,∞) when we ignore the lower bound. In either case the actual Proportion

is equal the alleged value β, regardless of the true value of θ. There might perhaps be mild

discomfort that if we ignore the lower bound and calculate the interval then it can include

parameter values that are not part of the problem; but nonetheless the alleged level is valid.

Now consider the default Bayes approach. The model f(y; θ) = φ(y0 − θ) is translation

invariant for θ ≥ θ0, and this would indicate the constant prior π(θ) = c, at least for θ ≥ θ0.
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Figure 4: The Normal (θ, 1) with θ ≥ θ0 = 0: (a) the likelihood function L(θ); (b) p-value
function p(θ) = Φ(y0 − θ); (c) s-value function s(θ) = Φ(y0 − θ)/Φ(y0).
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Figure 5: Normal with bounded mean: the actual Proportion for the claimed level β = 50%
is strictly less than the claimed 50%.

Combining the prior and likelihood and norming as usual gives the posterior density

π(θ|y0) =
φ(y0 − θ)

Φ(y0)
, θ ≥ 0

and then gives the posterior survivor value

s(θ) =
Φ(y0 − θ)

Φ(y0)
, θ ≥ 0.

See Figure 4(c). The β-quantile of this truncated normal distribution for θ is obtained by

setting s(θ) = β and solving for θ:

θ̂β = y0 − zβΦ(y0)

where again zγ designates the standard normal γ-quantile.

We are now in a position to calculate the actual Proportion, namely the proportion of

cases where it is true that θ is in the quantile interval, or equivalently the proportion of cases
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Figure 6: Normal with bounded mean: the actual Proportions for the claimed level β = 90%
and β = 10% are strictly less than the claimed.

where (θ̂β,∞) includes the true θ value:

Propn(θ) = Pr{y − zβΦ(y) < θ : θ} = Pr{z < zβΦ(θ+z)},

where z is taken as being Normal(0, 1); this expression can be written as in integral
∫
S
φ(z)dz

with S = {z : Φ(z) < βΦ(θ + z)} and can routinely be evaluated numerically for particular

values of θ and β. In particular for θ at the lower limit θ = θ0 = 0 the coverage set S

becomes S = {z : Φ(z) < βΦ(z)} which is clearly the empty set unless β = 1. In particular

at the lower limit θ = θ0 = 0 the Propn(θ0) has the phenomenal value zero, Propn(θ0) = 0,

which is a consequence of the empty set just mentioned; certainly an unusual performance

property for a claimed Bayes coverage of say β when as typical β is not zero.

In Figure 5, we plot this Proportion against β for the β = 50% quantile; and we note

that it is uniformly less than the nominal, the claimed 50%. In particular at the lower

limit θ = θ0 = 0 the Propn(θ0) = 0 has the phenomenal value zero, as mentioned in the

preceding paragraph; certainly an unusual performance property for a claimed Bayes coverage
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of β = 50%! Then in Figure 6 we plot the proportion for β = 90% and for β = 10%; again

we note that the actual Proportion is uniformly less than the claimed value; and again

Propn(θ) has the extraordinary coverage value 0 when the parameter is at the lower bound

0. Of course the departure would be in the other direction in the case of an upper bound.

In summary in a context with a bound on the parameter the performance error with the

Bayes calculation can be of asymptotic order O(1).

5 Nonlinearity and parameter curvature:

the errors are O(n−1/2)

A bound on a parameter as just discussed is a rather extreme form of nonlinearity. Now

consider a very direct and common form of curvature. Let (y1, y2) be Normal (θ; I) on R2

and consider the quadratic interest parameter (θ2
1 +θ2

2), or the equivalent ρ(θ) = (θ2
1 + θ2

2)
1/2

which has the same dimensional units as the θi; and let y0 = (y0
1, y

0
2) be the observed data.

For asymptotic analysis we would view the present variables as being derived from some

antecedent sample of size n and they would then have the Normal (θ, I/n) distribution.

From the frequentist view there is an observable variable r = (y2
1 + y2

2)1/2 that in some

pure physical sense measures the parameter ρ. It has a noncentral chi distribution with non-

centrality ρ and degrees of freedom 2. For convenience we let χ2(ρ) designate such a variable

with distribution function H2(χ, ρ), which is typically available in computer packages; and

its square can be expressed as χ2
2 = (z1 + ρ)2 + z2

2 in terms of standard normal variables and

it has the noncentral chi-square distribution with 2 degrees of freedom and noncentrality

usually described by ρ2. The distribution of r is free of the nuisance parameter which can

conveniently be taken as the polar angle α = arctan(θ2/θ1). The resulting p-value function

for ρ is

p(ρ) = Pr{χ2(ρ) ≤ r0} = H2(r0; ρ). (1)

See Figure 7 (a), where for illustration we examined the behavior for θ = y0 + 1.

From the frequentist view there is the directly measured p-value p(ρ) with a Uniform (0,1)

distribution, and any β level lower confidence quantile is available immediately by solving
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β = H2(r0; ρ) for ρ in terms of r0.

From the Bayes view there is a uniform prior π(θ) = c as directly recommended by Bayes

(1763) for a location model on the plane R2. The corresponding posterior distribution for θ

is then Normal (y0; I) on the plane. And the resulting marginal posterior for ρ is described

by the generic variable χ2(r0). As r is stochastically increasing in ρ we have that the Bayes

analog of the p-value is the posterior survivor value obtained by an upper tail integration

s(ρ) = Pr{χ2(r0) ≥ ρ} = 1−H2(ρ; r0). (2)

The Bayes s(ρ) and the frequentist p(ρ) are actually quite different, a direct consequence

of the obvious curvature in the parameter ρ = (θ2
1 + θ2

2)1/2. The presence of the difference

is easily assessed visually in Figure 7 by noting that in either case there is a rotationally

symmetric normal distribution with unit standard deviation which is at the distance d = 1

from the curved boundary used for the probability calculations, but the curved boundary is

cupped away from the Normal distribution in the frequentist case and is cupped towards the

Normal distribution in the Bayes case; this difference is the direct source of the Bayes error.

From (1) and (2) we can evaluate the posterior error s(ρ)−p(ρ) = 1−H2(ρ; r0)−H2(r0; ρ)

which is plotted against ρ in Figure 8 for r0 = 5. This Bayes error here is always greater than

zero. This happens widely with a parameter that has curvature, with the error in one or

other direction depending on the curvature being positive or negative relative to increasing

values of the parameter. Some aspects of this discrepancy are discussed in David, Stone &

Zidek (1973) as a marginalization paradox.

Now in more detail for this example, consider the β lower quantile ρ̂β of the Bayes posterior

distribution for the interest parameter ρ. This β quantile for the parameter ρ is obtained

from the χ2(r0) posterior distribution for ρ giving

ρ̂β = χ1−β(r0)

where we now use χγ(r) for the γ quantile of the noncentral chi variable with 2 degrees of
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Figure 7: (a) The model is N(θ; I); region for p(θ) is shown. (b) The posterior distribution
for θ is N(y0; I); region for s(θ) is shown.
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Figure 8: The Bayes error s(ρ) − p(ρ) with data r0 from the N(θ, I) model with data
y0 = (5, 0).

freedom and noncentrality r, that is, H2(χγ; r) = γ. We are now in a position to evaluate the

Bayes posterior proposal for ρ. For this let Propn(Aβ; θ) be the proportion of true assertions

that ρ is in Aβ = {ρ̂β(r),∞}; we have

Propn(Aβ; ρ) = Pr{ρ in (ρ̂β(r),∞); ρ}

= Pr{ρ̂β(r) ≤ ρ; ρ}

= Pr{χ1−β(r) ≤ ρ; ρ}

where the quantile ρ̂β(r) is seen to be the (1 − β) point of a noncentral chi variable with

degrees of freedom 2 and noncentrality r, and the noncentrality r has a noncentral chi

distribution with noncentrality ρ. The actual Proportion under a parameter value ρ can

thus be presented as

Propn(Aβ; ρ) = Pr[χ1−β{χ2(ρ)} ≤ ρ; ρ]

= Pr [1− β < H2{ρ;χ2(ρ)}]
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Figure 9: Proportion with claimed level β = 50%.

which is available by numerical integration on the real line for any chosen β value.

We plot the actual Propn(A50%; ρ) against ρ in Figure 9 and note that it is always less

than the alleged 50%. We then plot the Proportion for β = 90% and for β = 10% in Figure

10 against ρ, and note again that the plots are always less than the claimed values 95% and

5%. This happens generally for all possible quantile levels β, that the actual Proportion

is less than alleged probability. It happens for any chosen value for the parameter; and it

happens for any prior average of such θ values. If by contrast the center of curvature is to

the right, then the actual Proportion is reversed and is larger than the alleged.

In summary in the vector parameter context with a curved interest parameter the perfor-

mance error with the Bayes calculation can be of asymptotic order O(n−1/2).

6 Nonlinearity and model curvature:

the errors are O(n−1)

(i) The model and confidence bound. Taylor series expansions provide a powerful means
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Figure 10: Proportion for claimed β = 90% and for claimed β = 10%: strictly less than
the claimed.

for examining the large sample form of a statistical model (see for example, Abebe et al,

1995; Andrews et al, 2005; Cakmak et al, 1998). From such expansions we find that an

asymptotic model to second order can be expressed as a location model and to third order

can be expressed as a location model with an O(n−1) adjustment that describes curvature.

Examples arise frequently in the vector parameter context. But for the scalar parameter

context the common familiar models are location or scale models and thus without the cur-

vature of interest here. A simple example with curvature however is the gamma distribution

model: f(y; θ) = Γ−1(θ)yθ−1 exp{−y}.

To illustrate the moderate curvature we will take a very simple example where y is Normal

{θ, σ2(θ)} and σ2(θ) depends just weakly on the mean θ, and then in asymptotic standardized

form would have

σ2(θ) = 1 + γθ2/2n
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in moderate deviations. The β-level quantile for this normal variable y is

yβ(θ) = θ + σ(θ)zβ

= θ + zβ(1 + γθ2/2n)1/2

= θ + zβ(1 + γθ2/4n) +O(n−3/2). (3)

The confidence bound θ̂β with β confidence above can be obtained from the usual Fisher

inversion of y = θ + zβ(1 + γθ2/4n): we obtain

θ = y − zβ(1 + γθ2/4n) +O(n−3/2).

= y − zβ{1 + γ(y − zβ)2/4n}+O(n−3/2).

Thus the β level lower confidence quantile to order O(n−3/2) is

θ̂C(y) = y − zβ{1 + γ(y − zβ)2/4n}, (4)

where we add the label C for confidence to distinguish it from other bounds soon to be

calculated. See Figure 11.

(ii) From confidence to likelihood. We are interested in examining posterior quantiles for

the adjusted normal model and in this section work from the confidence quantile to the

likelihood quantile, that is, to the posterior quantile with flat prior π(θ) = 1; this route

seems computationally easier than directly calculating a likelihood integral.

From Section 3 and formula (3) above, we have that the prior π(θ) that converts a

likelihood fL(θ) = L(θ; y0) = Fy(y
0; θ) to confidence fC(θ) = −F;θ(y

0; θ) is

dy

dθ

∣∣∣
y0

= 1 + γzθ/2n|y0

= 1 + γ(y0 − θ)θ/2n+O(n−3/2)

= exp{γ(y0 − θ)θ/2n}+O(n−3/2).

Then to convert in the reverse direction, from confidence fC(θ) to likelihood fL(θ) we need
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θ̂C = y − zβ{1 + γ(y − zβ)2/4n}

θ = y − 1.96

Figure 11: The 97.5% confidence quantile θ̂C(y) = y − 1.96{1 + γ(y − 1.96)2/4n}. The
97.5% likelihood quantile θ̂L(y) = (1+ γ

2n
)[y−1.96{1+γ(y − 1.96)2/4n}] is a vertical rescaling

about the origin; the 97.5% Bayes quantile θ̂B(y) with prior exp{a/n + cθ/n} is a vertical
rescaling plus a lift a/n and a tilt cy/n. Can this prior lead to a confidence presentation?
No, unless the prior depends on the data or on the level β.
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the inverse weight function

w(θ) = exp{γθ(θ − y0)/2n}. (5)

Interestingly, this function is equal to 1 at θ = 0 and at y0, and is less than 1 between these

points when γ > 0.

(iii) From confidence quantile to likelihood quantile. The weight function (5) that converts

confidence to likelihood has the form exp{aθ/n1/2 +cθ2/2n} with a = −γy0/2n1/2 and c = γ.

The effect of such a tilt and bending is recorded in the Appendix. The confidence quantile θ̂Cβ

given at (4) is a 1−β quantile of the confidence distribution. Then using formula (10) in the

Appendix we obtain the formula for converting confidence quantile to likelihood quantile:

θ̂L = θ̂C
(

1 +
γ

2n

)
− γy0/2n+ γy0/2n

= θ̂C
(

1 +
γ

2n

)
. (6)

Thus the likelihood distribution is obtained from the confidence distribution by a simple

scale factor 1 + γ/2n; this directly records the consequence of the curvature added to the

simple normal model by having σ2(θ) depend weakly on θ.

(iv) From likelihood quantile to posterior quantile. Now consider a prior applied to the

likelihood distribution. A prior can be expanded in terms of standardized coordinates and

takes the form π(θ) = exp(aθ/n1/2 + cθ2/2n). The effect on quantiles is available from the

Appendix and we see that a prior with tilt coefficient a/n1/2 would excessively displace the

quantile and thus would give posterior quantiles with bad behaving Propn(θ) in repetitions;

accordingly as a possible prior adjustment we consider a tilt with just a coefficient a/n. We

then examine the prior π(θ) = exp(aθ/n + cθ2/2n). First we obtain the Bayes quantile in

terms of the likelihood quantile as

θ̂B = θ̂L(1 +
c

2n
) +

a

n
+
cy

2n
;

and then substituting for the likelihood quantile in terms of the confidence quantile (6) gives

θ̂B = θ̂C(1 +
γ + c

2n
) +

a

n
+
cy

2n
. (7)
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For θ̂B(y) in (4) to be equal to θ̂C(y) in (7) we would need to have c = −γ and then a = γy/2.

But this would give a data dependent prior. We noted the need for data dependent priors

in Section 3 but we now have an explicit expression for the effect of priors on quantiles.

Now consider the difference in quantiles:

θ̂B(y)− θ̂C(y) = θ̂C
(
γ + c

2n

)
+
a

n
+
cy

2n

= (y − zβ)
γ + c

2n
+
a

n
+
cy

2n

=
a

n
+ y

γ + 2c

2n
− zβ

γ + c

2n
,

where we have replaced θ̂C by y − zβ, to order O(n−3/2); Figure 12 shows this difference

as the vertical separation above a data value y. From the third expression above we see

that in the presence of model curvature γ the Bayesian quantile can achieve the quality of

confidence only if the prior is data dependent or dependent on the level β.

Similarly we can calculate the horizontal separation corresponding to a θ value, and obtain

yC(θ)− yB(θ) = θ
γ + c

2n
+
a

n
+

c

2n
(θ + zβ)

= θ
γ

2n
+
a

n
+

c

2n
(2θ + zβ). (8)

This gives the quantile difference, the confidence quantile less the Bayes quantile, as a func-

tion of θ; see Figure 12, and observe the horizontal separation to the right of a parameter

value θ.

A Bayes quantile can not generate true statements concerning a parameter with the

reliability of confidence unless the model curvature is zero, that is unless the model is of the

special location form where Bayes coincides confidence. The Bayes approach can thus be

viewed as having a long history of misdirection.

Now let θ designate the true value of the parameter θ, and suppose we examine the

performance of the Bayesian and frequentist posterior quantiles. In repetitions the actual

proportion of instances where y < yC(θ) is of course β. The actual proportion of cases with
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Figure 12: β-level quantiles. The difference θ̂B(y)− θ̂C(y) is the vertical separation above
y between quantile curves. The difference yC(θ)−yB(θ) is the horizontal separation between
curves as a function of θ.
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Figure 13: The actual Proportion with claimed level β = 50%.

y < yB(θ) is then

Propn(θ) = β − {θ γ
2n

+
a

n
+

c

2n
(2θ + zβ)}φ(zβ),

where for the terms of order O(n−1) it suffices to use the N(θ, 1) distribution for y. The Bayes

calculation claims the level β. The choice a = 0, c = 0 gives a flat prior in the neighborhood

of θ = 0 which is the central point of the model curvature. With such a choice the actual

Proportion from the Bayes approach is deficient by the amount θγφ(zβ)/2n. For a claimed

β = 50% quantile see Figure 13 for the actual Proportion and for a claimed β = 90% or

β = 10% see Figure 14. Thus the β quantile by Bayes is consistently below the claimed level

β for positive values of θ, and consistently above the claimed level for negative values of θ.

In summary even in the scalar parameter context, an elementary departure from simple

linearity can lead to a performance error for the Bayes calculation of asymptotic order

O(n−1). And moreover it is impossible by the Bayes method to duplicate the standard

confidence bounds: a stunning revelation!
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Figure 14: The actual Proportion with claimed levels β = 90% and β = 10%

7 The paradigm

Bayes proposal makes critical use of the conditional probability formula f(y1|y0
2) =

cf(y1, y
0
2). In typical applications the formula has variables y1 and y2 in a temporal or-

der: the value of the first y1 is inaccessible and the value of the second y2 is observed with

value say y0
2. Of course the value of the first y1 has been realized, say yr1, but is concealed and

is unknown. Indeed the view has been expressed that the only probabilities possible con-

cerning such an unknown yr1 are the values 0 or 1 and we don’t know how they would apply

to that yr1. We thus have the situation where there is an unknown constant yr1, a constant

that arose antecedent in time to the observed value y0
2, and we want to make probability

statements concerning that unknown antecedent constant. As part of the temporal order

we also have that the joint density became available in the order f(y1) for the first variable

followed by f(y2|y1) for the second; thus f(y1, y
0
2) = f(y1)f(y0

2|y1).

The conditional probability formula itself is very much part of the theory and practice of

probability and statistics and is not in question. Of course limit operations are needed when

the condition y2 = y0
2 has probability zero leading to a conditional probability expression
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with a zero in the denominator; but this is largely technical.

A salient concern seemingly centers on how probabilities can reasonably be attached to

a constant that is concealed from view? The clear answer is in terms of what might have

occurred given the same observational information: the corresponding picture is of many

repetitions from the joint distribution giving pairs (y1, y2); followed by selection of pairs that

have exact or approximate agreement y2 = y0
2; and then followed by examining the pattern

in the y1 values among the selected pairs. The pattern records what would have occurred

for y1 among cases where y2 = y0
2; the probabilities arise both from the density f(y1) and

from the density f(y2|y1). Thus the initial pattern f(y1) when restricted to instances where

y2 = y0
2 becomes modified to the pattern f(y1|y0

2) = cf(y1, y
0
2) = cf(y1)f(y0

2|y1).

Bayes (1763) promoted this conditional probability formula and its interpretation, for

statistical contexts that had no preceding distribution for θ and he did so by introducing

the mathematical prior. He did provide however a motivating analogy and the analogy

did have something extra, an objective and real distribution for the parameter, one with

probabilities that were well defined by translational invariance. Such a use of analogy in

science is normally viewed as wrong, but the needs for productive methodology were high at

that time.

If π(θ) is treated as being real and descriptive of how the value of the parameter arose

in the application, it would follow that the preceding conditional probability analysis would

give the conditional description

π(θ|y0) = cπ(θ)f(y0; θ)

= cπ(θ)L0(θ).

The interpretation for this would be as follows: In many repetitions from π(θ), if each θ

value was followed by a y from the model f(y; θ), and if the instances (θ, y) where y is close

to y0 are selected then the pattern for the corresponding θ values would be cπ(θ)L0(θ). In

other words the initial relative frequency π(θ) for θ values is modulated by L0(θ) when we

select using y = y0; this gives the modulated frequency pattern cπ(θ)L0(θ). The conditional

probability formula as used in this context is often referred to as Bayes formula or Bayes
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theorem, but as a probability formula it long predates Bayes and is generic; for the present

extended usage it is also referred to as Bayes paradigm (Bernardo & Smith, 1994).

The Bayes’ example as discussed in Section 2 and 3 examined a location model f(y − θ)

and the only prior that could represent location invariance is the constant or flat prior

in the location parameterization, that is, π(θ) = c. This of course does not satisfy the

probability axioms as the total probability would be ∞. The step however from just a set

of θ values with related model invariance to a distribution for θ has had the large effect of

emphasizing likelihood L0(θ), as defined by Fisher (1935). And it has also had the effect,

perhaps unwarranted, of suggesting that the mathematical posterior distribution obtained

from the paradigm could be treated as a distribution of real probability. If the parameter

to variable relationship is linear then Section 3 shows that the calculated values have the

confidence (Fisher, 1935; Neyman, 1937) interpretation. But if the relationship is nonlinear

then the calculated numbers can seriously fail to have that confidence property, as determined

in Sections 4, 5 and 6; and indeed fail to have anything with behavior resembling probability.

The mathematical priors, the invariant priors and other generalizations are often referred to

in the current Bayesian literature as objective priors, a term that is strongly misleading.

In other contexts however there may be a real source for the parameter θ, sources with

a known distribution, and thus fully entitled to the term objective prior; of course such

examples do not need the Bayes approach, they are immediately analyzable by probability

calculus. And thus to use objective to also refer to the mathematical priors is confusing.

In short the paradigm does not produce probabilities from no probabilities. And if the

required linearity for confidence is only approximate then the confidence interpretation can

correspondingly be just approximate. And in other cases even the confidence interpretation

can be substantially unavailable. Thus to claim probability when even confidence is not

applicable does seem to be fully contrary to having acceptable meaning in the language of

the discipline.
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8 Optimality

Optimality is often cited as support for the Bayes approach: If we have a criterion of

interest that provides an assessment of a statistical procedure, then optimality under the

criterion is available using a procedure that is optimal under some prior average of the

model. In other words if you want optimality it suffices to look for a procedure that is

optimal for the prior-average version of the model. Thus: restrict one’s attention to Bayes

solutions and just find an appropriate prior to work from. It sounds persuasive and it is

important.

Of course a criterion as mentioned is just a numerical evaluation and optimality under

one such criterion may not give optimality under some other criterion; so the choice of the

criterion can be a major concern for the approach. For example would we want to use the

length of a posterior interval as the criterion or say the squared length of the interval or some

other evaluation; it makes a difference because the optimality has to do with an average of

values for the criterion and this can change with change in the criterion.

The optimality approach can lead to interesting results but can also lead to strange trade-

offs; see for example, Cox (1958) and Fraser & McDunnough (1980). For if the model splits

with known probabilities into two or several components then the optimality can create

trade-offs between these; for example if data sometimes is high precision and sometimes low

precision and the probabilities for this are available then the search for an optimum mean-

length confidence interval at some chosen level can give longer intervals in the high precision

cases and shorter intervals in the low precision cases as a trade-off towards optimality and

towards intervals that are shorter on average. It does sound strange but the substance of

this phenomenon is internal to almost all model-data contexts.

Even with a sensible criterion, however, and without the compound modeling and trade-

offs just mentioned there are serious difficulties for the optimality support for the Bayes

approach. Consider further the example in Section 6 with a location Normal variable where

the variance depends weakly on the mean: y is Normal{θ, σ2(θ)} with σ2(θ) = 1 + γθ2/2n

and where we want a bound θ̂β(y) for the parameter θ with reliability β for the assertion

that θ is larger than θ̂β(y).
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From confidence theory we have immediately (4) that

θ̂(y) = θ̂C(y) = y − zβ{1 + γ(y − zβ)2/4n}

with O(n−3/2) accuracy in moderate deviations. What is available from the Bayes approach?

A prior π(θ) = exp{aθ/n1/2 + cθ2/2n} gives the posterior bound

θ̂β(y) = θ̂C(y){1 + c/2n}+
a

n
+
cy

2n
.

The actual Proportion for the β level confidence bound is exactly β. The actual Proportion,

however, for the Bayes bound as derived (8) is

β −
{
θ
γ

2n
+
a

n
+

c

2n
(2θ + zβ)

}
φ(zβ);

and there is no choice for the prior, no choice for a and c, that will make the actual equal to

the nominal unless the model has nonzero curvature γ.

We thus have that a choice of prior to weight the likelihood function can not produce a

β level bound. But a β level bound is available immediately and routinely from confidence

methods, which does use more than just the observed likelihood function.

Of course in the pure location case the Bayes approach is linear and gives confidence. If

there is nonlinearity then the Bayes procedure can be seriously inaccurate.

9 Discussion

Bayes (1763) introduced the observed likelihood function to general statistical usage. He

also introduced the confidence distribution when the application was to the special case

of a location model; the more general development (Fisher, 1930) came much later and the

present name confidence was provided by Neyman (1937). Lindley (1958) then observed that

the Bayes derivation and the Fisher (1930) derivation coincided only for location models; this

prompted continuing discord as to the merits and validity of the two procedures in providing

a probability-type assessment of an unknown parameter value.
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A distribution for a parameter value immediately makes available a quantile for that

parameter, at any percentage level of interest. This means that the merits of a procedure

for evaluating a parameter can be assessed by examining whether the quantile relates to

the parameter in anything like the asserted rate or level asserted for that quantile. The

examples in Sections 4, 5 and 6 demonstrate that departure from linearity in the relation

between parameter and variable can seriously affect the ability of likelihood alone to provide

reliable quantiles for the parameter of interest.

There is of course the question as to where the prior comes from and what is its validity?

The prior could be just a device as with Bayes original proposal, to use the likelihood

function directly to provide inference statements concerning the parameter. This has been

our primary focus and such priors can reasonably be called default priors.

And then there is the other extreme where the prior describes the statistical source of the

experimental unit or more directly the parameter value being considered. We have argued

that these priors should be called objective and then whether to use them to do a sole

analysis is a reasonable question.

Between these two extremes are many variations such as subjective priors that describe

the personal views of an investigator and elicited priors that represent some blend of the

background views of those close to a current investigation. Should such views be kept

separate to be examined in parallel with objective views coming directly from the statistical

investigation itself or should they be blended into the computational procedure applied to

the likelihood function alone? There would seem to be strong arguments for keeping such

information separate from the analysis of the model with data; any user could then combine

the two as deemed appropriate in any subsequent usage of the information.

Linearity of parameters and its role in the Bayesian frequentist divergence is discussed in

Fraser et al (2010a). Higher order likelihood methods for Bayesian and frequentist inference

were surveyed in Bédard et al (2008), and an original intent there was to include a comparison

of the Bayesian and frequentist results. This however was not feasible, as the example used

there for illustration was of the nice invariant type with the associated theoretical equality

of common Bayesian and frequentist probabilities; thus the anomalies discussed in the paper

were not overtly available.
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10 Summary

A probability formula was used by Bayes (1763) to combine a mathematical prior with

a model plus data; it gave just a mathematical posterior, with no consequent objective

properties. An analogy provided by Bayes did have a real and descriptive prior, but it was

not part of the problem actually being examined.

A familiar Bayes example uses a special model, a location model; and the resulting inter-

vals have attractive properties, as viewed by many in statistics.

Fisher (1935) and Neyman (1937) defined confidence. And the Bayes intervals in the loca-

tion model case are seen to satisfy the confidence derivation, thus providing an explanation

for the attractive properties.

The only source of variation available to support a Bayes posterior probability calculation

is that provided by the model, which is what confidence uses.

Lindley (1958) examined the probability formula argument and the confidence argument

and found that they generated the same result only in the Bayes location model case; he

then judged the confidence argument to be wrong.

If the model however is not location and thus the variable is not linear with respect to

the parameter, then a Bayes interval can produce correct answers at a rate quite different

from that claimed by the Bayes probability calculation; thus the Bayes posterior may be an

unreliable presentation, an unreliable approximation to confidence.

The failure to make true assertions with a promised reliability can be extreme with the

Bayes use of mathematical priors, (Stainforth et al, 2007; Heinrich, 2006).

The claim of a probability status for a statement that can fail to be approximate confidence

is misrepresentation. In other areas of science such false claims would be treated seriously.

Using weighted likelihood however can be a fruitful way to explore the information avail-

able from just a likelihood function. But the failure to have even a confidence interpretation

deserves more than just gentle caution.

A personal or a subjective or an elicited prior may record useful background to be recorded

in parallel with a confidence assessment. But to use them to do the analysis and just

get approximate or biased confidence seems to overextend the excitement of exploratory

37



procedures.
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Appendix

Tilting, bending and quantiles

Consider a variable y that has a Normal (θ; 1) distribution and suppose that its density is

subject to an exponential tilt and bending as described by the modulating factor exp{ay +

cy2/2}. It follows easily by completing the square in the exponent that the new variable say

ỹ is also normal but with mean (θ + a)/(1− c) and variance 1/(1− c). In particular we can

write

ỹ =
θ + a

1− c
+ (1− c)−1/2z

where z is standard normal. And if we let zβ be the β quantile of the standard normal with

β = Φ(zβ), then the β quantile of ỹ is

ỹβ =
θ + a

1− c
+ (1− c)−1/2zβ.

Thus with the Normal(θ, 1) we have that tilting and bending just produces a location scale

adjustment to the initial variable.

Now suppose that y = θ + z is Normal (θ; 1) to third order, and suppose further that its

density receives an exponential tilting and bending described by the factor exp{ay/n1/2 +
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cy2/2n}. Then from the preceding we have that the new variable can be expressed in terms

of preceding variables as

ỹ =
θ + a/n1/2

1− c/n
+ (1− c/n)−1/2z

= θ(1 + c/n) + a/n1/2 + (1 + c/2n)z

= y(1 + c/2n) + a/n1/2 + θc/2n, (9)

where succeeding lines use adjustments that are O(n−3/2). The second line on the right gives

quantiles in terms of the standard normal and the third line gives quantiles in terms of the

initial variable y.

One application for this arises with posterior distributions. Suppose that θ = y0 + z is

Normal (y0, 1) to third order and that its density receives a tilt and bending described by

exp(aθ/n1/2 + cθ2/2n). We then have from (9) that the modified variable can be expressed

as

θ̃ = y0(1 + c/n) + a/n1/2 + (1 + c/2n)z

= θ(1 + c/2n) + a/n1/2 + y0c/2n, (10)

to order O(n−3/2).
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