THE PROBABLE ERROR OF A MEAN
INTRODUCTION

Any experiment may he regarded as forming an individual opapulation” of
experiments which might he performed under the same conditiA series of experi-
ments is a sample drawn from this population.

Now any series of experiments is only of value in so far as ébdes us to form
a judgment as to the statistical constants of the populatiomhich the experiments
belong. In a greater number of cases the question finallys tomrthe value of a mean,
either directly, or as the mean difference between the tvemtities.

If the number of experiments be very large, we may have pgecfermation as to
the value of the mean, but if our sample be small, we have twoces of uncertainty:
(1) owing to the “error of random sampling” the mean of ourie®if experiments
deviates more or less widely from the mean of the populatiod,(2) the sample is not
sufficiently large to determine what is the law of distrilmmtiof individuals. It is usual,
however, to assume a normal distribution, because, in alaegg number of cases,
this gives an approximation so close that a small samplegivii no real information
as to the manner in which the population deviates from natynaince some law of
distribution must he assumed it is better to work with a cuvhiese area and ordinates
are tabled, and whose properties are well known. This asomip accordingly made
in the present paper, so that its conclusions are not gtiégiplicable to populations
known not to be normally distributed; yet it appears probdbht the deviation from
normality must be very extreme to load to serious error. Videcancerned here solely
with the first of these two sources of uncertainty.

The usual method of determining the probability that the mefathe population
lies within a given distance of the mean of the sample is tarassa normal distribution
about the mean of the sample with a standard deviation equghtn, wheres is the
standard deviation of the sample, and to use the tables girthmbility integral.

But, as we decrease the number of experiments, the value sfdhdard deviation
found from the sample of experiments becomes itself sulbpean increasing error,
until judgments reached in this way may become altogethsleanling.

In routine work there are two ways of dealing with this diffigu (1) an experi-
ment may he repeated many times, until such a long seriesagel that the standard
deviation is determined once and for all with sufficient aacy. This value can then
he used for subsequent shorter series of similar experimé®} Where experiments
are done in duplicate in the natural course of the work, thamsgjuare of the differ-
ence between corresponding pairs is equal to the standaiatida of the population
multiplied by v/2. We call thus combine together several series of experisnient
the purpose of determining the standard deviation. Owingever to secular change,
the value obtained is nearly always too low, successiverarpats being positively
correlated.

There are other experiments, however, which cannot easitgreated very often;
in such cases it is sometimes necessary to judge of the rgrtzi the results from
a very small sample, which itself affords the only indicatuf the variability. Some
chemical, many biological, and most agricultural and lasgale experiments belong
to this class, which has hitherto been almost outside thgerahstatistical inquiry.
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Again, although it is well known that the method of using tleemal curve is only
trustworthy when the sample is “large”, no one has yet tolglary clearly where the
limit between “large” and “small” samples is to be drawn.

The aim of the present paper is to determine the point at wivielmay use the
tables of the probability integral in judging of the signéfitce of the mean of a series of
experiments, and to furnish alternative tables for use vthemumber of experiments
is too few.

The paper is divided into the following nine sections:

I. The equation is determined of the curve which represétdrequency distribution
of standard deviations of samples drawn from a normal paipula

Il. There is shown to be no kind of correlation between the maad the standard
deviation of such a sample.

lll. The equation is determined of the curve representirgfitaquency distribution of
a quantityz, which is obtained by dividing the distance between the ntdansample
and the mean of the population by the standard deviationeo$ample.

IV. The curve found in | is discussed.

V. The curve found in Il is discussed.

VI. The two curves are compared with some actual distrilmgtio

VII. Tables of the curves found in Il are given for samplesidferent size.
VIIl and IX. The tables are explained and some instancesiaesa @f their use.

X. Conclusions.
SECTION |

Samples ofn individuals are drawn out of a population distributed noliydo
find an equation which shall represent the frequency of tredstrd deviations of these
samples.

If s be the standard deviation found from a sampje- ...z, (all these being
measured from the mean of the population), then

2 S(x%>_<8<x1>)2_8<x%> S(ad) _ 28(zz2)

N, n n n2 n?
Summing for all samples and dividing by the number of sampieget the moan
value ofs?, which we will write 52:
2 M2 _npy pa(n —1)

n n? n

3

where i, is the second moment coefficient in the original normal itistion of x:
sincexy, z2, etc. are not correlated and the distribution is normaldpots involving
odd powers of; vanish on summing, so thgf(fl;—“) is equal to 0.
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If M’ represent th&th moment coefficient of the distribution et about the end
of the range where? = 0,
(n—1)

My = pp -

Again

() | 25(3a3) 25(X)) 4S(a%ad) | S(ah)
n?2 n2 n3 n3 n4
+ other terms involving odd powers of, etc. which

will vanish on summation.

Now S(z1) hasn terms, buf(z323) hasin(n—1), hence summing for all samples
and dividing by the number of samples, we get

n-l) _ 2m

n—1 n—1
Mé:%—i-u%( . 5 ( ) Ha 2 ( )

— 25—+ — +3
Ha ng ng Ha n3

2
= pan®{n? - 2n+ 1} + %(n —1){n? - 2n +3}.

Now since the distribution of is normal,u, = 3u3, hence

(n—1)

n3

(n—1)(n+1)
n2

My = 3 {3n—3+n*—2n+3} =43
In a similar tedious way | find

M, = 13 (n—=1)(n+1)(n+3)

n3

and

M/ = (n—1)(n+ 1)Eln +3)(n+ 5).

n

The law of formation of these moment coefficients appeargta simple one, but
| have not seen my way to a general proof.
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If now Mg be theRth moment coefficient o§? about its mean, we have

M2:Mg(nn_1){(n+1)—(n—l)}ZQMS(n_l)_

3 —
s[(n=1Mn+1)n+3) 3n-1) 2(n-1) (n—1)>
Mo = n’ a n n? R
n—1 n—1
R

M, = Z—% {(n—=1)(n+1)(n+3)(n+5) —32(n—1)>—12(n — 1)* — (n — 1)*}

4
—1
:Mﬂ{n3+9n2+23n+15—32n+32—12n2+24n—12—n3+3n2—3n+1}
n
~ 12p3(n —1)(n+3)
— — .
Hence
M2 8 M, 3(n+3)

ST aor TaET aon)
1
~"2ﬁ2_351—6=m{6(n+3)—24—6(n—1)}:0.

Consequently a curve of Prof. Pearson’s Type Ill may he eegeo fit the distri-
bution of s2.

The equation referred to an origin at the zero end of the cwivde

N
y = CaPe ,

where
_ oMo _App(n—1p® _ n
7= My 8n2u3(n—1) 2y
and A . 5
n — n —
P 51 2 2

Consequently the equation becomes
y = C:z:anSe_%,

which will give the distribution of?.

The area of this curve i€fO°° g e Tady = | (say). The first moment coeffi-
cient about the end of the range will therefore be

nx T=00

_ —2uy 2l 2L _ z
oo n—1 _ nxz M2 2 0O o n—3 _ _nr
Cl, xz = e 22dx {C n L %€ ”2} _ C [ typr s e 2ada
0 — =0 + 0 n
I I I

The first part vanishes at each limit and the second is equal to

n—1

—pel  n—1
I on

H2-

222



and we see that the higher moment coefficients will he formyehbltiplying succes-
sively by 2L, 24345 etc., just as appeared to he the law of formatiod&f 173,
M}, etc.
Hence it is probable that the curve found represents thedkieal distribution of
52, so that although we have no actual proof we shall assumeld sw in what follows.
The distribution ofs may he found from this, since the frequencysaé equal to
that of s and all that we must do is to compress the base line suitably.

Now if y1 = ¢(s?) be the frequency curve af
and y2 = ¥(s) be the frequency curve of
then

yld(SQ) = deS,
yods = 2y sds,
Y2 = 28y1.

Hence

is the distribution ofs.
This reduces to

Yo = 205" 2e 207 .
s2
Hencey = Axz"~2¢™ 272 will give the frequency distribution of standard deviason

of samples of,, taken out of a population distributed normally with stamtdeviation
o2. The constantl may he found by equating the area of the curve as follows:

o0 TLZL‘2 o0 7’77/(172
Area= A/ " e 207 dx. <LetIp represent/ zPe” 207 da:.)
0 0
Then

P! di (—67721712) dx
T

S—
3

2

1 nx T=00 g9 o0 2 22
—zP~ e 202} +—=(p-1 aP~%e 22 dx
x=0 n 0

I
SN S|% =

o)
i
I
-

)Ip—27

since the first part vanishes at both limits.
By continuing this process we find

s — <%2> S (n=3)(n—5)...31L

or

Ins = (%) S (=) —5)...42L
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accordingn is even or odd.

But I is
o0 nmz
/ e 2:2dx = (L)a7
0 2n

° __na? 0'2 _ na? 0'2
xe 2sig7na2 dI = — e 202 Tr = O:E:OO = —.
0 n n

andl; is

Hence ifn be even,

while isn be odd
A =

(n—3)(n—5)...4.2(Z) >

Hence the equation may be written

or

N ( n
(n—=3)(n—"5)...4.2
whereN as usual represents the total frequency.

n-1 2
y= —2) S g 2eT 502 (n odd)
o

SECTION |1

To show that there is no correlation betweei) {he distance of the mean of a
sample from the mean of the population anjithe standard deviation of a sample
with normal distribution.

(1) Clearly positive and negative positions of the mean efghmple are equally
likely, and hence there cannot be correlation between tbelate value of the distance
of the mean from the mean of the population and the standaidtim, but (2) there
might be correlation between the square of the distancetensiquare of the standard
deviation. Let

u? = <M)2 and s* = 5a1) <m)2

Then ifm/, M| be the mean values af ands?, we have by the preceding part

(n—1)

2
and m} = 12
n

M = pg
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=N
~

S@H)\®  _S(z122).S(x2)  S(zd)  6S(2222)
- +2 3 T
n n Uz
— other terms of odd order which will vanish on summation.

Summing for all values and dividing by the number of cases ete g

n—1 n—1
Ru2520u20'52+m1M1:ﬂ+N§( - )_&_&ug( _ )7
N9 n ns n
whereR,2 2 is the correlation betwees? ands?.
(n—1) 2 (n (n—1)

Ry2s,04204 + M% n2 = U2 n3 {3 +n— 3} = :ug n2

HenceR,z,,0,20,: = 0, or there is no correlation betweef ands?.
SECTION 11

To find the equation representing the frequency distriloutibthe means of sam-
ples ofn drawn from a normal population, the mean being expresseering of the
standard deviation of the sample.

2
We havey = anc,l s"2¢7 2.7 as the equation representing the distributiors of
the standard deviation of a samplemgfwhen the samples are drawn from a normal
population with standard deviation
Now the means of these samplesiadire distributed according to the equation

_ \/WNe,ﬁ

202

Y Vv (2m)o ’

and we have shown that there is no correlation betweéhe distance of the mean of
the sample, and, the standard deviation of the sample.

Now let us suppose measured in terms of, i.e. let us find the distribution of
z=uz/s.

If we havey; = ¢(x) andy, = ¥ (z) as the equations representing the frequency
of z and ofz respectively, then

dx
y1de = yodz = Ys—

S Y2 = Sy
Hence

Ny/(n)s _ns2:2
A S
V(2m)o

*Airy, Theory of Errors of Observation®art 11, §6.
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is the equation representing the distributioredér samples oh with standard devia-
tion s.
Now the chance thatlies betweers ands + ds is

s+ds _o _ms2
J _C gn—2e7 5,7 g
S g

;2
o0 _ns=
I anc,l s"2e7 202 (s

which represents th® in the above equation.
Hence the distribution of due to values of which lie betweers ands + ds is

stds © n\gn—1,—" gt s+ds _ns?0+42%)
LT (3)s 22 ds [ Lt s
Y= = 3
) c n—2o 2 271' © _C _ n—2,"57
fo —Z 8" 2™ 202 ds fo =z s" e 20 ds

and summing for all values afwe have as an equation giving the distributiorz of

/ _ns2(1422)
fs+ds C "~ 1 o3 ds

fo ncgs” 26~ 52 g

By what we have already proved this reduces to

1n—-2n—-4 5 3 o
Y=9p_3n_5 1320 T? z*)72", if nbe odd

and to . 5 A 49
_In-2n- 4 2 on_ly
Y=g T 3.21(1+z )" 2", if nbeeven
Since this equation is independentooit will give the distribution of the distance
of the mean of a sample from the mean of the population expdeissterms of the

standard deviation of the sample for any normal population.

SECTION IV. SOME PROPERTIES OF THESTANDARD
DEVIATION FREQUENCY CURVE

By a similar method to that adopted for finding the constantwag find the mean
and moments: thus the mean idat 1 /I,,—2,
which is equal to

n—2n—4 2 z
n—3n-5 "1

n—2n-—4 3 ™ O .
n_3.n_5...§,/(§)%, if 1 be odd .

The second moment about the end of the range is

g .
—, if n be even,
n

or

I, (n—1)o?

In,Q n
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The third moment about the end of the range is equal to

InJrl - In+1 In—1
In—2 B In—l . In—2
= 02 x the mean

The fourth moment about the end of the range is equal to

Lo _ (n=Dn+1) ,

In_g n2

If we write the distance of the mean from the end of the rabge’\/n and the
moments about the end of the rangevs, etc.,

then
y Do y n—1 y Do3 5 N2 -1 4
= — = —0: = — = o .
1 \/ﬁ7 2 n 2, 3 \/ﬁ7 4 n
From this we get the moments about the mean:
2
g
=—(n—-1-D?
H2 n (n )7
0'
3 = {nD —3(n—1)D +2D?*} = {2D2—2n+3},
\/— \/—
4
[y = {n —1—4D%n +6(n —1)D* - 3D*} = {n2 —1-D?*(3D* - 2n+6)}.

Itis of interest to find out what these become wheis large.
In order to do this we must find out what is the valuef
Now Wallis's expression for- derived from the infinite product value eifa « is

224262 .. (2n)?
123252 (2n — 1)2°

2(2n—|— 1) =

If we assume a quantity (= ap + % + etc) which we may add to thén + 1 in
order to make the expression approximate more rapidly tértib, it is easy to show

that) = —3 + - —etc., and we gét

ome by L 22.42.62 ... (2n)>
n = .
2 2 16n) 123252, (2n—1)2

From this we find that whether be even or odd? approximates ta — 3 + -
whenn is large.
Substituting this value ob we get

702 1 1 B (1__"'161712) 3oy 1_|_1 1
2 =5, 4dn ’ﬂ2_ 4n? ML 2n  16n2 /)’

TThis expression will be found to give a much closer approfionato 7 than Wallis’s
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Duscian L. Froquncy Curvo giving the Distribution of Standard Deviations of sun ples
of 10 teken frow & Normal Population

s
Bquation y= gl (J)w‘u i

7

T8¢\

Consequently the value of the standard deviation of a stdratviation which we

have foun g becomes the same as that found for the normal curve
C( \/(2n)\/{1—(1/4n)})

by Prof. Pearsofio/(2n)} whenn is large enough to neglect th¢4n in comparison
with 1.
Neglecting terms of lower order thdfn, we find

2n—3 1 1
= —— = 3 1 - S 1 a_ .
A n(4n — 3)’ Bz ( 2n> ( + 2n>
Consequently, as increasesf3, very soon approaches the value 3 of the normal
curve, butd; vanishes more slowly, so that the curve remains slightlyske

Diagram | shows the theoretical distribution of the stadd#sviations found from
samples of 10.

SECTION V. SOME PROPERTIES OF THECURVE

771—2 n—4
y_n—3'n—5”'

Writing z = tan 6 the equation becomgs= 2=2.2=%  etc.x cos” 6, which affords

n—3"'n—>5

an easy way of drawing the curve. Alge = df/ cos? 6.

if n be even (14 22)=4n
VA 2
.3 if n be odd

NS RN
DWW 3 [0
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Hence to find the area of the curve between any limits we mut fin

...etc.x /cos"_2 0do

—2n—4 _ =30 sin g
= u -n ...etc. n—3/cos"74 0d6 + u
n—3n—>5 n—29 —

n—2n-—4 1 n—4

_ n—4 n—3 :
—n_3.n_5...etc./cos 9d9+n_3—n_5...etc.[cos 0 sin 6],

and by continuing the process the integral may he evaluated.
For example, if we wish to find the area between 0 &far n = 8 we have

0
gl/ cos® 646
1 iy 0

0
cos? 6do +

Area=

cos® O sin 0

NN Wl

S~

2
T

N Wl

142

1
Zcosfsinf + =.= cos® 0sinf + =.—.= cos® fsinf
™ 53w

™

+

N D Wk o
Wl — ot =

and it will be noticed that fon. = 10 we shall merely have to add to this same expres-
sion the terme.2.2.2 cos” O sin 6.
The tables at the end of the paper give the area betweerandz

(or9 = —g andf = tan~! z) .

This is the same a8.5 + the area betweefi = 0, andd = tan~' z, and as the
whole area of the curve is equal to 1, the tables give the pibityathat the mean of

the sample does not differ by more thatimes the standard deviation of the sample
from the mean of the population.

The whole area of the curve is equal to

—2n—4 37
n n ..etc.x / cos™ 2 0db

n—-3n—->5"

1
271'

and since all the parts between the limits vanish at bothdithis reduces to 1.
Similarly, the second moment coefficient is equal to

—2n—4 +37
n n ..etc.x / cos” 2 0 tan? 0d6

n—3n->5" “in
—2n—4 +am
= 2—3'2—5“'etc'x/_§,r (cos™ 16 — cos" 2 6)db
n—2 1
- n-—3 n—3
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Dragnan I, Solid ourvey=

' g
Broken line curve y = Ters ¢ %', the normal eurv

-l “Ti

Hence the standard deviation of the curveljs/(n — 3). The fourth moment
coefficient is equal to

—2n—4 37
i i ...etc.x / cos” 2 @ tan® 6d0

n—3n-5 Cig
—2n—4 i
_n-en ...etc.x / ’ (cos™ 0 —2cos" 10 4 cos" 2 0)db
n—3n—>5 —im
—-2n—-4 2n-
_n-2mn ~ 2(n-2) t1= ;
n—3n->5 n—3 (n—3)(n—75)
The odd moments are of course zero, an the curve is symmnigsiica
3(n—3) 6

B1 =0, 52:771_5 :3+—n_5.

Hence as it increases the curve approaches the normal chosevgtandard devi-
ationis1/4/(n — 3).
B2, however, is always greater than 3, indicating that larggadiens are mere

common than in the normal curve.
| have tabled the area for the normal curve with standardadievi1/+/7 so as to

compare, with my curve for = 10%. It will be seen that odds laid according to either

fSee p. 29
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table would not seriously differ till we reach= 0.8, where the odds are about 50 to
1 that the mean is within that limit; beyond that the normalkelgives a false feeling
of security, for example, according to the normal curve 895986 to 14 (say 7000 to
1) that the mean of the population lies betwees and+1.3s, whereas the real odds
are only 99,819 to 181 (about 550 to 1).

Now 50 to 1 corresponds to three times the probable erroeimtitmal curve and
for most purposes it would be considered significant; fa thason | have only tabled
my curves for values ofi not greater than 10, but have given the= 9 andn = 10
tables to one further place of decimals. They can he usedwslftions for finding
values for larger samplés.

The table forn = 2 can be readily constructed by looking dut= tan~' z in
Chambers’s tables and thers + 0 /= gives the corresponding value.

Similarly § sin 6 + 0.5 gives the values whem = 3.

There are two points of interest in the= 2 curve. Heres is equal to half the
distance between the two observations, 2 = 7, so that between-s and—z lies
2x T X % or half the probability, i.e. if two observations have beeads and we have
no other information, it is an even chance that the mean dfitbiemal) population will

lie between them. On the other hand the second moment ceeffisi

1 +3m 1 +im
_/ tan? 0df = = [tanf — 6] 2,

T J)e—in s

or the standard deviation is infinite while the probable eisdinite.
SECTION VI. PRACTICAL TEST OF THE FOREGOINGEQUATIONS

Before | bad succeeded in solving my problem analyticallyadl endeavoured to
do so empirically. The material used was a correlation tabfgaining the height and
left middle finger measurements of 3000 criminals, from agpéy W. R. Macdonnell
(Biometrika I, p. 219). The measurements were written out on 3000 pieceardf
board, which were then very thoroughly shuffled and drawmmatiom. As each card
was drawn its numbers were written down in a book, which ttugains the measure-
ments of 3000 criminals in arandom order. Finally, each eontive set of 4 was taken
as a sample—750 in all—and the mean, standard deviationc@melatiorf of each
sample determined. The difference between the mean of eagble and the mean of
the population was then divided by the standard deviatich@tample, giving us the
z of Section IlI.

This provides us with two sets of 750 standard deviations tarmdsets of 750
z's on which to test the theoretical results arrived at. Thgliteand left middle finger
correlation table was chosen because the distributiontbflsas approximately normal
and the correlation was fairly high. Both frequency cunresyever, deviate slightly
from normality, the constants being for height = 0.0026, 5, = 3.176, and for left
middle finger lengthg; = 0.0030, 82 = 3.140, and in consequence there is atendency

SE.g. ifn = 11, to the corresponding value for = 9, we add? x 2 x % x }
n=13weaddaswelds x I x 5 x 3 x 1 x 1cos'®@sin6, and soon.

91 hope to publish the results of the correlation work shortly

X % cos® 0sin 0: if
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for a certain number of larger standard deviations to odwam tf the distributions wore
normal. This, however, appears to make very little diffeeeto the distribution of.

Another thing which interferes with the comparison is thenparatively large
groups in which the observations occur. The heights arengecin 1 inch groups,
the standard deviation being only 2.54 inches. while, thgefitengths wore originally
grouped in millimetres, but unfortunately | did not at the¢ see the importance of
having a smaller unit and condensed them into 2 millimetoaigs, in terms of which
the standard deviation is 2.74.

Several curious results follow from taking samples of 4 froaterial disposed in
such wide groups. The following points may be noticed:

(1) The means only occur as multiples of 0.25. (2) The stahdaviations occur
as the square roots of the following types of numbers: + 0.10, n + 0.25, n + 0.50,

n + 0.69, 2n + 0.75.

(3) A standard deviation belonging to one of these groupsocéybe associated
with a mean of a particular kind; thus a standard deviatiog®tan only occur if the
mean differs by a whole number from the group we take as qnghile v/1.69 will
only occur when the mean isat+ 0.25.

(4) All the four individuals of the sample will occasionaltpme from the same
group, giving a zero value for the standard deviation. Nois Eads to an infinite
value ofz and is clearly due to too wide a grouping, for although two mmeay have
the same height when measured by inches, yet the finer theuneeaants the more
seldom will they he identical, till finally the chance thaufomen will haveexactly
the same height is infinitely small. If we had smaller grogpiine zero values of the
standard deviation might be expected to increase, and sitonsideration will show
that the smaller values of the standard deviation would ladslikely to increase, such
as 0.436, when 3 fall in one group and 1 in an adjacent grou@,58 when 2 fall in
two adjacent groups. On the other hand, when the individofathe sample lie far
apart, the argument of Sheppard’s correction will applg,rémal value of the standard
deviation being more likely to he smaller than that foundrayto the frequency in any
group being greater on the side nearer the mode.

These two effects of grouping will tend to neutralize theseffon the mean value
of the standard deviation, but both will increase the valitsb

Accordingly, we find that the mean value of the standard dievias quite close to
that calculated, while in each case the variability is dapgjreater. The fit of the curve
is not good, both for this reason and because the frequerneytisvenly distributed
owing to effects (2) and (3) of grouping. On the other handfihof the curve giving
the frequency ot is very good, and as that is the only practical point the campa
may he considered satisfactory.

The following are the figures for height:

Mean value of standard deviations: Calculated 2.027 4 0.02
Observed 2.026
Difference = —0.001

Standard deviation of standard deviations: Calculated 0.8558 +0.015
Observed 0.9066
Difference +0.0510
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2

Comparison of Fit. Theoretical Equationy: = %126’%

Scale in terms of standard deviations of population
Calculated frequency

17 105 27 455 645 78; 87 88813 71 58 45 33 23 1595 53 7
Observed frequency
3 143 245374 107 67 73 7777564 5 497 35 28125 9 1157

Difference
+14 +4 —21 -8 +422 —114 —14 11 —4 —7-5% 441 +245-21 -1 460
Whencey? = 48.06, P = 0.00006 (about).

In tabling the observed frequency, values between 0.01@5&875 were included
in one group, while between 0.0875 and 0.012.5 they werdelil/over the two groups.
As an instance of the irregularity due to grouping | may nmmthat there were 31
cases of standard deviations 1.30 (in terms of the groupwhgh is 0.5117 in terms
of the standard deviation of the population, and they woeedtore divided over the
groups 0.4 to 0.5 and 0.5 to 0.6. Had they all been counteddopgr0.5 to 0.6¢2
would have fallen to 20.85 ani would have risen to 0.03. Thg? test presupposes
random sampling from a frequency following the given lawt tiis we have not got
owing to the interference of the grouping.

When, however, we test theés where the grouping has not had so much effect, we
find a close correspondence between the theory and the aesudil

There were three cases of infinite values:afhich, for the reasons given above,
were given the next largest values which occurred, namélpr —6. The rest were
divided into groups of 0.1; 0.04, 0.05 and 0.06, being dididetween the two groups
on either side.

The calculated value for the standard deviation of the feegy curve was 140.0171),
while the observed was 1.030. The value of the standard titavia really infinite, as
the fourth moment coefficient is infinite, but as we have aabity limited the infinite
cases we may take as an approximatigg’'1500 from which the value of the probable
error given above is obtained. The fit of the curve is as fatlow

Comparison of Fit. Theoretical Equation: = 2% cos” 0, z = tan ¢
Scale ofz
Calculated frequency
5 97 131341 441 781 119 141 787 441 343 131 131 9
Observed frequency
9 1431 111 33 431 701 1195 1515 122 675 49 265 16 10 6
Difference
+4 44 2 -2 —15 —1 —8 +3 +105 +3 —11 445 —8 423 +3
Whencey? = 12.44, P = 0.56.

5

SIS

This is very satisfactory, especially when we consideraisat rule observations are
tested against curves fitted from the mean and one or morerattreents of the obser-
vations, so that considerable correspondence is only texjpected; while this curve
is exposed to the full errors of random sampling, its cortsthaving been calculated
quite apart from the observations.

The left middle finger samples show much the same featuréwas bf the height,
but as the grouping is not so large compared to the varigltilé curves fit the obser-
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vations more closely. Diagrams/liland 1V give the standard deviations of tkis for
the set of samples. The results are as follows:

Mean value of standard deviations: Calculated 2.186 £ 0.023
Observed 2.179
Difference= —0.007

Standard deviation of standard deviations: Calculated 0.9224 4+ 0.016
Observed 0.9802
Difference = +0.0578

202
Comparison of Fit. Theoretical Equatiofy; = —18X70 2o~ %>

v/ (2m)o?
Scale in terms of standard deviations of population
17 103 27 451 641 782 87 88 811 71 58 45 33 23 159: 51 7
Calculated frequency
2 14 277 51 647 91 941 68% 655 73 48% 401 421 20221 12 5 71
Observed frequency
+1 432 +1 451 — 4122 471 —191 —16+2 91 —41 491 —3 471 421 1 41

Whencey? = 21.80, P = 0.19.

Value of standard deviation: ~ Calculated  +1(.017)
Observed 0.982
Difference = —0.018

Comparison of Fit. Theoretical Equation: = 2% cos” 0, z = tan ¢

Scale ofz

Calculated frequency

5 91 131 341441 781 119141 119781 441 341 131 91 5
Observed frequency
4 155 18 33} 44 75 122138205 71 465 36 11 9 6
Difference

-1 46 443 —1 —3 =33 +3 =3 +11 —71 +2 +15 —21 —1 +1

Whencey? = 7.39, P = 0.92.

A very close fit.

We see then that if the distribution is approximately norma theory gives us
a satisfactory measure of the certainty to be derived fromallssample in both the
cases we have tested; but we have an indication that a finigmis of advantage. If
the distribution is not normal, the mean and the standardtien of a sample will be
positively correlated, so although both will have greatiability, yet they will tend
to counteract one another, a mean deriving largely from émegal mean tending to be
divided by a larger standard deviation. Consequently, ielelthat the table given in
Section VII below may be used in estimating the degree ohaast arrived at by the
mean of a few experiments, in the case of most laboratoryaogical work where
the distributions are as a rule of a “cocked hat” type and fficsntly nearly normal

IThere are three small mistakes in plotting the observecesahuDiagram I1I, which make the fit appear
worse than it really is
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e na 2.1y 0DD tan—1 z 5
SECTIONVII. TABLES OF 2=2 .21 3'3% 70 T cos™ 2 60df FOR
n=3"n 2.1 n EVEN 3T

VALUES OF n FROM 4 TO 10 INCLUSIVE

Together with% ffoo e’%d:v for comparison when = 10

z2(=%)n=4n=5n=6n=Tn=8n=9 n=10 For comparison
V7 Jr e~ % d:c)
V(@2m) T T
0.1 0.56330.5745 0.5841 0.5928 0.6006 0.60787 0.61462 40160
0.2 0.6241 0.6458 0.6634 0.6798 0.6936 0.70705 0.71846 18970
0.3 0.6804 0.7096 0.7340 0.7549 0.7733 0.78961 0.80423 64178
0.4 0.73090.7657 0.7939 0.8175 0.8376 0.85465 0.86970 52085
0.5 0.77490.8131 0.8428 0.8667 0.8863 0.90251 0.91609 69190
0.6 0.81250.8518 0.8813 0.9040 0.9218 0.93600 0.94732 3004
0.7 0.84400.8830 0.9109 0.9314 0.9468 0.95851 0.96747 7906
0.8 0.87010.9076 0.9332 0.9512 0.9640 0.97328 0.98007 25308
0.9 0.8915 0.9269 0.9498 0.9652 0.9756 0.98279 0.98780 1879
1.0 0.9092 0.9419 0.9622 0.9751 0.9834 0.98890 0.99252 8PM9
1.1 0.9236 0.9537 0.9714 0.9821 0.9887 0.99280 0.99539 92609
1.2 0.9354 0.9628 0.9782 0.9870 0.9922 0.99528 0.99713 91199
1.3 0.9451 0.9700 0.9832 0.9905 0.9946 0.99688 0.99819 989
1.4 0.9451 0.9756 0.9870 0.9930 0.9962 0.99791 0.99885 9809
1.5 0.9598 0.9800 0.9899 0.9948 0.9973 0.99859 0.99926 9909

1.6 0.96530.9836 0.9920 0.9961 0.9981 0.99903 0.99951
1.7 0.9699 0.9864 0.9937 0.9970 0.9986 0.99933 0.99968
1.8 0.97370.9886 0.9950 0.9977 0.9990 0.99953 0.99978
1.9 0.99700.9904 0.9959 0.9983 0.9992 0.99967 0.99985
2.0 0.9797 0.9919 0.9967 0.9986 0.9994 0.99976 0.99990
2.1 0.9821 0.9931 0.9973 0.9989 0.9996 0.99983 0.99993
2.2 0.9841 0.9941 0.9978 0.9992 0.9997 0.99987 0.99995
2.3 0.9858 0.9950 0.9982 0.9993 0.9998 0.99991 0.99996
2.4 0.98730.9957 0.9985 0.9995 0.9998 0.99993 0.99997
2.5 0.9886 0.9963 0.9987 0.9996 0.9998 0.99995 0.99998
2.6 0.9898 0.9967 0.9989 0.9996 0.9999 0.99996 0.99999
2.7 0.9908 0.9972 0.9989 0.9997 0.9999 0.99997 0.99999
2.8 0.9916 0.9975 0.9989 0.9998 0.9999 0.99998 0.99999
2.9 0.9924 0.9978 0.9989 0.9998 0.9999 0.99998 0.99999
3.0 0.99310.99810.99890.9998 — 0.99999 —

EXPLANATION OF TABLES

The tables give the probability that the value of the meargsueed from the mean
of the population, in terms of the standard deviation of thmgle, will lie between
—oo andz. Thus, to take the table for samples of 6, the probabilityhefrmean of the
population lying betweer-co and once the standard deviation of the sample is 0.9622,
the odds are about 24 to 1 that the mean of the populationdizeden these limits.

The probability is therefore 0.0378 that it is greater thacesthe standard deviation
and 0.07511 that it lies outsidel .0 times the standard deviation.

ILLUSTRATION OF METHOD
lllustration I. As an instance of the kind of use which may be made of the tables

| take the following figures from a table by A. R. Cushny and A.ARebles in the
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Journal of Physiologyor 1904, showing the different effects of the optical isosef
hyoscyamine hydrobromide in producing sleep. The averagger of hours’ sleep
gained by the use of the drug is tabulated below.

The conclusion arrived at was that in the usual does 2 wad, ats not, of value
as a soporific.

Additional hours’ sleep gained by the use of hyoscyamineohyomide

Patient 1 (Dextro-) 2 (Laevo-) Difference ¢ 1)
1 +0.7 +1.9 +1.2
2 —-1.6 +0.8 +2.4
3 —0.2 +1.1 +1.3
4 —1.2 +0.1 +1.3
5 —0.1 —0.1 0
6 +3.4 +4.4 +1.0
7 +3.7 +5.5 +1.8
8 +0.8 +1.6 +0.8
9 0 +4.6 +4.6

10 +2.0 +3.4 +1.4
Mean +0.75 Mean +2.33 Mean +1.58
S.D. 0.75 S.D. 1.90 S.D. 1.17

First let us see what is the probability that 1 will on the aggr give increase of
sleep; i.e. what is the chance that the mean of the populafierhich these experi-
ments are a sample is positive0.75/1.70 = 0.44, and looking out: = 0.44 in the
table for ten experiments we find by interpolating betwe@&%97 and 0.9161 that 0.44
corresponds to 0.8873, or the odds are 0.887 to 0.113 thatehe is positive.

That is about 8 to 1, and would correspond to the normal cunabdout 1.8 times
the probable error. It is then very likely that 1 gives an @age of sleep, but would
occasion no surprise if the results were reversed by fugkgeriments.

If now we consider the chance that 2 is actually a soporific weehthe mean
inclrease of sleep= 2.33/1.90 or 1.23 times thes.D. From the table the probability
corresponding to this is 0.9974, i.e. the odds are nearlytd@0that such is the case.
This corresponds to about 4.15 times the probable erroein¢iimal curve. But | take
it that the real point of the authors was that 2 is better thamHis we must t4est by
making a new series, subtracting 1 from 2. The mean valudsig&eries is+1.38,
while thes.D. is 1.17, the mean value beingl.35 times thes.D. From the table, the
probability is 0.9985, or the odds are about 666 to one thaitl2s better soporific. The
low value of thes.D. is probably due to the different drugs reacting similanytbe
same patient, so that there is correlation between thetsesul

Of course odds of this kind make it almost certain that 2 ishistter soporific, and
in practical life such a high probability is in most matteamsidered as a certainty.

lllustration Il. Cases where the tables will be useful are not uncommon icwgri
tural work, and they would be more numerous if the advantafibsing able to apply
statistical reasoning were borne in mind when planning ttpeements. | take the
following instances from the accounts of the Woburn farmesgeriments published
yearly by Dr Voelcker in theournal of the Agricultural Soceity

A short series of pot culture experiments were conductedderdo determine the
casues which lead to the production of Hard (glutinous) whe&oft (starchy) wheat.
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In three successive years a bulk of seed corn of one varietypieked over by hand
and two samples were selected, one consisting of “hardhgmaiid the other of “soft”.
Some of each of them were planted in both heavy and light aditlae resulting crops
wore weighed and examined for hard and soft corn.

The conclusion drawn was that the effect of selecting thd s&es negligible com-
pared with the influence of the soil.

This conclusion was thoroughly justified, theheavy souldping in each case
nearly 100% of hard corn, but still the effect of selecting feed could just be traced
in each year.

But a curious point, to which Dr Voelcker draws attention lire tsecond year’s
report, is that the soft seeds produced the higher yield i born and straw. In
view of the well-known fact that thearietieswhich have a high yield tend to produce
soft corn, it is interesting to see how much evidence the mx@ats afford as to the
correlation between softness and fertility in the saragety.

Further, Mr Hooket* has shown that the yield of wheat in one year is largely
determined by the weather during the preceding year. Drciee’ results may afford
a clue as to the way in which the seed id affected, and wouldstljastify the selection
of particillar soils for growing wheaift

Th figures are as follows, the yields being expressed in grasrpar pot:

Year 1899 | 1900 | 1901 ] Standard

Soil Light Heavy Light Heavy Light Heavy Average deviatior
Yield of corn from soft seed | 7.55 8.89 14.81 13.55 7.49 15.39 11.328
Yield of corn from hard seed| 7.27 8.32 13.81 13.36 7.97 13.13 10.643
Difference +0.58 +0.57 +1.00 +0.19 —0.49 +2.26 +0.685 0.778 0.88
Yield of straw from soft seed| 12.81 12.87 22.22 20.21 13.97 22.57 17.442
Yield of straw from hard seed 10.71 12.48 21.64 20.26 11.71 18.96 15.927
Difference +2.10 +0.39 +0.78 —0.05 +2.66 +3.61 +1.515 1.261 1.20

If we wish to laid the odds that the soft seed will give a bejietd of corn on the
average, we divide, the average difference by the standaidttbn, giving us

z = 0.88.

Looking this up in the table fon = 6 we findp = 0.9465 or the odds are 0.9465 to
0.0535 about 18 to 1.

Similarly for strawz = 1.20, p = 0.9782, and the odds are about 45 to 1.

In order to see whether such odds are sufficient for a praatiaa to draw a definite
conclusion, | take another act of experiments in which Dritker compares the effects
of different artificial manures used with potatoes on a lacge.

The figures represent the difference between the crops gnathirthe rise of sul-
phate of potash and kailit respectively in both 1904 and 1905

cwt. gr. Ib. ton cwt. qr. Ib.
1904+ 10 3 20:4+ 1 10 1 26 , (two experimentsin each year)
19054+ 6 0 3:+ 13 2 8

**Journal of the Royal Statistical Society897
Tt And perhaps a few experiments to see whether there is aaorebetween yield and “mellowness” in
barley.
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The average gain by the use of sulphate of potash was 15.25andtthes.D. 9
cwt., whence, if we want the odds that the conclusion givdavbés right, z = 1.7,
corresponding, when = 4,top = 0.9698 or odds of 32 to 1; this is midway between
the odds in the former example. Dr Voelcker says: “It may naikty be concluded
that for the potato crop on light land 1 cwt. per acre of sulpha potash is a better
dressing than kailit.”

Am an example of how the table should be used with cautiorkd the following
pot culture experiments to test whether it made any diffezemhether large or small
seeds were sown.

lllustration 11l. In 1899 and in 1903 “head corn” and “tail corn” were taken from
the same bulks of barley and sown in pots. The yields in grasnmege as follows:

1899 1903
Largeseed... 139 7.3
Smallseed... 144 1.4

+0.5 +14

The average gain is thus 0.95 and the. 0.45, givingz = 2.1. Now the table for
n = 2 is not given, but if we look up the angle whose tangent is 2.Climmbers’s

tables,
_ tan"'2.1 05 = 64°39/
P="goe 00T IRee
so that the odds are about 6 to 1 that small corn gives a béderthan large. These
odds* are those which would be laid, and laid rigidly, by a man whmrsg knowledge
of the matter was contained in the two experiments. Anyongesant with pot culture
would however know that the difference between the two tesubuld generally be
greater and would correspondingly moderate the certaihitysoconclusion. In point
of fact a large-scale experiment confirmed this result, thallscorn yielding shout
15% more than the large.
I will conclude with an example which comes beyond the rarfghetables, there
being eleven experiments.
To test whether it is of advantage to kiln-dry barley seedi®towing, seven
varieties of barley wore sown (both kiln-dried and not kilried in 1899 and four in
1900; the results are given in the table.

= 0.859,

H[Through a numerical slip, now corrected, Student had giterodds as 33 to 1 and it is to this figure
that the remarks in this paragraph relate.
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Lb. head corn per acre Price of head cornin  Cwit. straw per acréalue of crop per acre

shillings per quarter in shillings
N.KD. N.D. Difft NKD.N.D. Diff. NKD.ND. Diff. N.KD. N.D. Diff.
1903 2009 +106 261 3 0 19% 25 +5% 140% 152 +113
1935 1915 — 20 28 26% -13 2235 24 413 1525 145 —7%
1910 2011 +101 294 285  —1 28 24 41 1585 161 425
1899 2496 2463 — 33 30 29 -1 23 28 45 2045 1993 -5
2108 2180 + 72 273 27 -3 22% 228 0 162 142 42
1961 1925 -36 26 26 0 19g 4191 —%1 142 1395 —2%
2060 2122 +62 29 26 -3 245 224 —27 168 155 13
1444 1482 + 38 29% 285 —1 155 16 43 118 ‘1173 —3
1900 1612 1443 — 70 28% 28 -1 18 17% —% 128% 121 -74
1316 1443 +127 30 29 -1 141 155 +1; 1093 116% +7
1511 1535 + 24 28% 28  —2 17 175 4% 120 1205  +3
Average 18415 1875.2+33.7 28.45 2755 —0.91 19.95 21.05+1.10 145.82 144.68+1.14
Standard ...~ ... 631 ... ... 079 ... .. 225 ... .. 66l
deviation
Standard
deviation ... 63.1 0.79 s ... 225 6.67
+V8

It will he noticed that the kiln-dried seed gave on an averhgelarger yield. of
corn and straw, but that the quality was almost always iafeAt first sight this might
be supposed to be due to superior germinating power in tinedkied seed, but my
farming friends tell me that the effect of this would be thze kiln-dried seed would
produce the better quality barley. Dr Voelcker draws thectigsion: “In such seasons
as 1899 and 1900 there is no particular advantage in kilmgtyefore mowing.” Our
examination completely justifies this and adds “and theityuaf the resulting barley
is inferior though the yield may be greater.”

In this case | propose to use the approximation given by thenabcurve with
standard deviatios/+/n — 3 and therefore use Sheppard’s tables, looking up the dif-
ference divided by5/+/8. The probability in the case of yield of corn per acre is given
by looking up33.7/22.3 = 1.51 in Sheppard’s tables. This gives= 0.934, or the
odds are about 14 to 1 that kiln-dried corn gives the higheldyi

Similarly 0.91/0.28 = 3.25, corresponding tp = 0.9994," so that the odds are
very great that kiln-dried seed gives barley of a worse tyi#iian seed which has not
been kiln-dried.

Similarly, it is about 11 to 1 that kiln-dried seed gives mst@aw and about 2 to 1
that the total value of the crop is less with kiln-dried seed.

SECTION X. CONCLUSIONS

1. A curve has been found representing the frequency disiib of standard
deviations of samples drawn from a normal population.
2. A curve has been found representing the frequency disiwib of the means of
the such samples, when these values are measured from theofrtea population in
terms of the standard deviation of the sample.

tAs pointed out in Section V, the normal curve gives too largalae forp when the probability is large.
| find the true value in this case to pe= 0.9976. It matters little, however, to a conclusion of this kind
whether the odds in its favour are 1660 to 1 or merely 416 to 1.
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3. It has been shown that the curve represents the factg feéll even when the
distribution of the population is not strictly normal.

4. Tables are given by which it can be judged whether a sefiexperiments,
however short, have given a result which conforms to anyiredstandard of accuracy
or whether it is necessary to continue the investigation.

Finally 1 should like to express my thanks to Prof. Karl Pearswithout whose
constant advice and criticism this paper could not have be#ten.

[Biometrika 6 (1908), pp. 1-25, reprinted on pp. 11-34'8tudent’s” Collected Pa-

pers Edited by E. S. Pearson and John Wishart with a Foreword bp¢&aMcMullen,
Cambridge University Press for the Biometrika Trusteed 219
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