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a b s t r a c t

This paper derives the second-order biases of maximum likelihood estimates from a
multivariate normal model where the mean vector and the covariance matrix have
parameters in common. We show that the second order bias can always be obtained by
means of ordinary weighted least-squares regressions. We conduct simulation studies
which indicate that the bias correction scheme yields nearly unbiased estimators.
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1. Introduction

Applications of multivariate normal models are commonly found in the literature. In the majority of problems, the
estimation procedure in such multivariate normal models makes use of asymptotic theory (e.g., nonlinear multivariate
regressions and errors-in-variablesmodels, among others). Then, in the practical applications, the asymptotic distribution of
theMLE is often used as an approximation to its exact distribution, since it considerably simplifies the inferential process. In
general, under some regularity conditions, theMLEs are consistent and efficient, i.e., asymptotically, their biases converge to
zero and their variance–covariancematrices approach the inverse of the Fisher information.Moreover, under such regularity
conditions, the MLEs are asymptotically normally distributed. Although the MLEs have these important features, they may
be strongly biased for small or even moderate sample sizes when more complex models are considered, since the bias of a
MLE is typically of order O(n−1), whereas the asymptotic standard errors are of order O(n−1/2). Thus, a bias correction can
play an important role to improve the estimation of the model parameters.
An important area of research in statistics is the study of the finite-sample behavior of MLEs. Bias adjustment has been

extensively studied in the statistical literature. For example, Cook et al. (1986) relate bias to the position of the explanatory
variables in the sample space; Cordeiro andMcCullagh (1991) give generalmatrix formulae for bias correction in generalized
linear models; Cordeiro and Vasconcellos (1997) obtained general matrix formulae for bias correction in multivariate
nonlinear regressionmodels with normal errors, while Vasconcellos and Cordeiro (1997) obtained general formulae for bias
in multivariate nonlinear heteroscedastic regression. Also, Cordeiro and Vasconcellos (1999) obtained second order biases
of the maximum likelihood estimators in vonMises regression models, while Cordeiro et al. (2000) obtained bias correction
for symmetric nonlinear regression models. Vasconcellos and Cordeiro (2000) obtained bias correction for multivariate
nonlinear Student t regressionmodels, while Cordeiro and Botter (2001) derive general formulae for the second-order biases
in overdispersed generalized linear models. More recently, Cordeiro and Toyama (2008) derive general formulae for the
second-order biases of maximum likelihood estimates of the parameters in generalized nonlinear models with dispersion
covariates.
In this paper we study a multivariate normal model with general parameterization and derive the second-order biases

of the maximum likelihood estimates. Here, the general parameterization means a sort of unification of several important
models which can be constructed using the multivariate normal model. For instance, the multivariate nonlinear regressions
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studied by Cordeiro and Vasconcellos (1997) and their heteroscedastic version (Vasconcellos and Cordeiro, 1997) are just
particular cases of our proposal. In this paper we propose a model in which the mean µ and the varianceΣ of the observed
variables are indexed by the same vector of parameters, say θ. The existing works on bias correction assume that the
mean and variance do not share any parameters. However, in errors-in-variables models, for example, this assumption
is not realistic. Indeed, that assumption makes the computation of the bias formulae less complicated, but it restricts the
applicability of the approach to a special class of models. In view of that, the main goal of this article is to extend the bias
correction to a wide class of multivariate models which has not yet been considered in the statistical literature.
The outline of the paper is as follows. Section 2 presents themainmodel and computes the score function and Fisher’s in-

formationmatrix. In Section 3, we presentmatrix formulae for the second-order biases of theMLEs for the general model. In
Section 4, we present some useful examples of the proposed formulation. Monte Carlo simulation results are presented and
discussed in Section 5. The numerical results show that the bias correctionwe derive is effective in small samples; it delivers
estimators that are nearly unbiased and display superior finite-sample behavior. Finally, Section 6 concludes the paper.

2. Model specification

Weconsider the situation inwhichn independentmultivariate randomvariablesY1, . . . , Yn are observed and thenumber
of responses measured in each observation is q. We also admit that auxiliary covariates can be observed, say X1, . . . ,Xn. The
multivariate regression model can then be represented as

Yi = µi(θ)+ ui, i = 1, 2, . . . , n, (1)
where Yi is a q×1 vector of dependent variables,µi(θ) ≡ µi(θ,Xi) is a mean function (the shape is assumed known) which
is three times continuously differentiable with respect to each element of θ and Xi is anm× 1 vector of known explanatory
variables associated with the ith observed response Yi. Also, θ is a p × 1 vector of unknown parameters of interest (where
p < n and it is fixed). Additionally, as the foundation for estimation by maximum likelihood and hypothesis testing, we
assume that the independent random errors ui’s follow a multivariate normal Nq(0,Σi(θ)) distribution, where Σi(θ) is a
q × q positive definite covariance matrix and the entries of Σi(θ) are assumed three times continuously differentiable in
each element of θ. We are assuming, in addition, that the functionsµi(θ) andΣi(θ) are defined in a convenient way since θ
should be identifiable in model (1).
The class of models presented above includes many important regression models. For example, in an errors-in-variables

model, we observe two variables, namely Yi and Xi whose relationship is given by
Yi = α + βxi + ei and Xi = xi + ui, (2)

where xi ∼ N (µx, σ
2
x ), ei ∼ N (0, σ 2) and ui ∼ N (0, σ 2u ), with σ

2
u known and, additionally, xi, ei and ui are mutually

uncorrelated, with i = 1, 2, . . . , n. Then, denoting Yi = (Yi, Xi)> and θ = (α, β, µx, σ
2
x , σ

2)> we have that Yi ∼ N2(µ(θ),
Σ(θ)), where

µ(θ) =

(
α + βµx
µx

)
and Σ(θ) =

(
β2σ 2x + σ

2 βσ 2x
βσ 2x σ 2x + σ

2
u

)
.

This is a simple linear regression in which the covariate is subject to measurement errors. This is a good example where
the usual approach (assuming thatΣ andµ do not share any parameter) is not applicable. Measurement error models have
been largely used in epidemiology (Kulathinal et al., 2002; de Castro et al., 2008; Patriota et al., 2009), astrophysics (Akritas
and Bershady, 1996; Kelly, 2007; Kelly et al., 2008; Patriota et al., 2009) and analytical chemistry (Cheng and Riu, 2006)
to avoid inconsistent estimators (see Fuller, 1987, for further details). Other special cases of model (1) are: multivariate
heteroscedastic nonlinear errors-in-variables models, multivariate nonlinear heteroscedastic models, univariate nonlinear
models, mixed models, and so on. As can be seen, model (1) can encompass a wide class of models.
To simplify the notation, define Y = vec(Y1, Y2, . . . , Yn), µ = vec(µ1(θ),µ2(θ), . . . ,µn(θ)), Σ = diag{Σ1(θ),

Σ2(θ), . . . ,Σn(θ)} and u = Y − µ, where vec(·) is the vec operator, which transforms a matrix into a vector by stacking
the columns of the matrix one underneath the other. Then, the log-likelihood function associated with (1), apart from an
unimportant constant, is

`(θ) = −
1
2
log |Σ| −

1
2
tr{Σ−1uu>}. (3)

Wemake some assumptions (Cox and Hinkley, 1974, Ch. 9) on the behavior of `(θ) as the sample size n approaches infinity,
such as the regularity of the first three derivatives of `(θ)with respect to θ and the existence and uniqueness of the MLE of
θ, θ̂. Define the following quantities:

ar =
∂µ

∂θr
, asr =

∂2µ

∂θs∂θr
, Cr =

∂Σ

∂θr
, Csr =

∂2Σ

∂θs∂θr
and Ar =

∂Σ−1

∂θr
= −Σ−1CrΣ−1,

where r, s = 1, 2, . . . , p. To compute the derivatives of `(θ) we make use of methods in matrix differential calculus, as
described in Magnus and Neudecker (1988). Let

F̃ =
(
D̃
Ṽ

)
, H̃ =

(
Σ 0
0 2Σ̃

)−1
and ũ =

(
u

−vec(Σ − uu>)

)
,
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where D̃ = (a1, . . . , ap), Ṽ = (vec(C1), . . . , vec(Cp)), Σ̃ = Σ ⊗ Σ and⊗ is the Kronecker product. We assume that F̃ has
rank p. The score function for θ can be written as Uθ = F̃>H̃ ũ. Also, the expected Fisher information for θ is

Kθ = F̃>H̃ F̃ . (4)

The MLE θ̂ satisfies the equation Uθ = 0. After some matrix manipulations, the Fisher scoring method can be used to
estimate θ by iteratively solving the equation

(̃F (m)>H̃ (m)F̃ (m))θ(m+1) = F̃ (m)>H̃ (m)ũ∗(m), m = 0, 1, 2, . . . , (5)
where ũ∗(m) = F̃ (m)θ(m)+ ũ(m). Each loop, through the iterative scheme (5), consists of an iterative re-weighted least squares
algorithm to optimize the log-likelihood (3). Using Eq. (5) and any software (MAPLE, MATLAB, Ox, R, SAS) with a weighted
linear regression routine, one can compute the MLE θ̂ iteratively. It is also noteworthy that the MLE in even much more
complex models, such as multivariate heteroscedastic nonlinear errors-in-variables models, may be attained via iterative
formula (5).

3. Biases of estimates of θ

We shall use the following tensor notation for themixed cumulants of the log-likelihood derivatives in which the indices
r , s and t range from 1 to p: κsr = E(∂2`(θ)/∂θs∂θr), κs,r = E((∂`(θ)/∂θs)(∂`(θ)/∂θr)), κtsr = E(∂3`(θ)/∂θtθs∂θr), κ

(t)
sr =

∂κsr/∂θt and so on. This notation is taken from Lawley (1956). Not all κ ’s are functionally independent; e.g., κs,r = −κsr ,
which is the typical element of the informationmatrix Kθ , assumed to be nonsingular. All κ ’s refer to a total over the sample
and are, in general, of order n. Finally, let κ s,r denote the corresponding element of K−1θ .
After some lengthy algebra, the quantities κsr , κtsr and κ

(r)
ts (r, s, t = 1, 2, . . . , p) are given, respectively, by κsr =

1
2 tr

{ArCs} − a>s Σ−1ar ,

κtsr = tr{(ArΣAs + AsΣAr)Ct} +
1
2
tr{AsCtr + ArCts + AtCsr}

− (a>t Asar + a>s Atar + a>s Arat + a>t Σ−1asr + a>tsΣ
−1ar + a>s Σ−1atr) (6)

and

κ
(r)
ts =

1
2
tr{(ArΣAs + AsΣAr)Ct + AtCrs + AsCrt} − (a>rtΣ

−1as + a>t Aras + a>t Σ−1ars). (7)

Let B(̂θa) be the n−1 bias of θ̂a, a = 1, 2, . . . , p. It follows from the general expression for the multiparameter n−1 biases
of MLEs given by Cox and Snell (1968) that

B(̂θa) =
′∑
t,s,r

κa,tκ s,r
{
1
2
κtsr − κts,r

}
,

where
∑
′ denotes the summation over all combinations of the parameters θ1, . . . , θp. Following Cordeiro and Klein (1994),

we write the above equation in matrix notation to obtain n−1 bias vector B(̂θ) of θ̂ in the form B(̂θ) = K−1θ W vec(K−1θ ),
whereW = (W (1), . . . ,W (p)) is a p × p2 partitioned matrix, eachW (r) referring to the rth component of θ being a p × p
matrix with typical (t, s)th element given byw(r)ts =

1
2κtsr + κts,r = κ

(r)
ts −

1
2κtsr . Notice that from (6) and (7) we have that

w
(r)
ts =

1
4
tr{AtCsr + AsCtr − ArCts} −

1
2
(a>t Σ−1asr + a>s Σ−1atr − a>r Σ−1ats)+

1
2
(a>s Atar + a>t Asar − a>t Aras). (8)

Since Kθ is a symmetric matrix and we are interested in the multiplication result ofW vec(K−1θ ), many terms of (8) cancel.
Indeed, note that the tth element ofW vec(K−1θ ) is given byw(1)t1 κ

1,1
+ (w

(1)
t2 +w

(2)
t1 )κ

1,2
+ · · · + (w

(s)
tr +w

(r)
ts )κ

s,r
+ · · · +

(w
(p−1)
tp + w

(p)
t(p−1))κ

p−1,p
+ w

(p)
tp κ

p,p and w(s)tr + w
(r)
ts =

1
2 tr(AtCsr) − a>t Σ−1asr + a>s Atar . Therefore, we can replace the

element w(r)ts by
1
4 tr(AtCsr) −

1
2a
>
t Σ−1asr + 1

2a
>
s Atar and W (r) may be written in an equivalent way as W (r)

= F̃>H̃Φr ,
r = 1, . . . , p, where Φr = −

1
2 (Gr + Jr)with

Gr =
[

a1r · · · apr
vec(C1r) · · · vec(Cpr)

]
and Jr =

[
0

2(Inq ⊗ ar )̃D

]
,

where Im denotes anm×m identitymatrix. That is, thematrixW can bewritten asW = F̃>H̃(Φ1, . . . ,Φp). Then, we arrive
at the following theorem.

Theorem 1. The n−1 bias vector B(̂θ) of θ̂ is given by

B(̂θ) = (̃F>H̃ F̃)−1F̃>H̃ ξ̃, (9)

where ξ̃ = (Φ1, . . . ,Φp)vec((̃F>H̃ F̃)−1).
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In order to interpret formulae (9) it is helpful to exploit the relationship between the n−1 bias of θ̂ and a linear regression.
The bias vector B(̂θ) is simply the set coefficients from the ordinaryweighted least-squares regression of ξ̃ on the columns of
F̃ , using weights in H̃ . As expression (9) makes clear, for any particular model of the class of models presented in Section 2,
it is always possible to express the bias of θ̂ as the solution of an ordinary weighted least-squares regression. Eq. (9) is easily
handled algebraically for any type of nonlinear model, since it only involves simple operations on matrices and vectors.
This equation, in conjunction with a computer algebra system such as MAPLE (Abell and Braselton, 1994), will yield B(̂θ)
algebraicallywithminimal effort. Also, we can compute the biasB(̂θ) numerically via softwarewith numerical linear algebra
facilities such as Ox (Doornik, 2006) and R (R Development Core Team, 2008). [Note that we have described a procedure to
attain a corrected estimator in a general formulation that covers a wide class of models. In the next section, we shall present
some special cases to shed light on the applicability of our general formulation.]
Therefore, we are able to compute the n−1 biases of the MLEs for the general model (1) using formula (9). On the right-

hand side of expression (9), which is of order n−1, consistent estimates of the parameter θ can be inserted to define the
corrected MLE θ̃ = θ̂ − B̂(̂θ), where B̂(·) denotes the value of B(·) at θ̂. The bias-corrected estimate θ̃ is expected to have
better sampling properties than the uncorrected estimator, θ̂. For example, in Cordeiro et al. (2008) some simulation studies
are presented, showing that the BCEs have a distribution that seems to be closer to the normal distribution than the MLEs.
We also present some simulations in Section 5 that indicate that θ̃ has smaller bias than its corresponding MLE. On the
other hand, we cannot say that the bias corrected estimates always offer some improvement over the MLEs, since in some
situations they can have larger mean squared errors.
It is worth emphasizing that there are other methods to bias-correcting MLEs. In regular parametric problems, (Firth,

1993) developed the so-called ‘‘preventive’’ method, which also allows for the removal of the second-order bias. Hismethod
consists of modifying the original score function to remove the first-order term from the asymptotic bias of these estimates.
In exponential families with canonical parameterization, his correction scheme consists in penalizing the likelihood by the
Jeffreys invariant priors. This is a preventive approach to bias adjustment, which has itsmerits, but the connections between
our results and his work are not pursued in this paper since they could be developed in future research. Additionally, we
should also stress that it is possible to avoid cumbersome and tedious algebra on cumulant calculations by using Efron’s
bootstrap (Efron and Tibshirani, 1993). We use the analytical approach here since this leads to a nice formula and we do not
need extensive numerical procedures. Moreover, the application of the analytical bias approximation seems to generally be
the most feasible procedure to use and it continues to receive attention in the literature.

4. Special models

It is useful to consider some examples to illustrate the applicability of the results in the previous section and clarify the
notationused. Other important specialmodels could also be easily handled, since formula (9) only requires simple operations
on matrices and vectors.
First, consider a univariate nonlinear model (q = 1) in which Σ = σ 2In. Note that this model is a particular case of

model (1) with θ = (β>, σ 2)> and µ = (µ1(β), . . . , µn(β))
>, where the components of µ and Σ are unrelated and vary

independently. Let p−1 be the dimension ofβ. Here, D̃ = (a1, . . . , ap−1, 0) and Ṽ = (0, vec(Cp)). Also, F̃ = diag{̃D(1), Ṽ (2)},
where D̃(1) = (a1, . . . , ap−1) and Ṽ (2) = vec(Cp). Then, from (4), the expected Fisher information for θ can be written as
Kθ = F̃>H̃ F̃ = diag{Kβ, Kσ 2}, where Kβ = D̃(1)>D̃(1)/σ 2 is Fisher’s information for β and Kσ 2 = n/2σ 4 is the information
relative to σ 2. Since Kθ is block-diagonal, β and σ are globally orthogonal (Cox and Reid, 1987). From (9), note that

(̃F>H̃ F̃)−1F̃>H̃ =

[
(̃D(1)>D̃(1))−1D̃(1)> 0

0
1
n
Ṽ (2)>(In ⊗ In)

]
.

Also,

ξ̃ =

(̃
ξ1
ξ̃2

)
=

−
σ 2

2
G̈ vec{(̃D(1)>D̃(1))−1}

−

p−1∑
k=1

(In ⊗ ak)̃D(1)K−1βk

 ,
where G̈ = (aβ1, . . . , aβ(p−1))with aβk = (a1k, . . . , a(p−1)k) and K−1βk is the kth column of K

−1
β . Then,

B(̂θ) =
(

B(̂β)
B(σ̂ 2)

)
=

(̃D(1)>D̃(1))−1D̃(1)>̃ξ11
n
Ṽ (2)>(In ⊗ In)̃ξ2

 .
Note that B(̂β) = (̃D(1)>D̃(1))−1D̃(1)>̃ξ1 agrees with the result due to Cook et al. (1986, Eq. (3)). Additionally, we obtain the
following simple form originally first given by Beale (1960): B(σ̂ 2) = −(p− 1)σ 2/n; note that

Ṽ (2)>(In ⊗ In)
p−1∑
k=1

(In ⊗ ak)̃D(1)K−1βk =

p−1∑
k=1

vec(Cp)>(In ⊗ ak)̃D(1)K−1βk
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=

p−1∑
k=1

tr{akK−1βk D̃
(1)>
} = tr{̃D(1)K−1β D̃(1)>} = (p− 1)σ 2.

As a second application, consider the multivariate nonlinear heteroscedastic regression model studied by Vasconcellos
and Cordeiro (1997). Note that thismodel is a particular case ofmodel (1), with θ = (β>, σ>)>,µ = vec(µ1(β), . . . ,µn(β))
andΣ = diag{Σ1(σ), . . . ,Σn(σ)}. Therefore, the components ofµ andΣ are unrelated and vary independently. Let p1 and
p2 = p−p1 be the dimensions ofβ and σ, respectively. Here, D̃ = (a1, . . . , ap1 , 0) and Ṽ = (0, vec(Cp1+1), . . . , vec(Cp)). Let
D̃(1) = (a1, a2, . . . , ap1) and Ṽ

(2)
= (vec(Cp1+1), vec(Cp1+2) . . . , vec(Cp)), then F̃ = diag{̃D

(1), Ṽ (2)}. From (4), the expected
Fisher information for θ can be written as Kθ = F̃>H̃ F̃ = diag{Kβ,Kσ}, where Kβ = D̃(1)>Σ−1D̃(1) is Fisher’s information
for β and Kσ =

1
2 Ṽ

(2)>Σ̃
−1Ṽ (2) is the information relative to σ. Since Kθ is block-diagonal, β and σ are globally orthogonal.

From (9), it follows that

(̃F>H̃ F̃)−1F̃>H̃ =
[
(̃D(1)>Σ−1D̃(1))−1D̃(1)>Σ−1 0

0 (Ṽ (2)>Σ̃
−1Ṽ (2))−1Ṽ (2)>Σ̃

−1

]
.

Also,

ξ̃ =

(̃
ξ1
ξ̃2

)
=

 −
1
2
G̈ vec{(̃D(1)>Σ−1D̃(1))−1}

−
(
Ẅ vec{(Ṽ (2)>Σ̃

−1Ṽ (2))−1} +
p1∑
k=1

(Inq ⊗ ak)̃D(1)K−1βk

)
 ,

where G̈ = (aβ1, aβ2, . . . , aβp1) with aβk = (a1k, a2k, . . . , ap1k) and Ẅ = (vσ(p1+1), . . . , vσp) with vσk = (vec(C(p1+1)k),
. . . , vec(Cpk)) and K−1βk is the kth column of K

−1
β . Therefore,

B(̂θ) =
(
B(̂β)
B(̂σ)

)
=

[
(̃D(1)>Σ−1D̃(1))−1D̃(1)>Σ−1̃ξ1
(Ṽ (2)>Σ̃

−1Ṽ (2))−1Ṽ (2)>Σ̃
−1̃

ξ2

]
.

Note that B(̂β) = (̃D(1)>Σ−1D̃(1))−1D̃(1)>Σ−1̃ξ1 agrees with the result due to Vasconcellos and Cordeiro (1997, Eq. (3.2)).
Additionally, note that B(̂σ) = (Ṽ (2)>Σ̃

−1Ṽ (2))−1Ṽ (2)>Σ̃
−1̃

ξ2 also reduces to Vasconcellos and Cordeiro’s 1997 Eq. (3.8),
since Ṽ (2)>Σ̃

−1∑p1
k=1(Inq ⊗ ak)̃D(1)K−1βk = Ṽ (2)>Σ̃

−1vec(∆∗), where ∆∗ is as defined by Vasconcellos and Cordeiro (1997,
p. 148).
Next, unlike the two models discussed previously, we consider a model where the elements of µ and Σ are related and

do not vary independently. Consider the nonlinear heteroscedastic errors-in-variables model

Yi = α + βxi + exp(γ zi)+ ei and Xi = xi + ui,

where xi ∼ N (µx, σ
2
x ) is the unobservable covariate, ui ∼ N (0, σ 2u ) and ei ∼ N (0, σ 2 exp{ηzi}) are the measurement

errors with σ 2u known. The covariate zi is known. In this example, the vector of parameters is θ = (α, β, γ , µx, σ
2
x , σ

2, η)>

and the mean and variance functions for the ith observation (Yi, Xi) are given by

µi(θ) =

(
α + βµx + exp(γ zi)

µx

)
and Σi(θ) =

(
β2σ 2x + σ

2 exp(ηzi) βσ 2x
βσ 2x σ 2x + σ

2
u

)
.

Then,

a1 = 1n ⊗
(
1
0

)
, a2 = 1n ⊗

(
µx
0

)
, a3 = vec

{(
z1 exp(γ z1)

0

)
· · ·

(
zn exp(γ zn)

0

)}
,

a4 = 1n ⊗
(
β
1

)
and a5 = a6 = a7 = 0,

where 1n denotes an n× 1 vector of ones. Also, ars = 0 for all r, s except for

a24 = a42 = 1n ⊗
(
1
0

)
and a33 = vec

{(
z21 exp(γ z1)

0

)
· · ·

(
z2n exp(γ zn)

0

)}
.

Also, C1 = C3 = C4 = 0 and

C2 = In ⊗
(
2βσ 2x σ 2x
σ 2x 0

)
, C5 = In ⊗

(
β2 β
β 1

)
, C6 =

n
⊕
i=1

(
exp(ηzi) 0
0 0

)
and

C7 =
n
⊕
i=1

(
ziσ 2 exp(ηzi) 0

0 0

)
,
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where⊕ is the direct sum of matrices. Additionally, Crs = 0 for all r, s except for

C22 = In ⊗
(
2σ 2x 0
0 0

)
, C25 = C52 = In ⊗

(
2β 1
1 0

)
,

C67 = C76 =
n
⊕
i=1

(
zi exp(ηzi) 0

0 0

)
and C77 =

n
⊕
i=1

(
z2i σ

2 exp(ηzi) 0
0 0

)
.

Thus, D̃ = (a1, a2, a3, a4, 0, 0, 0), Ṽ = (0, vec(C2), 0, 0, vec(C5), vec(C6), vec(C7)) and the matrix formula (9) can be used
to compute the second-order bias for this model. Notice that, as vec(C2) is not equal to zero, the derivation of algebraic
expression using matrix formula (9) becomes very tedious, since the structure of Kθ is not block-diagonal unlike the two
previous examples. However, using MAPLE, for example, the derivation can be easily done. Also, the n−1 bias vector B(̂θ)
can be obtained numerically via software with numerical linear algebra facilities, with minimal effort, such as R and Ox.

5. Simulation study

We recall that, for large samples, the biases of the MLEs are negligible. However, for small and moderate sample sizes
the second-order biases may be large and can be used to improve the estimation. We shall use Monte Carlo simulation to
evaluate the finite sample performance of the original MLEs and their corrected versions. All simulations were performed
using R (R Development Core Team, 2008). The sample sizes considered were n = 15, 25, 35, 50 and 100, and the number
of Monte Carlo replications was 5000.
We consider the simple errors-in-variables model as described in (2). Here, θ = (α, β, µx, σ 2x , σ

2)> and

µ(θ) = 1n ⊗
(
α + βµx
µx

)
and Σ(θ) = In ⊗

(
β2σ 2x + σ

2 βσ 2x
βσ 2x σ 2x + σ

2
u

)
.

From the previous expressions, we have immediately that

a1 = 1n ⊗
(
1
0

)
, a2 = 1n ⊗

(
µx
0

)
, a3 = 1n ⊗

(
β
1

)
, a4 = a5 = 0

and ars = 0 for all r, s except for

a23 = a32 = 1n ⊗
(
1
0

)
.

Also, C1 = C3 = 0 and

C2 = In ⊗
(
2βσ 2x σ 2x
σ 2x 0

)
, C4 = In ⊗

(
β2 β
β 1

)
and C5 = In ⊗

(
1 0
0 0

)
.

Additionally, Crs = 0 for all r, s except for

C22 = In ⊗
(
2σ 2x 0
0 0

)
and C24 = C42 = In ⊗

(
2β 1
1 0

)
.

Thus, D̃ = (a1, a2, a3, 0, 0) and Ṽ = (0, vec(C2), 0, vec(C4), vec(C5)). Therefore, all the quantities necessary to calculate
B(̂θ) using expression (9) are given.
In order to analyze the point estimation results, we computed, for each sample size and for each estimator: the bias

(the bias of an estimator θ̂ is defined as E(̂θ) − θ , its estimate being obtained by estimating E(̂θ) through Monte Carlo
simulations), the bias relative (defined as {E(̂θ) − θ}/θ ), the standard deviation (SD) and the root mean squared error
(
√
MSE). The true values of the regression parameters were set at α = 67, β = 0.42, µx = 70, σ 2x = 247 and σ

2
= 43. The

parameter setting were chosen in order to represent the dataset (yields of corn on Marshall soil in Iowa) presented in Fuller
(1987, p. 18). The known measurement error variance is σ 2u = 57 (which was attained through a previous experiment).
Table 1 gives the bias, relative bias, SD and

√
MSE of both uncorrected and corrected estimates. The figures in this table

confirm that the bias-corrected estimates are generally closer to the true parameter values than the unadjusted estimates.
We observe that, in absolute value, the estimated relative biases of the bias-corrected estimator were smaller than that of
the original MLE for all sample sizes considered, thus showing the effectiveness of the bias correction schemes used in the
definition of these estimators.
For instance, when n = 15, the estimated relative bias of the estimators of α, β ,µx, σ 2x and σ

2 average−0.0518 whereas
the biases of the five corresponding bias-adjusted estimators average−0.0056; that is, the average bias (in value absolute)
of the MLEs is almost ten times larger than that of the bias-corrected estimators.
We can readily see that theMLEs ofσ 2x andσ

2 are on average far from the true parameter value, thus displaying large bias,
for the different sample sizes considered, even when n = 100. This stresses the importance of using a bias correction. For
instance, when n = 50, the relative biases of σ̂ 2x and σ̂

2 (MLEs) were−0.0226 and−0.0563, respectively, while the relative
biases of σ̃ 2x and σ̃

2 (BCEs) were 0.0016 (sixteen times lesser) and −0.0011 (fifty times lesser), respectively. Observe that
the MLEs are, on average, underestimating the true values of σ 2x and σ

2, since their biases are, on average, negatives. Note
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Table 1
Biases, relative biases, SD and

√
MSE of uncorrected and corrected estimates for an errors-in-variables model.

n θ MLE BCE
Bias Rel. bias SD

√
MSE Bias Rel. bias SD

√
MSE

15 α −1.6080 −0.0240 12.36 12.46 1.5544 0.0232 11.19 11.29
β 0.0230 0.0547 0.17 0.17 −0.0220 −0.0526 0.16 0.16
µx 0.0980 0.0014 4.47 4.48 0.0980 0.0014 4.47 4.48
σ 2x −19.6612 −0.0796 106.70 108.49 −0.7163 −0.0029 113.81 113.81
σ 2 −7.7701 −0.1807 17.90 19.52 0.1333 0.0031 20.38 20.38

25 α −1.3266 −0.0198 8.95 9.05 0.0603 0.0009 8.14 8.14
β 0.0185 0.0440 0.13 0.13 −0.0012 −0.0029 0.11 0.11
µx 0.0280 0.0004 3.43 3.43 0.0280 0.0004 3.43 3.43
σ 2x −13.6591 −0.0553 84.64 85.73 −2.0254 −0.0082 88.02 88.05
σ 2 −5.1514 −0.1198 14.60 15.48 −0.4472 −0.0104 15.73 15.73

35 α −0.7839 −0.0117 7.01 7.05 0.0670 0.0010 6.68 6.68
β 0.0112 0.0267 0.10 0.10 −0.0009 −0.0023 0.09 0.09
µx −0.0070 −0.0001 2.96 2.96 −0.0070 −0.0001 2.96 2.96
σ 2x −10.4728 −0.0424 70.59 71.36 −2.0748 −0.0084 72.61 72.64
σ 2 −3.4357 −0.0799 12.36 12.83 −0.0602 −0.0014 13.04 13.04

50 α −0.5360 −0.0080 5.66 5.69 0.0134 0.0002 5.50 5.50
β 0.0080 0.0190 0.08 0.08 0.0002 0.0005 0.08 0.08
µx −0.0490 −0.0007 2.45 2.45 −0.0490 −0.0007 2.45 2.45
σ 2x −5.5822 −0.0226 60.50 60.76 0.3952 0.0016 61.71 61.71
σ 2 −2.4209 −0.0563 10.48 10.75 −0.0473 −0.0011 10.89 10.89

100 α −0.1675 −0.0025 3.88 3.83 0.0871 0.0013 3.83 3.78
β 0.0024 0.0057 0.05 0.05 −0.0012 −0.0029 0.05 0.05
µx 0.0140 0.0002 1.75 1.72 0.0140 0.0002 1.75 1.72
σ 2x −3.2357 −0.0131 42.73 42.24 −0.2223 −0.0009 43.15 42.54
σ 2 −1.2814 −0.0298 7.40 7.63 −0.0903 −0.0021 7.55 7.67

BCE: bias-corrected estimator.

Table 2
Empirical coverage and average length at 95% of confidence.

n Coverage Average length
MLE BCE MLE BCE

15 0.940 0.947 0.628 0.611
25 0.944 0.950 0.449 0.446
35 0.943 0.950 0.368 0.368
50 0.944 0.950 0.300 0.300
100 0.947 0.950 0.209 0.209

also that root mean squared errors decrease with n, as expected. Additionally, we note that all estimators have similar root
mean squared errors.
Although the biases presented in our simulations are small relative to the root MSEs, it is noteworthy that in some cases

the biases are non-negligible when they are compared to the standard errors of MLEs and, in these cases, they can change
the inferences; see, for example, Cordeiro (2008). Note that, the model considered by the author is just a particular case of
our proposal.
We also conduct a simple Monte Carlo simulation study to verify the empirical coverage and average length of the

asymptotic 95% confidence intervals for β = 0.42. The intervals are defined as β̂ ± 1.96 × ep(β̂) (for MLE) and
β̃ ± 1.96× ep(β̃) (for BCE), where ep(·) denotes the estimative of the standard error by using the corresponding estimator.
Table 2 shows the results. Overall, note that the BCE is slightly better than the correspondingMLE in both empirical coverage
and average length.

6. Conclusions

This paper proposed a bias correction for a multivariate normal model with quite a general parameterization. The main
result centers onmodels where themean and the variance share the same vector of parameters. Manymodels are particular
cases of the proposed model, such as (non)linear regressions, errors-in-variables models, mixed models and so forth. We
have shown that it is always possible to express the second order bias vector of the maximum likelihood estimates as an
ordinaryweighted least-squares regression.Moreover, we derived a bias-adjustment scheme that nearly eliminates the bias
of themaximum likelihood estimator in small andmoderate samples. Our simulation results suggest that the bias correction
we have derived is very effective, even when the sample size is very small. Indeed, the bias correction mechanism proposed
in this paper yields modified maximum likelihood estimators that are nearly unbiased.
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