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Abstract

We introduce a five-parameter continuous model, called the McDonald inverted beta distribution,

to extend the two-parameter inverted beta distribution and provide new four- and three-parameter

sub-models. We give a mathematical treatment of the new distribution including expansions for the

density function, moments, generating and quantile functions, mean deviations, entropy and

reliability. The model parameters are estimated by maximum likelihood and the observed

information matrix is derived. An application of the new model to real data shows that it can give

consistently a better fit than other important lifetime models.

& 2012 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The beta distribution with support in the standard unit interval (0,1) has been utilized
extensively in statistical theory and practice for over 100 years. It is very versatile and a
variety of uncertainties can be usefully modeled by this distribution, since it can take an
amazingly great variety of forms depending on the values of its parameters. On the other
hand, the inverted beta (IB) distribution with support in ð0,1Þ can be used to model
positive real data. It is also known as the beta prime distribution or beta distribution of the
second kind. Its probability density function (pdf) with two positive parameters a40 and
b40 is given by

ga,bðxÞ ¼
xa�1

Bða,bÞð1þ xÞaþb
, x40, ð1Þ
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where Bða,bÞ ¼GðaÞGðbÞ=Gðaþ bÞ is the beta function and GðaÞ ¼
R1
0 wa�1e�w dw is the

gamma function. The cumulative distribution function (cdf) corresponding to Eq. (1) is

Ga,bðxÞ ¼ Ix=ð1þxÞða,bÞ, x40, ð2Þ

where Iyðp,qÞ ¼ Byðp,qÞ=Bðp,qÞ is the incomplete beta function ratio and Byðp,qÞ ¼R y

0 o
p�1ð1�oÞq�1 do is the incomplete beta function. The cdf (2) can be expressed in terms

of the hypergeometric function as

Ga,bðxÞ ¼
xa

aBða,bÞ 2
F1ða,aþ b; aþ 1;�xÞ, x40,

where

2F1ðp,q; r; yÞ ¼
GðrÞ

GðpÞGðqÞ

X1
j ¼ 0

Gðpþ jÞGðqþ jÞ

Gðrþ jÞ

yj

j!
:

The hypergeometric function can be computed, for example, using the MATHEMATICA

software. For example, 2F1ðp,q; r; yÞ is obtained from MATHEMATICA as Hypergeome-
tricPFQ[{p,q},{r},y]. For sob, the sth moment about zero associated with Eq. (1) is

EðX sÞ ¼
Bðaþ s,b�sÞ

Bða,bÞ
:

Also, for s 2 N and sob, this equation simplifies to EðX sÞ ¼
Qs

i ¼ 1ðaþ i�1Þ=ðb�iÞ. The
mean and variance of X for b41 and b42 are given by

EðX Þ ¼
a

b�1
and varðX Þ ¼

aðaþ b�1Þ

ðb�2Þðb�1Þ2
,

respectively. If V has the beta distribution with positive parameters a and b, then
X ¼V=ð1�V Þ has the IB distribution (1). It also arises from a linear transformation of the
F distribution.

The IB distribution has been studied by several authors. McDonald and Richards [24]
discussed its properties and obtained the maximum likelihood estimates (MLEs) of the
model parameters. The behavior of its hazard ratio function has been examined by
McDonald and Richards [25]. Bookstaber and McDonald [2] showed that this distribution
is quite useful in the empirical estimation of security returns and in facilitating the
development of option pricing models (and other models) that depend on the specification
and mathematical manipulation of distributions. Mixtures of two IB distributions have
been considered by McDonald and Butler [22] who have applied them in the analysis of
unemployment duration. McDonald and Butler [23] have used this distribution while
discussing regression models for positive random variables. Other applications in modeling
insurance loss processes have been illustrated by Cummins et al. [7]. McDonald and
Bookstaber [21] have developed an option pricing formula based on this distribution that
includes the widely used Black Scholes formula based on the assumption of log-normally
distributed returns. More recently, [38] developed moment-ratio diagrams for the IB
distribution.

The generalized beta distribution of first kind (or, beta type I) may be characterized by
the density function [20]

hðxÞ ¼
c

Bðac�1,bÞ
xa�1ð1�xcÞ

b�1, 0oxo1, ð3Þ
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where a40, b40 and c40 are shape parameters. Two important special Kumaraswamy
[18] distributions defined from Eq. (3) when c¼1 and a¼c, respectively.
The statistics literature is filled with hundreds of continuous univariate distributions that

have been extensively used over the past decades for modeling data in several fields such as
environmental, medical sciences, engineering, demography, biological studies, actuarial
science, economics, finance and insurance. However, in many applied areas such as lifetime
analysis, finance and insurance, there is a clear need for extended forms of these
distributions. Recent developments focus on new techniques for building meaningful
distributions, including the two-piece approach introduced by [13] and the generator
approach pioneered by Eugene et al. [9] and Jones [15]. For any continuous baseline cdf
G(x) with parameter vector s and density function g(x), the cumulative function F(x) of the
McDonald-G (denoted with the prefix ‘‘McG’’ for short) distribution is defined by

F ðxÞ ¼ IGðxÞc ðac�1,bÞ ¼
1

Bðac�1,bÞ

Z GðxÞc

0

oa=c�1ð1�oÞb�1 do, x 2 R, ð4Þ

where a40, b40 and c40 are additional shape parameters to those in s to govern
skewness and to provide greater flexibility of its tails. The density function corresponding
to Eq. (4) can be reduced to

f ðxÞ ¼
c

Bðac�1,bÞ
gðxÞGðxÞa�1½1�GðxÞc�b�1, x 2 R: ð5Þ

Clearly, the McDonald density (3) is a basic exemplar of Eq. (5) for GðxÞ ¼ x, x 2 ð0; 1Þ.
The class of distributions (5) includes two important special sub-classes: the beta

generalized (BG) and Kumaraswamy generalized (KwG) distributions when c¼1 [9] and
a¼c [4], respectively. It follows from Eq. (5) that the McG distribution with baseline cdf
G(x) is the BG distribution with baseline cdf GðxÞc. This simple transformation may
facilitate the derivation of some of its structural properties. The BG and KwG
distributions can be limited in one aspect. They introduce only two additional shape
parameters, whereas three may be required to control both tail weights and the distribution
of weight in the center. Hence, the McDonald distribution (5) is a more flexible model since
it has one more shape parameter than the classical beta or Kumaraswamy generators that
can give additional control over both skewness and kurtosis.
Clearly, for G(x)¼x, we obtain as simple sub-models the classical beta and

Kumaraswamy distributions for c¼1 and a¼c, respectively. The Kumaraswamy
distribution is commonly termed the ‘‘minimax’’ distribution. Jones [16] advocates its
tractability, especially in simulations because its quantile function takes a simple form, and
its pedagogical appeal relative to the classical beta distribution.
Eq. (5) will be most tractable when both functions G(x) and g(x) have simple analytic

expressions. Its major benefit is the ability of fitting skewed data that cannot be properly
fitted by existing distributions. Let QG(u) be the quantile function of the G distribution.
Application of X ¼QGðV

1=cÞ to a beta random variable V with positive parameters a/c and
b generates X with cumulative function (4). This cdf can also be expressed in terms of the
hypergeometric function as

F ðxÞ ¼
cGðxÞa

aBðac�1,bÞ 2
F1ðac�1,1�b; ac�1 þ 1;GðxÞaÞ, x 2 R:
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Thus, for any parent G(x), the properties of F(x) could, in principle, be obtained from the
well established properties of the hypergeometric function (see [10]).

In this note, we study some mathematical properties of a new five-parameter distribution
called the McDonald inverted beta (McIB) distribution, which is defined from Eq. (5) by
taking G(x) and g(x) to be the cdf and pdf of the IB distribution, respectively. We adopt a
different approach to much of the literature so far: rather than considering the classical
beta generator [9] or the Kumaraswamy generator [4] applied to a baseline distribution, we
propose a more flexible McDonald generator applied to the IB distribution. We also
discuss maximum likelihood estimation of its parameters. Some references about the
subject and similar topics of this paper can be found in Cordeiro et al. [5], Nadarajah and
Kotz [31], Bhaskar [1] and Peppas [33].

The paper is outlined as follows. In Section 2, we define the McIB distribution. Section 3
provides a useful expansion for its density function. In Section 4, we obtain explicit
expressions for the moments. Section 5 provides expansions for the moment generating
function (mgf). Section 6 deals with non-standard measures for the skewness and kurtosis.
Mean deviations, Bonferroni and Lorenz curves, R�envy entropy and reliability are
investigated in Sections 7, 8 and 9, respectively. Maximum likelihood estimation is
discussed in Section 10. An empirical application is presented and discussed in Section 11.
Concluding remarks are given in Section 12.

2. The McIB distribution

The McIB density function can be obtained from Eq. (5) as

f ðxÞ ¼
cxa�1

Bða,bÞBðac�1,bÞð1þ xÞaþb
Ix=ð1þxÞða,bÞ

a�1
½1�Ix=ð1þxÞða,bÞ

c
�b�1, x40, ð6Þ

where a, b, a, b and c are positive parameters. The cdf corresponding to Eq. (6) is given by
F ðxÞ ¼ IIx=ð1þxÞða,bÞ

c ðac�1,bÞ, the survival function is SðxÞ ¼ 1�IIx=ð1þxÞða,bÞ
c ðac�1,bÞ and the

associated hazard rate function takes the form

rðxÞ ¼
cxa�1

Bða,bÞBðac�1,bÞð1þ xÞaþb
Ix=ð1þxÞða,bÞ

a�1
½1�Ix=ð1þxÞða,bÞ

c
�b�1

½1�IIx=ð1þxÞða,bÞ
c ðac�1,bÞ�

, x40: ð7Þ

The study of the new distribution is important since it includes as special sub-models some
distributions not previously considered in the literature. In fact, the IB distribution (with
parameters a and b) is clearly a basic exemplar for a¼b¼c¼1. The beta IB (BIB) and
Kumaraswamy IB (KwIB) distributions are new models when c¼1 and a¼c, respectively.
For b¼c¼1, it leads to a new distribution referred to as the exponentiated IB (EIB)
distribution. The Lehmann type-II IB (LeIB) distribution arises when a¼c¼1. Fig. 1
illustrates these special cases of the McIB model. Like the IB distribution, the McIB
distribution can be applied in engineering to model reliability and survival functions. It
allows for greater flexibility of its tails and can be widely applied in many areas to model
positive real data sets.

In the following we derive the shapes of the density and hazard rate functions. Let
I1ðxÞ ¼ I1ðx; a,bÞ ¼ Ix=ð1þxÞða,bÞ. The first derivative of logff ðxÞg for the McIB
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distribution is

d logff ðxÞg

dx
¼

a�1
x
�
aþ b
1þ x

þ
ða�1Þ

Bða,bÞ
xa�1I1ðxÞ

�1

ð1þ xÞaþb
�

cðb�1Þ

Bða,bÞ
xa�1

ð1þ xÞaþb
I1ðxÞ

c�1

½1�I1ðxÞ
c
�
:

So, the modes of f(x) are the roots of the equation

a�1
x
þ
ða�1Þ

Bða,bÞ
xa�1I1ðxÞ

�1

ð1þ xÞaþb
¼

aþ b
1þ x

þ
cðb�1Þ

Bða,bÞ
xa�1

ð1þ xÞaþb
I1ðxÞ

c�1

½1�I1ðxÞ
c
�
: ð8Þ

There may be more than one root to Eq. (8). If x¼ x0 is a root of Eq. (8) then it
corresponds to a local maximum, a local minimum or a point of inflexion depending on
whether o1ðx0Þo0, o1ðx0Þ40 or o1ðx0Þ ¼ 0, where o1ðxÞ ¼ d2 logff ðxÞg=dx2. Let
I2ðxÞ ¼ I2ðx; a,b,a,b,cÞ ¼ II1ðxÞ

c ðac�1,bÞ. The first derivative of logfrðxÞg for the McIB
model takes the form

d logfrðxÞg

dx
¼

cxa�1

Bða,bÞBðac�1,bÞ

I1ðxÞ
a�1
½1�I1ðxÞ�

b�1

½1�I2ðxÞ�
þ

a�1
x
�
aþ b
1þ x

þ
ða�1Þ

Bða,bÞ
xa�1I1ðxÞ

�1

ð1þ xÞaþb
�

cðb�1Þ

Bða,bÞ
xa�1

ð1þ xÞaþb
I1ðxÞ

c�1

½1�I1ðxÞ
c
�
:

Then, the roots of the equation

cxa�1

Bða,bÞBðac�1,bÞ

I1ðxÞ
a�1
½1�I1ðxÞ�

b�1

½1�I2ðxÞ�
þ

a�1
x
þ
ða�1Þ

Bða,bÞ
xa�1I1ðxÞ

�1

ð1þ xÞaþb

¼
aþ b
1þ x

þ
cðb�1Þ

Bða,bÞ
xa�1

ð1þ xÞaþb
I1ðxÞ

c�1

½1�I1ðxÞ
c
�

ð9Þ

are the modes of r(x). There may be more than one root to Eq. (9). If x¼ x0 is a root of
Eq. (9) then it corresponds to a local maximum, a local minimum or a point of inflexion
depending on whether o2ðx0Þo0, o2ðx0Þ40 or o2ðx0Þ ¼ 0, where o2ðxÞ ¼ d2 logfrðxÞg=dx2.

Fig. 1. Special cases of the McIB model.
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The general shapes of f(x) and r(x) depend on the five parameters of the McIB model and are
very difficult or even impossible to derive. Figs. 2 and 3 illustrate some of the possible shapes
of the density function (6) and hazard rate function (7), respectively, for selected parameter
values. It can be seen from these plots that the density and hazard rate functions can take
various forms depending on the parameter values.

Let Qa,bðuÞ be the quantile function of the beta distribution with parameters a and b.
The quantile function of the McIB ða,b,a,b,cÞ distribution, say x¼Q(u), can be easily
obtained as

x¼QðuÞ ¼
Qa,bðQa=c,bðuÞ

1=c
Þ

1�Qa,bðQa=c,bðuÞ
1=c
Þ
, 0ouo1: ð10Þ

This scheme is useful because of the existence of fast generators for beta random variables
in most statistical packages.
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Fig. 2. Plots of the density function (6) for some parameter values.
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3. Density function expansion

We start this section by stating some useful expansions for the McG density function
and, for brevity of notation, we shall drop the explicit reference to the parameter vector s

in G(x). A useful expansion for Eq. (5) can be derived as a linear combination of
exponentiated-G distributions. For an arbitrary baseline G and a40, a random variable X

having cdf and pdf given by

HaðxÞ ¼GðxÞa and haðxÞ ¼ agðxÞGðxÞa�1, x 2 R,

respectively, is denoted by X�ExpaðGÞ. The transformation ExpaðGÞ is called the
exponentiated-G distribution but it is also referred to as the Lehmann type-I distribution
with parameter a. The properties of exponentiated distributions have been studied by
many authors in recent years, see Mudholkar et al. [28] and Mudholkar and Hutson [27]
for exponentiated Weibull distribution, Gupta et al. [11] for exponentiated Pareto
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Fig. 3. Plots of the hazard rate function (7) for some parameter values.
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distribution, Gupta and Kundu [12] for exponentiated exponential distribution, Nadarajah
and Gupta [30] for exponentiated gamma distribution and, more recently, Lemonte and
Cordeiro [19] for exponentiated generalized inverse Gaussian distribution.

Expanding the binomial term in Eq. (5) yields the McG density function as a linear
combination of exponentiated-G densities, namely

f ðxÞ ¼
X1
i ¼ 0

wihaðiþcÞðxÞ, x 2 R, ð11Þ

where haðiþcÞðxÞ denotes the density function of the ExpaðiþcÞðGÞ distribution and

wi ¼
ð�1Þi b

i

� �
ðaþ iÞBða,bþ 1Þ

:

We can derive some of the McG properties from the linear combination (11) and those
corresponding properties of exponentiated-G distributions.

An expansion for Eq. (6) can be derived using the concept of exponentiated inverted
beta (EIB) distribution. We define a random variable X having the EIB distribution with
parameters a,b and a40, say X�EIBða,b,aÞ, if its cdf and pdf are given by

HaðxÞ ¼ Ix=ð1þxÞða,bÞ
a and haðxÞ ¼

axa�1

Bða,bÞð1þ xÞaþb
Ix=ð1þxÞða,bÞ

a�1, x40:

The McIB density function is then a linear combination of EIBða,b,aði þ cÞÞ density
functions. We can expand Ix=ð1þxÞða,bÞ

a�1 in the EIB density as

Ix=ð1þxÞða,bÞ
a�1
¼
X1
r ¼ 0

srða�1ÞIx=ð1þxÞða,bÞ
r, ð12Þ

where

srða�1Þ ¼
X1
j ¼ r

ð�1Þrþj
a�1

j

 !
j

r

� �
: ð13Þ

Thus, from Eqs. (1), (11) and (12), we can write

f ðxÞ ¼
X1
r ¼ 0

erx
a�1

ð1þ xÞaþb
Ix=ð1þxÞða,bÞ

r, x40, ð14Þ

where

er ¼ aBða,bÞ�1
X1
i ¼ 0

ðcþ iÞwisrðaði þ cÞ�1Þ: ð15Þ

From the incomplete beta function expansion for b real non-integer

Ixða,bÞ ¼
xa

Bða,bÞ

X1
m ¼ 0

ð1�bÞmxm

ðaþmÞm!
,

where ðf Þk ¼ Gðf þ kÞ=Gðf Þ is the ascending factorial, we have

Ix=ð1þxÞða,bÞ ¼
X1

m ¼ 0

dmxaþm

ð1þ xÞaþm ,
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where dm ¼ ð1�bÞm=½ðaþmÞm!Bða,bÞ�. Further, we use an equation in Section 0.314 of [10]
for a power series raised to a positive integer r given by

X1
m ¼ 0

dmzm

 !r

¼
X1

m ¼ 0

pr,mzm, ð16Þ

where the coefficients pr,m (for m¼1,2,y) can be obtained from the recurrence equation

pr,m ¼ ðmd0Þ
�1
Xm

k ¼ 1

½kðrþ 1Þ�i�dkpr,m�k, ð17Þ

and pr,0 ¼ dr
0. The coefficient pr,m can be determined from pr,0, . . . ,pr,m�1 and then from

d0, . . . ,dm. Clearly, pr,m can be written explicitly in terms of the quantities dm, although it is
not necessary for programming numerically our expansions in any algebraic or numerical
software. From Eqs. (14) and (16), we can write

f ðxÞ ¼
X1

r,m ¼ 0

tr,mga%,bðxÞ, x40: ð18Þ

Here, a% ¼ a%ðr,mÞ ¼ ðrþ 1Þaþm, ga%,bðxÞ denotes the IBða%,bÞ density function given by
Eq. (1) and the coefficients tr,m are calculated from Eqs. (15) and (17) as

tr,m ¼
apr,mBððrþ 1Þaþm,bÞ

Bða,bÞ

X1
i ¼ 0

ðcþ iÞwisrðaði þ cÞ�1Þ:

Eq. (18) reveals that the McIB density function is a double linear combination of IB
density functions. So, some mathematical properties of the McIB distribution immediately
follow from those of the IB properties. Here it is important to point out that there are
symbolic computation software platforms, for example, MAPLE and MATHEMATICA,
that have currently the ability to deal with analytic expressions of formidable size and
complexity such some derived in this paper.

4. Moments

Here and henceforth, let X�McIBða,b,a,b,cÞ. We derive a simple representation for the
sth moment m0s ¼ EðX sÞ. For sob, we can write from Eq. (18)

m0s ¼
X1

r,m ¼ 0

tr,m
Bððrþ 1Þaþmþ s,b�sÞ

Bððrþ 1Þaþm,bÞ
: ð19Þ

The moments of the BIB and KwIB distributions are obtained from Eq. (19) when c¼1
and a¼c, respectively. Further, the central moments (ms) and cumulants (ks) of X can be
expressed from Eq. (19) as

ms ¼
Xp

k ¼ 0

s

k

� �
ð�1Þkm0s1m

0
s�k and ks ¼ m0s�

Xs�1
k ¼ 1

s�1

k�1

� �
kk m0s�k,
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respectively, where k1 ¼ m01. Thus, k2 ¼ m02�m
02
1 , k3 ¼ m03�3m

0
2m
0
1 þ 2m031 , etc. The pth

descending factorial moment of X is

m0ðpÞ ¼E½X ðpÞ� ¼ E½X ðX�1Þ � � � � � ðX�pþ 1Þ� ¼
Xp

m ¼ 0

sðp,mÞm0m,

where sðr,mÞ ¼ ðm!Þ�1½dmmðrÞ=dxm
�x ¼ 0 is the Stirling number of the first kind. Other kinds

of moments related to the L-moments [14] may also be obtained in closed-form, but we
consider only these moments for reasons of space.

5. Generating function

Here, we provide three representations for the mgf of X, say MðtÞ ¼ EfexpðtX Þg. First,
we require the Meijer G-function defined by

Gm,n
p,q x

a1, . . . ,ap

b1, . . . ,bq

�����
 !

¼
1

2pi

Z
L

H1ðm,n,aj,bj,tÞ

H2ðn,m,p,q,aj,bj,tÞ
x�t dt,

where

H1ðm,n,aj ,bj,tÞ ¼
Ym
j ¼ 1

Gðbj þ tÞ
Yn

j ¼ 1

Gð1�aj�tÞ,

H2ðn,m,p,q,aj ,bj,tÞ ¼
Yp

j ¼ nþ1

Gðaj þ tÞ
Yq

j ¼ mþ1

Gð1�bj�tÞ,

i¼
ffiffiffiffiffiffiffi
�1
p

is the complex unit and L denotes an integration path (see, [10, Section 9.3]). The
Meijer G-function contains many integrals with elementary and special functions. Some of
these integrals are included in Prudnikov et al. [35].

For a40 and t40, we have the following result [36]:Z 1
0

expð�txÞxa�1ð1þ xÞn dx¼Gð�nÞtaG1;2
2;1 t�1

ð1�aÞ,ðnþ 1Þ

0

����
� �

:

Hence, for t40, Mð�tÞ ¼ Efexpð�tX Þg can be expressed from the previous integral and
Eq. (18) as

Mð�tÞ ¼
X1

r,m ¼ 0

Ar,mtðrþ1ÞaþmG1;2
2;1 t�1

ð1�ðrþ 1Þa�mÞ,ð1�ðrþ 1Þa�m�bÞ

0

����
� �

, ð20Þ

where

Ar,m ¼ tr,m
Gððrþ 1Þaþmþ bÞ2

Gððrþ 1ÞaþmÞGðbÞ
:

A second representation for the mgf Ma,bðtÞ of the IB distribution follows from Eq. (1)
by a simple transformation u¼ x=ð1þ xÞ. We obtain

Ma,bðtÞ ¼
1

Bða,bÞ

Z 1

0

expftu=ð1�uÞgua�1ð1�uÞb�1 du:
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By expanding the binomial term and setting v¼ 1�u, we have

Ma,bðtÞ ¼
1

Bða,bÞ

X1
j ¼ 0

ð�1Þj
a�1

j

 !Z 1

0

expftð1�vÞ=vgvbþj�1 dv:

We can use MAPLE to calculate the above integral for to0 as

Ma,bðtÞ ¼
�e�t

Bða,bÞ

X1
j ¼ 0

ð�1Þj
a�1

j

 !
ð�tÞbþj

�
pcscðpðbþ jÞÞ

Gðbþ j þ 1Þ
þ Gð�b�jÞ�Gð�b�j,�tÞ

� 	
,

where Gða,xÞ ¼
R1

x
wa�1e�w dw is the complementary incomplete gamma function. So, the

mgf of X can be expressed from Eq. (18) as

MðtÞ ¼
X1

r,m ¼ 0

tr,mMðrþ1Þaþm,bðtÞ:

It can be further reduced (for to0) to

MðtÞ ¼ �e�t
X1
j ¼ 0

ð�1Þjð�tÞbþjhj

pcscðpðbþ jÞÞ

Gðbþ j þ 1Þ
þ Gð�b�jÞ�Gð�b�j,�tÞ

� 	
, ð21Þ

where hj ¼
P1

r,m ¼ 0ðtr,m=Bððrþ 1Þaþm,bÞÞððrþ1Þaþm�1
j
Þ.

Finally, a third representation for M(t) can be obtained using the WhittakerM (‘‘WM’’
for short) function defined by

WMðp,q,yÞ ¼ e�y=2yqþ1=2
1F1ðq�pþ 1=2; 1þ 2q; yÞ,

where

1F1ðp,q; yÞ ¼
GðqÞ
GðpÞ

X1
j ¼ 0

Gðpþ jÞ

Gðqþ jÞ

yj

j!

is the confluent hypergeometric function. For any real t, direct integration using MAPLE

gives

MðtÞ ¼ �Gðaþ bÞ�1e�t=2½�ðb�1Þ�1ðaþ b�tÞtb=2�1GðaÞGðbÞWMðaþ b=2,ð1�bÞ=2,tÞ

þðb�1Þ�1ðaþ 1Þtb=2�1GðaÞGðbÞWMðaþ b=2þ 1,ð1�bÞ=2,tÞ

�ð�1Þbðbþ 1Þ�1ðt�aÞtb=2�1Gðaþ bÞGð�bÞWMðaþ b=2,ðbþ 1Þ=2,tÞ

�ð�1Þbðbþ 1Þ�1ð1þ aþ bÞtb=2�1Gðaþ bÞGð�bÞWMðaþ b=2þ 1,ðbþ 1Þ=2,tÞ�:

ð22Þ

Eqs. (20)–(22) are the main results of this section.

6. Quantile measures

The McIB quantile function, say QðuÞ ¼ F�1ðuÞ, can be determined from the beta
quantile function as given in Eq. (10). The effects of the shape parameters a, b and c on the
skewness and kurtosis can be considered based on quantile measures. The shortcomings of
the classical kurtosis measure are well-known. The Bowley skewness [17] is one of the
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earliest skewness measures defined by the average of the quartiles minus the median,
divided by half the interquartile range, namely

B¼
Qð3=4Þ þQð1=4Þ�2Qð1=2Þ

Qð3=4Þ�Qð1=4Þ
:

Since only the middle two quartiles are considered and the outer two quartiles are ignored,
this adds robustness to the measure. The Moors kurtosis [26] is based on octiles

M ¼
Qð3=8Þ�Qð1=8Þ þQð7=8Þ�Qð5=8Þ

Qð6=8Þ�Qð2=8Þ
:

Clearly, M40 and there is good concordance with the classical kurtosis measures for some
distributions. For the normal distribution, B¼M¼0. These measures are less sensitive to
outliers and they exist even for distributions without moments. Because M is based on the
octiles, it is not sensitive to variations of the values in the tails or to variations of the values
around the median. The basic justification of M as an alternative measure of kurtosis is the
following: keeping Qð6=8Þ�Qð2=8Þ fixed, M clearly decreases as Qð3=8Þ�Qð1=8Þ and
Qð7=8Þ�Qð5=8Þ decrease. If Qð3=8Þ�Qð1=8Þ-0 and Qð7=8Þ�Qð5=8Þ-0, then M-0 and
half of the total probability mass is concentrated in the neighborhoods of the octiles
Qð2=8Þ and Qð6=8Þ.

In Figs. 4–6, we plot the measures B and M for some parameter values. These plots
indicate that both measures B and M depend on all shape parameters. Fig. 6 shows clearly
that they can be very sensitive to the extra third parameter c even in the case when a¼b.

7. Mean deviations

The deviations from the mean and from the median can be used as a measure of spread
in a population. We can derive the mean deviations about the mean and about the median
from the relations d1ðX Þ ¼EðjX�m01jÞ and d2ðX Þ ¼ EðjX�mjÞ, respectively, where the mean
m01 ¼EðX Þ comes from Eq. (19) and the median m can be obtained from Eq. (10) as
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Fig. 4. Plots of the measure B for some parameter values. (a) For values a¼ 1:5, b¼ 1:0 and b¼0.5. (b) For

values a¼ 1:5, b¼ 1:0 and a¼1.5.
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m¼Qð1=2Þ. These measures can be expressed as

d1ðX Þ ¼ 2m01 F ðm01Þ�2Jðm01Þ and d2ðX Þ ¼ m01�2JðmÞ,

where JðqÞ ¼
R q

0 xf ðxÞ dt. In what follows, we obtain an expression for the integral J(q).
We can write from Eq. (18)Z q

0

xf ðxÞ dx¼
X1

r,m ¼ 0

tr,m
Bða% þ 1,b�1Þ

Bða%,bÞ

Z q

0

ga%þ1,b�1ðxÞ dx:

But Z q

0

ga%þ1,b�1ðxÞ dx¼ Iq=ð1þqÞða
% þ 1,b�1Þ,
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Fig. 5. Plots of the measure M for some parameter values. (a) For values a¼ 1:5, b¼ 1:0 and b¼0.5. (b) For

values a¼ 1:5, b¼ 1:0 and a¼1.5.
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Fig. 6. Plots of the measures B (a) and M (b) for some parameter values with a¼ 1:5 and b¼ 1:0.
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and then

JðqÞ ¼
X1

r,m ¼ 0

tr,m
Bða% þ 1,b�1Þ

Bða%,bÞ
Iq=ð1þqÞða

% þ 1,b�1Þ:

The result

Iq=ð1þqÞða
% þ 1,b�1Þ ¼

qa%þ1

ða% þ 1ÞBða% þ 1,b�1Þ 2
F1ða

% þ 1,a% þ b; a% þ 2;�qÞ

allows us to write J(q) as

JðqÞ ¼
X1

r,m ¼ 0

tr,mqa%þ1

ða% þ 1ÞBða%,bÞ 2
F1ða

% þ 1,a% þ b; a% þ 2;�qÞ:

The mean deviations can be applied to obtain the Lorenz and Bonferroni curves which are
important in some fields (economics, reliability, demography, insurance and medicine).
They are defined (for a given probability p), by LðpÞ ¼ JðqÞ=m01 and BðpÞ ¼ JðqÞ=ðpm01Þ,
respectively, where q¼QðpÞ is determined from Eq. (10). In economics, if p¼ F ðqÞ is the
proportion of units whose income is lower than or equal to q, LðpÞ gives the proportion of
total income volume accumulated by the set of units with an income lower than or equal to
q. The Lorenz curve is increasing and convex and given the mean income, the density
function of X can be obtained from the curvature of LðpÞ. In a similar manner, the
Bonferroni curve BðpÞ gives the ratio between the mean income of this group and the mean
income of the population. In summary, LðpÞ yields fractions of the total income, while the
values of BðpÞ refer to relative income levels.

8. Entropy

The entropy of a random variable X with density function f(x) is a measure of variation
of the uncertainty. The R�enyi entropy is defined by

IRðdÞ ¼ ð1�dÞ
�1 log

Z 1
0

f ðxÞd dx


 �
,

where d40 and da1. Entropy has been used in various situations in science and
engineering. For further details, the reader is referred to [37].

If X� McIB ða,b,a,b,cÞ, from the binomial expansion and the results in Section 3, we
can write

Ix=ð1þxÞða,bÞ
dða�1Þ

½1�Ix=ð1þxÞða,bÞ
c
�dð1�bÞ

¼
X1

r,j ¼ 0

ð�1Þj
dðb�1Þ

j

 !
srðdða�1Þ þ cjÞ

X1
m ¼ 0

nr,m xarþm

ð1þ xÞarþm ,

where nr,m can be obtained from the recurrence equation nr,m ¼ ðmd0Þ
�1Pm

k ¼ 1½kðrþ 1Þ�i�

dknr,m�k, nr,0 ¼ dr
0, dk ¼ ð1�bÞk=½ðaþ kÞk!Bða,bÞ� and srð�Þ is defined in Eq. (13). Hence,

after some algebra, we can write

f ðxÞd ¼
cdBða,bÞ�d

Bðac�1,bÞd

X1
r,j,m ¼ 0

ð�1Þj
dðb�1Þ

j

 !
srðdða�1Þ þ cjÞnr,mBðan,bn

Þgan,bn ðxÞ,
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where an ¼ dða�1Þ þ arþmþ 1, bn
¼ dðbþ 1Þ�1 and gan,bnðxÞ denotes the IBðan,bn

Þ

density function given by Eq. (1). Then, we have

IRðdÞ ¼ ð1�dÞ
�1 log

cdBða,bÞ�d

Bðac�1,bÞd

X1
r,m ¼ 0

frnr,mBðan,bn
Þ

( )
,

where

fr ¼
X1
j ¼ 0

ð�1Þj
dðb�1Þ

j

 !
srðdða�1Þ þ cjÞ:

9. Reliability

In the context of reliability, the stress-strength model describes the life of a component
which has a random strength X1 that is subjected to a random stress X2. The component
fails at the instant that the stress applied to it exceeds the strength, and the component will
function satisfactorily whenever X14X2. Hence, R¼ PrðX2oX1Þ is a measure of
component reliability which has many applications in engineering. Here, we derive the
reliability R when X1 and X2 have independent McIBða,b,a1,b1,c1Þ and McIB
ða,b,a2,b2,c2Þ distributions, respectively, with the same baseline parameters a and b.
The pdf of X1 and the cdf of X2 can be written from Eq. (18) as

f1ðxÞ ¼
X1

r,m ¼ 0

tð1Þr,mga%

1
,bðxÞ and F2ðxÞ ¼

X1
k,l ¼ 0

t
ð2Þ
k,lGa%

2
,bðxÞ,

where a%

1 ¼ ðrþ 1Þaþm, a%

2 ¼ ðk þ 1Þaþ l, ga%

1
,bðxÞ denotes the IBða%

1 ,bÞ density function
given by Eq. (1) and Ga%

2
,bðxÞ denotes the IBða%

2 ,bÞ cumulative function given by Eq. (2).
Here,

tð1Þr,m ¼
a1pr,mBððrþ 1Þaþm,bÞ

Bða,bÞ

X1
i ¼ 0

ðc1 þ iÞw
ð1Þ
i srða1ði þ c1Þ�1Þ,

t
ð2Þ
k,l ¼

a2pk,lBððk þ 1Þaþ l,bÞ
Bða,bÞ

X1
i ¼ 0

ðc2 þ iÞw
ð2Þ
i skða2ði þ c2Þ�1Þ,

w
ð1Þ
i ¼

ð�1Þi b1
i

� �
ða1 þ iÞBða1,b1 þ 1Þ

, w
ð2Þ
i ¼

ð�1Þi b2
i

� �
ða2 þ iÞBða2,b2 þ 1Þ

,

where srð�Þ and pr,m are given by Eqs. (13) and (17), respectively. We have

R¼

Z 1
0

f1ðxÞF2ðxÞ dx
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and then

R¼
X1

r,m,k,l ¼ 0

tð1Þr,mt
ð2Þ
k,l

Z 1
0

ga%

1
,bðxÞGa%

2
,bðxÞ dx:

After some algebra, we obtainZ 1
0

ga%

1
,bðxÞGa%

2
,bðxÞ dx¼

X1
n ¼ 0

d%

n Bða%

1 þ a%

2 þ n,bÞ
Bða%

1 ,bÞ
,

where d%

n ¼ ð1�bÞn=½ða
%

2 þ nÞn!Bða%

2 ,bÞ�. Finally, R reduces to the form

R¼
X1

r,m,k,l ¼ 0

tð1Þr,mt
ð2Þ
k,l

X1
n ¼ 0

d%

n Bða%

1 þ a%

2 þ n,bÞ
Bða%

1 ,bÞ
:

10. Estimation and inference

Let x¼ ðx1, . . . ,xnÞ
> be a random sample of size n from the McIB distribution with

unknown parameter vector h¼ ða,b,a,b,cÞ>. We consider estimation by the method of
maximum likelihood. However, some of the other estimators like the percentile estimators,
estimators based on order statistics, weighted least squares and estimators based on
L-moments can also be explored. The log-likelihood function for h is

‘ðhÞ ¼ n logðcÞ�n logðBða,bÞÞ�n logðBðac�1,bÞÞ þ ða�1Þ
Xn

i ¼ 1

logðxiÞ

�ðaþ bÞ
Xn

i ¼ 1

logð1þ xiÞ þ ða�1Þ
Xn

i ¼ 1

logð_ziÞ þ ðb�1Þ
Xn

i ¼ 1

logð1�_zc
i Þ,

where _zi ¼ Ixi=ð1þxiÞða,bÞ for i¼1,y,n. The components of the score vector Uh ¼

ðUa,Ub,Ua,Ub,UcÞ
> are obtained by taking the partial derivatives of the log-likelihood

function with respect to the five parameters. After some algebra, we obtain

Ua ¼ nðcðaþ bÞ�cðaÞÞ þ
Xn

i ¼ 1

logðxiÞ�
Xn

i ¼ 1

logð1þ xiÞ

þða�1Þ
Xn

i ¼ 1

_wi þ ðcðaþ bÞ�cðaÞÞ_zi

_zi

�cðb�1Þ
Xn

i ¼ 1

_zc�1
i ½ _wi þ ðcðaþ bÞ�cðaÞÞ_zi�

1�_zc
i

,

Ub ¼ nðcðaþ bÞ�cðbÞÞ�
Xn

i ¼ 1

logð1þ xiÞ þ ða�1Þ
Xn

i ¼ 1

_yi þ ðcðaþ bÞ�cðbÞÞ_zi

_zi

�cðb�1Þ
Xn

i ¼ 1

_zc�1
i ½ _yi þ ðcðaþ bÞ�cðbÞÞ_zi�

1�_zc
i

,

Ua ¼
ncða=cþ bÞ

c
�

ncða=cÞ

c
þ
Xn

i ¼ 1

logð_ziÞ,

Ub ¼ nðcða=cþ bÞ�cðbÞÞ þ
Xn

i ¼ 1

logð1�_zc
i Þ,
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Uc ¼
n

c
þ

na

c2
ðcða=cÞ�cða=cþ bÞÞ�ðb�1Þ

Xn

i ¼ 1

_zc
i logð_ziÞ

1�_zc
i

:

Here, cð�Þ is the digamma function, _wi ¼ _I
ð0Þ

xi=ð1þxiÞ
ða,bÞ and _yi ¼

_I
ð1Þ

xi=ð1þxiÞ
ða,bÞ, for

i¼1,y,n, and

_I
ðkÞ

xi=ð1þxiÞ
ða,bÞ ¼

1

Bða,bÞ

Z xi=ð1þxiÞ

0

½logðwÞ�1�k½logð1�wÞ�kwa�1ð1�wÞb�1 dw:

The maximum likelihood estimate (MLE) ĥ ¼ ðâ,b̂,â,b̂,ĉÞ> of h¼ ða,b,a,b,cÞ> is
obtained by setting Ua ¼Ub ¼Ua ¼Ub ¼Uc ¼ 0 and solving these equations numerically
using iterative techniques such as a Newton–Raphson type algorithm. The Broyden–
Fletcher–Goldfarb–Shanno (BFGS) method (see, for example, [32,34]) with analytical
derivatives has been used for maximizing the log-likelihood function ‘ðhÞ. After fitting the
model, the survival function can be readily estimated (for i¼1,y,n) by

ŜðxiÞ ¼ 1�I
Ixi=ð1þxi Þ

ðâ,b̂Þĉ ðâ=ĉ,b̂Þ:

Approximate confidence intervals and hypothesis tests on the parameters a, b, a, b and c

can be constructed using the normal approximation for the MLE of h. Under conditions
that are fulfilled for the parameters in the interior of the parameter space, we haveffiffiffi

n
p
ðĥ�hÞ�

AN 5ð0,K
�1
h Þ, where �

A
means approximately distributed and Kh is the unit

expected information matrix [6, Chapter 9]. We have the asymptotic result Kh ¼

limn-1n�1JnðhÞ, where JnðhÞ is the observed information matrix. The average matrix

evaluated at ĥ, say n�1JnðĥÞ, can estimate Kh. The observed information matrix JnðhÞ ¼

�@2‘ðhÞ=@h@h> is given in the Appendix. The multivariate normal N 5ð0,JnðĥÞ
�1
Þ

distribution can be used to construct approximate confidence intervals and confidence
regions for the parameters. In fact, asymptotic 100ð1�ZÞ% confidence intervals for a, b, a,

b and c are given, respectively, by â7zZ=2 � ½ ^varðâÞ�
1=2, b̂7zZ=2 � ½ ^varðb̂Þ�

1=2, â7zZ=2�

½ ^varðâÞ�1=2, b̂7zZ=2 � ½ ^varðb̂Þ�
1=2 and ĉ7zZ=2 � ½ ^varðĉÞ�

1=2, where varð�Þ is the diagonal

element of JnðĥÞ
�1 corresponding to each parameter, and zZ=2 is the quantile ð1�Z=2Þ of the

standard normal distribution.
We can compute the maximum values of the unrestricted and restricted log-likelihood

functions to obtain the likelihood ratio (LR) statistics for testing some sub-models of the
McIB distribution. For example, we can use the LR statistic to check if the fit using the McIB
distribution is statistically ‘‘superior’’ to a fit using the BIB distribution for a given data set.

We consider the partition h¼ ðh>1 ,h
>
2 Þ
> of the parameter vector of the McIB distribution,

where h1 is a subset of parameters of interest and h2 is a subset of the remaining parameters.

The LR statistic for testing the null hypothesis H0 : h1 ¼ h
ð0Þ
1 against the alternative

hypothesisH1 : h1ah
ð0Þ
1 is given by w¼ 2f‘ðĥÞ�‘ð ~hÞg, where ĥ and ~h are the MLEs under the

alternative and null hypotheses, respectively, and h
ð0Þ
1 is a specified parameter vector. The

statistic w is asymptotically (n-1) distributed as w2k, where k is the dimension of the subset

h1 of interest. Then, we can compare the McIB model against the BIB model by testing

H0 : c¼ 1 againstH1 : ca1 and the LR statistic becomes w¼ 2f‘ðâ,b̂,â,b̂,ĉÞ�‘ð ~a, ~b, ~a, ~b,1Þg,
where â,b̂,â,b̂ and ĉ are the MLEs under H1 and ~a, ~b, ~a and ~b are the MLEs under H0.

G.M. Cordeiro, A.J. Lemonte / Journal of the Franklin Institute 349 (2012) 1174–11971190



Author's personal copy

11. Application

We provide an application of the McIB distribution and their sub-models: BIB, KwIB,
EIB, LeIB and IB distributions. We compare the results of the fits of these models. We
shall consider the real data set corresponding to daily ozone concentrations in New York
during May–September 1973. The sample size is n¼115 observations. They were provided
by the New York State Department of Conservation and are reported in [29]. All the
computations were done using the Ox matrix programming language [8] which is freely
distributed for academic purposes and available at http://www.doornik.com. The Ox code
for computing the MLEs of the model parameters and the real data set may be obtained
from the authors upon request.

Table 1 lists the MLEs (and the corresponding standard errors in parentheses) of the
model parameters and the following statistics: AIC (Akaike Information Criterion), BIC
(Bayesian Information Criterion) and HQIC (Hannan–Quinn Information Criterion).
These results show that the BIB distribution has the lowest AIC, BIC and HQIC values
among all fitted models, and so it could be chosen as the best model. Additionally, it is
evident that the IB distribution presents the worst fit to the current data and that the
proposed models outperform this distribution. In order to assess if the model is
appropriate, the Kaplan–Meier (K–M) estimate and the estimated survival functions of the
fitted McIB, BIB, KwIB, EIB, LeIB and IB distributions are shown in Fig. 7. From these
plots, we can conclude that the McIB and BIB models yield the best fits and hence can be
adequate for these data. Again, the IB model presents the worst fit to the data.

Further, we compare these models using two other criteria. First, we consider LR statistics
and then formal goodness-of-fit tests. The McIB model includes some sub-models (described
in Section 2) thus allowing their evaluation relative to each other and to a more general
model. As mentioned before, we can compute the maximum values of the unrestricted and
restricted log-likelihoods to obtain LR statistics for testing some McIB sub-models. The
values of the LR statistics are listed in Table 2. From the figures in this table, we conclude
that there is no difference among the fitted McIB and BIB models, and the fitted KwIB and

Table 1

MLEs (standard errors in parentheses) and the measures AIC, BIC and HQIC.

Distribution Estimates Statistic

a b a b c AIC BIC HQIC

McIB 248.4614 0.0901 0.1044 12573.5 1.8889 1071.70 1085.42 1077.27

(37.620) (0.0888) (0.0177) (31.460) (0.4946)

BIB 559.3609 0.0189 0.0487 12573.1 1069.78 1080.76 1074.23

(28.318) (0.0054) (0.0050) (5190.8)

KwIB 3166.72 17.9265 0.0105 0.9149 1075.84 1086.82 1080.30

(1.0014) (1.0230) (0.0015) (0.1606)

EIB 3167.95 16.6888 0.0109 1074.96 1083.20 1078.31

(36.833) (0.9992) (0.0011)

LeIB 25.3831 0.0052 448.962 1080.55 1088.79 1083.89

(2.9312) (0.0009) (36.615)

IB 41.6087 1.7771 1083.34 1088.83 1085.57

(5.7768) (0.2160)
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EIB models to the current data. In addition, these models provide a better representation for
the data than the IB model based on the LR test at the 5% significance level.
Now, we apply formal goodness-of-fit tests in order to verify which distribution fits

better to these data. We consider the Cram�er–von Mises (Wn) and Anderson–Darling (An)
statistics. The statistics Wn and An are described in detail in [3]. In general, the smaller the
values of these statistics, the better the fit to the data. Let Hðx; hÞ be the cdf, where the
form of H is known but h (a k-dimensional parameter vector, say) is unknown. To obtain
the statistics Wn and An, we can proceed as follows: (i) Compute vi ¼Hðxi; ĥÞ, where the
xi’s are in ascending order, and then yi ¼F�1ðviÞ, where Fð�Þ is the standard normal cdf
and F�1ð�Þ its inverse; (ii) Compute ui ¼Ffðyi�yÞ=syg, where y ¼ ð1=nÞ

Pn
i ¼ 1 yi and

s2y ¼ ðn�1Þ
�1Pn

i ¼ 1ðyi�yÞ2; (iii) Calculate W 2 ¼
Pn

i ¼ 1fui�ð2i�1Þ=ð2nÞg2 þ 1=ð12nÞ and
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Fig. 7. Empirical survival and estimated survival functions of theMcIB, BIB, KwIB, EIB, LeIB and IB distributions.

Table 2

LR tests.

Model w p-Value

McIB versus BIB 0.0757 0.7832

McIB versus KwIB 6.1425 0.0132

McIB versus EIB 7.2639 0.0265

McIB versus LeIB 12.8507 0.0016

McIB versus IB 17.6374 0.0005

BIB versus EIB 7.1882 0.0073

BIB versus LeIB 12.7750 0.0004

BIB versus IB 17.5617 0.0002

KwIB versus EIB 1.1214 0.2896

KwIB versus LeIB 6.7083 0.0096

KwIB versus IB 11.4949 0.0032

EIB versus IB 10.3735 0.0013

LeIB versus IB 4.7866 0.0287
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A2 ¼�n�ð1=nÞ
Pn

i ¼ 1fð2i�1ÞlnðuiÞ þ ð2nþ 1�2iÞlnð1�uiÞg and then W n ¼W 2ð1þ 0:5=nÞ

and An ¼A2ð1þ 0:75=nþ 2:25=n2Þ. The values of the statistics Wn and An for all models
are listed in Table 3. Based on these statistics, we conclude that the BIB model fits the
current data better than the other models. Additionally, all the proposed models
outperform the IB model according to these statistics.

For the sake of comparison, we also fit the Birnbaum–Saunders (BS), gamma and
Weibull models to the data. The density functions of the BS, gamma and Weibull
distributions are (for x40)

f ðxÞ ¼
1

2
ffiffiffiffiffiffi
2p
p

ab

b
x

� �1=2

þ
b
x

� �3=2
" #

exp �
1

2a2
x

b
þ

b
x
�2

� �
 �
,

f ðxÞ ¼
ba

GðaÞ
xa�1 expð�bxÞ and f ðxÞ ¼ abxa�1 expð�bxaÞ,

respectively, with a40 and b40. The MLEs (standard errors in parentheses) and the
statistics Wn and An are listed in Table 4. Based on the statistics Wn and An, the BS model
presents the best fit. On the other hand, according to these statistics, the McIB and BIB
models outperform the BS model (compare the figures in Tables 3 and 4) and the new
models outperform the gamma and Weibull models. So, the proposed distributions can
yield a better fit than the BS, gamma and Weibull models and therefore may be an
interesting alternative to these distributions for modeling positive real data sets.

In summary, the new McIB distribution (and their sub-models) produce better fits for
the ozone data than the IB distribution. Additionally, among all the proposed models, the

Table 3

Goodness-of-fit tests.

Distribution Statistic

Wn An

McIB 0.02820 0.17537

BIB 0.02669 0.17217

KwIB 0.05896 0.44217

EIB 0.06272 0.47069

LeIB 0.10039 0.74268

IB 0.13965 1.01826

Table 4

MLEs (standard errors in parentheses) and the measures Wn and An.

Distribution Estimates Statistic

a b Wn An

BS 0.8555 31.0439 0.04939 0.35286

(0.0564) (2.2542)

Gamma 1.8102 0.0426 0.15794 0.92646

(0.2203) (0.0060)

Weibull 1.3720 0.0051 0.20885 1.20586

(0.0976) (0.0021)
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BIB distribution presents the best fit and should be chosen, since it yields the lowest AIC,
BIC and HQIC values (see Table 1) and the lowest Wn and An values (see Table 3). These
results illustrate the potentiality of the new distribution (and their sub-models) and the
necessity of the additional shape parameters.

12. Concluding remarks

We propose a new five-parameter distribution, called the McDonald inverted beta (McIB)
distribution, and study some of its general structural properties. This distribution has the
support on the positive real line and it can be used to analyze lifetime data. We provide
expansions for the density function, moments, generating function, mean deviations, entropy
and reliability. The parameter estimation is approached by maximum likelihood and the
observed information matrix is derived. The usefulness of the new model is illustrated in an
application to real data using likelihood ratio statistics and formal goodness-of-fit tests. In a real
application, we show that the proposed model is a very competitive model to the Birnbaum–
Saunders, gamma and Weibull distributions. The formulae related with the new model are
manageable and may turn into adequate tools comprising the arsenal of applied statisticians.
The McIB model has the potential to attract wider applications in survival analysis.
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Appendix

The observed information matrix for the parameter vector h¼ ða,b,a,b,cÞ> is

JnðhÞ ¼ �
@2‘ðhÞ

@h@h>
¼�

Uaa Uab Uaa Uab Uac

� Ubb Uba Ubb Ubc

� � Uaa Uab Uac

� � � Ubb Ubc

� � � � Ucc

0
BBBBBB@

1
CCCCCCA
,

whose elements are, after extensive algebraic manipulations, given by

Uaa ¼�nc0a þ ða�1Þ
Xn

i ¼ 1

€wi�2ca _wi þ c2
a _zi�c0a _zi

_zi

�ða�1Þ
Xn

i ¼ 1

_wið _wi�ca _ziÞ

_z2i

þða�1Þca

Xn

i ¼ 1

_wi�ca _zi

_zi

�c2ðb�1Þ
Xn

i ¼ 1

_zc�2
i ð _wi�ca _ziÞ

2

1�_zc
i

�cðb�1Þ
Xn

i ¼ 1

_zc�1
i ð €wi�2ca _wi þ c2

a _zi�c0a _ziÞ

1�_zc
i

þ cðb�1Þ
Xn

i ¼ 1

_zc�2
i _wið _wi�ca _ziÞ

1�_zc
i

�cðb�1Þca

Xn

i ¼ 1

_zc�1
i ð _wi�ca _ziÞ

1�_zc
i

�c2ðb�1Þ
Xn

i ¼ 1

_z2ðc�1Þi ð _wi�ca _ziÞ
2

ð1�_zc
i Þ
2

,
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Uab ¼ nc0ðaþ bÞ þ ða�1Þ
Xn

i ¼ 1

_wi�cb _wi�ca _yi þ cacb _zi þ c0ðaþ bÞ_zi

_zi

�ða�1Þ
Xn

i ¼ 1

_yið _wi�ca _ziÞ

_z2i
þ ða�1Þcb

Xn

i ¼ 1

_wi�ca _zi

_zi

�c2ðb�1Þ
Xn

i ¼ 1

_zc�2
i ð _yi�cb _ziÞð _wi�ca _ziÞ

1�_zc
i

�cðb�1Þ
Xn

i ¼ 1

_zc�1
i ð _yi�cb _wi�ca _yi þ cacb _zi þ c0ðaþ bÞ_ziÞ

1�_zc
i

þcðb�1Þ
Xn

i ¼ 1

_zc�2
i _yið _wi�ca _ziÞ

1�_zc
i

�cðb�1Þcb

Xn

i ¼ 1

_zc�1
i ð _wi�ca _ziÞ

1�_zc
i

�c2ðb�1Þ
Xn

i ¼ 1

_z2ðc�1Þi ð _yi�cb _ziÞð _wi�ca _ziÞ

ð1�_zc
i Þ
2

,

Uaa ¼
Xn

i ¼ 1

_wi�ca _zi

_zi

, Uab ¼�c
Xn

i ¼ 1

_zc�1
i ð _wi�ca _ziÞ

1�_zc
i

,

Uac ¼�ðb�1Þ
Xn

i ¼ 1

_zc�1
i ð _wi�ca _ziÞð1þ c logð_ziÞÞ

1�_zc
i

,

Ubb ¼�nc0b þ ða�1Þ
Xn

i ¼ 1

€yi�2cb _yi þ c2
b _zi�c0b _zi

_zi

�ða�1Þ
Xn

i ¼ 1

_yið _yi�cb _ziÞ

_z2i

þða�1Þcb

Xn

i ¼ 1

_yi�cb _zi

_zi

�c2ðb�1Þ
Xn

i ¼ 1

_zc�2
i ð _yi�cb _ziÞ

2

1�_zc
i

�cðb�1Þ
Xn

i ¼ 1

_zc�1
i ð €yi�2cb _yi þ c2

b _zi�c0b _ziÞ

1�_zc
i

þ cðb�1Þ
Xn

i ¼ 1

_zc�2
i _yið _yi�cb _ziÞ

1�_zc
i

�cðb�1Þcb

Xn

i ¼ 1

_zc�1
i ð _yi�cb _ziÞ

1�_zc
i

�c2ðb�1Þ
Xn

i ¼ 1

_z2ðc�1Þi ð _yi�cb _ziÞ
2

ð1�_zc
i Þ
2

,

Uba ¼
Xn

i ¼ 1

_yi�cb _zi

_zi

, Ubb ¼�c
Xn

i ¼ 1

_zc�1
i ð _yi�cb _ziÞ

1�_zc
i

,

Uac ¼�ðb�1Þ
Xn

i ¼ 1

_zc�1
i ð _yi�cb _ziÞð1þ c logð_ziÞÞ

1�_zc
i

,

Uaa ¼�
n

c2
ðc0ða=cÞ�c0ðbþ a=cÞÞ, Uab ¼

nc0ða=cþ bÞ

c
,

Uac ¼
n

c2
ðcða=cÞ�cðbþ a=cÞÞ þ

na

c3
ðc0ða=cÞ�c0ðbþ a=cÞÞ,

Ubb ¼ nðc0ðbþ a=cÞ�c0ðbÞÞ, Ubc ¼�
nac0ðbþ a=cÞ

c2
�
Xn

i ¼ 1

_zc
i logð_ziÞ
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Ucc ¼�
n

c2
�
2nacða=cÞ

c3
�

na2c0ða=cÞ

c4
þ

2nacðbþ a=cÞ

c3

þ
na2c0ðbþ a=cÞ

c4
�ðb�1Þ

Xn

i ¼ 1

_zc
i ½logð_ziÞ�

2

ð1�_zc
i Þ
2

,

where c0ð�Þ is the trigamma function, ca ¼ cðaÞ�cðaþ bÞ, cb ¼ cðbÞ�cðaþ bÞ,

c0a ¼c0ðaÞ�c0ðaþ bÞ, c0b ¼ c0ðbÞ�c0ðaþ bÞ, €wi ¼ €I
ð0Þ

xi=ð1þxiÞ
ða,bÞ, €yi ¼

€I
ð1Þ

xi=ð1þxiÞ
ða,bÞ, for

i¼1,y,n, with

€I
ðkÞ

xi=ð1þxiÞ
ða,bÞ ¼

1

Bða,bÞ

Z xi=ð1þxiÞ

0

½logðwÞ�2ð1�kÞ½logð1�wÞ�2kwa�1ð1�wÞb�1 dw,

and _zi, _wi and _yi were defined in Section 10.
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