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The Retransformed Mean After a Fitted

JEREMY M. G. TAYLOR*

Power Transformation

An approximate method is given to estimate the mean of a
dependent variable after a linear model is fitted to the Box—
Cox power transformation of this variable. The estimate is
accurate except when the transformation power parameter is
near zero. The properties of the estimate in the one-sample and
regression cases are considered, by both asymptotic calculations
and Monte Carlo simulations, and comparisons are made with
the smearing estimate (Duan 1983). It is shown that there can
be some cost due to estimating the power transformation, as
opposed to assuming it is known; however, this cost is not
severe.

KEY WORDS: Box-Cox transformation; Mean prediction;
Smearing estimate; Small-6 approximation.

1. INTRODUCTION

Box and Cox (1964) discussed the power transformation fam-
ily of models. In particular, they gave methods of estimating
the parameters in the nonlinear model

hY,A) = AB + oe, (1)

where e has density f, which is assumed to be standard normal,
A is a known design matrix, B is a vector of parameters, and

hY, ) = X* - /4, A#0
= log(Y), A=0.

Note that the transformation is valid only if ¥ > 0.

Equation (1) is optimistically assuming that a single trans-
formation can achieve a linear structure, constant variance, and
normal errors. In practice this will rarely be true; however, the
exactness of (1) may not be important.

There are many methods of estimating the parameters; the
one considered here is by maximum likelihood (Box and Cox
1964). The parameter estimates are consistent if f is normal;
otherwise they are generally inconsistent, but the bias in the
estimate of A is small (Taylor 1985a).

Recently (Bickel and Doksum 1981; Box and Cox 1982;
Hinkley and Runger 1984) there has been some discussion about
the means and appropriateness of inferences concerning . In
particular, Bickel and Doksum showed that the variance of [
is greatly inflated when A is estimated from the data compared
to the situation in which A is assumed known. Carroll and
Ruppert (1981) argued for parameters defined independently
of the scale. They suggested using the inverse transformation
and making inference statements on the original scale of the
variables. They studied the properties of the conditional median
of the distribution of ¥ given A—that is, the retransformed
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median after a liner model is fitted to the transformed obser-
vations. They showed that there is some cost due to estimating
J but that it is generally small. Furthermore, it is much smaller
than the cost obtained by Bickel and Doksum for the estimates
of B.

If one wishes to predict a future value of Y given A, then
on the original scale of the variables the conditional mean will
frequently be the quantity of interest (see Morris 1984). For
example, if the dependent variable is a monetary variable, then
the mean value rather than the median value will probably be
more relevant. Here an approximate method of estimating the
conditional mean is given, its properties are studied, and it is
compared to the smearing estimate (see Duan 1983 and Carroll
and Ruppert 1984). The approximation uses the “small-§” method
(Draper and Cox 1969; Taylor 1985a). The two estimators are
studied in the one-sample and regression cases, using both
asymptotic calculations and Monte Carlo simulations. Except
in the region of the parameter space where A is near zero and
o is large, it is shown that the approximate method is very
accurate and that the smearing estimate and the approximation
are essentially equivalent. Further, I show that there is a cost
due to estimating A, compared to the A-known situation, but
this cost is generally small. For the examples considered in this
article, the cost is of the order of roughly 30% or less. This
was the conclusion reached by Carroll and Ruppert (1981) for
the conditional median and suggested for the conditional mean.

2. APPROXIMATE ESTIMATOR

Assume that Y,, . .., Y, are generated according to (1),
with f a general density satisfying E{e) = 0 and E{¢?) = 1.
Then the conditional mean of a future value of ¥ when A =
A, is given by

E(Y|Ay) = f(l + AAB + Age)'* dF(e).
An obvious estimate of this quantity is
f (1 + 1 A + 16¢)* dF(e). )

Evaluating this would require estimating the parameters { =
(4, B, 0), estimating the density f, and evaluating the integral
numerically—clearly not a very satisfactory method.

To obtain an approximation to this quantity, I use the small-
6 method given in Draper and Cox (1969). Let 6(Ao) = Ao/
(1 + AAoB), 4 # 0. Then the condition

|6(A)| << 1 for all A, of interest

is necessary to ensure that all of the Y observations are positive
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with high probability. So
E(YA) = (1 + 1A,8)" f (1 + 6(A)e)" dF(e)

= (1 + AAB)* 1.
Expanding the integrand in powers of A(A,) gives

® i1 1
I= f { 1+ BA)e) I1 (I - ,)} dF (e).
i=1

j=1

If the density f is symmetric and the order of integration and
summation can be interchanged (conditions that are similar to
those given in Taylor 1985b), then deleting terms of a higher
order than (6(A,))? gives

o1 — A) }

E(YIAO) =Y, =0+ ﬂ.AoB)m{l + 2(1 + AAB)?

So an obvious estimator to use is
Y, = (1 + AAB)H1 + 621 — 1)/2(1 + 1AB)3.

Note the following: (a) Y, is equivariant to changes in the Y
scale and (b) Y, can be viewed as the median multiplied by a
correction factor, where the correction factor is larger than 1
if A < 1 and less than 1 if A > 1. See Morris (1984) for a
similar bias correction when 4 = 1/N.

Two questions need to be addressed. First, how close is Y,
to E(Y|Ay)? Clearly for 1 near zero, Y, = exp(A,B)(1 + o?/
2); however, in this case if f is normal, then E(Y|A,) = exp(A B
+ 62/2). Therefore the approximation is not accurate in the
situation where 4 is near zero and ¢ is large. I will vaguely
define this region of the parameter space to be S’ and its com-
plement to be S; that is, S’ = {£ : A near zero and o large},
where ¢ = (4, B, o). Unfortunately S’ is an important region,
but as we shall see it is also a region where it is very hard to
get a reasonable estimator. In Section 4, I show that S appears
to be the only region where the approximation is not valid.

Second, what are the properties of ¥, as an estimator of Y,?
A simple Taylor expansion gives

Y.=Y,+PA -2 +QB - B
+RE-0)+od-14LB-B,6-0. 3

So if the parameters & are consistently estimated, then ¥, >
Y,as n— o,

Similarly, the limiting variance of n"%(f, — Y,) can be ob-
tained from the asymptotic covariance of &. I do not give its
form here because the terms in the matrix involve complicated
integrals (although approximate answers can be obtained in
simple cases) and the terms P, Q, and R are lengthy expressions.

3. SMEARING ESTIMATE

Duan (1983) described a nonparametric method of estimating
the conditional mean when the data follow a linear model after
a known transformation. He calls the method the smearing
estimate.

Duan showed that the estimator is consistent and, in the case
of the lognormal distribution, that the loss in efficiency relative
to the normal theory estimate is small unless ¢ is large. The
bias of the normal theory estimate, however, is sensitive to
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departures from normality. In the one-sample case the smearing
estimate reduces to the sample mean.

Carroll and Ruppert (1984) suggested using the smearing
estimate when the transformation is estimated from the data.
The method is to replace F in (2) by the empirical distribution
function of the residuals é; = (h(Y;, i) - (Aﬁ)i)/&. This leads
to the estimator

A

Ys

LS o+ A - AR, A0

1 A Y

-2 Yiexp{((A - AP, i=o.

The theoretical properties of this estimator are being discussed
elsewhere (Duan, personal communication, 1985).

Proposition 1.  The approximate estimator and the smearing
estimator are approximately equal except when A is near zero.
Proof.

Y,

%Z (1 + AAB + aé)"*

a+ iAOB)”"%Z (1 + Bé)"* for 4 # 0,
where & = 16/(1 + 1A B), which is assumed small. Hence

A AL A 1 .
Fo =+ 2A8)" - 3 {1 +

g221 (1 23
+T—i —i_l +0(0)}.

The normal equations give 2¢; = 0, provided the linear model
contains an intercept term, and %é? = n. Hence

Ys = (1 + IAB)*1 + @/2)(1/1)(1/4 = 1) = ¥,
This result is borne out in the Monte Carlo simulations.

4. ONE-SAMPLE CASE

41 Theoretical Results

Assume the model

WY, %) = p + oe, “
where e has density f, which is normal. The mean of Y is given
by
EY) = f(l + Au + Age)"*f(e) de.

Estimating this quantity may be a hard task. For example, if 1
= 0, then a small departure from the lognormal distribution in
the right-hand tail can greatly affect E(Y). In the sampling
situation, whether or not one of the extreme observations is
sampled will play an enormous role in determining the estimate
of E(Y). _

The smearing estimator ¥ reduces to the sample mean, Y,
the properties of which are easy to assess.

The small-6 estimator is

Y, = (1 + A" + 6¥1 — D21 + IppP),

where the parameter estimates are obtained using the maximum
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Table 1. Comparison of the Limiting Value of the Approximate
Estimator (Y*) and E(Y) When the Distribution of the Data
Is Gamma (a, 1)

Shape
Parameter

a &l E(Y) A o* o

5 475 5 .208 1.27 .36
1.0 .994 1.0 .265 1.01 .30
1.5 1.498 1.5 .289 .92 .25
2.0 2.000 2.0 .301 .87 22
3.0 2.999 3.0 312 .81 19

likelihood method. For general f, Y, is estimating the quantity
Y* = (1 + ZFu¥)V*(1 + 0%)/2(1 + A*u*)?),

where £* = (A%, u*, ¢*) are the limiting values of &. If model
(4) is the true model, then &* = &, and in general &* is evaluated
using the method of Hernandez and Johnson (1980).

Table 1 gives a comparison of Y* and E(Y) when the actual
distribution of the data is gamma (e, 1). As expected, we see
that Y* is close to E(Y) except when 4 is near zero and o is
large. The values of 8% = A*g*/(1 + A*u*) are also given.

I further compared the approximation Y,, with E(Y) calcu-
lated numerically, assuming that model (4) is true, for many
configurations of the parameters 0 = 4 = 2. [For 4 < 0, E(Y)
can be infinite.] The two values were found to be very close
to each other for all £, except for both A near zero (A < .2)
and o large (g > 1).

Table 2 gives the asymptotic relative bias of Y, when f is
assumed to be normal and contaminated normal [N(0, 1) with
probability .9 and N(0, 9) with probability .1, standardized to
have unit variance]. The table is given in terms of 4 and 0, the
more natural parameters in the one-sample case. Note that 0
(= A6/(1 + Ap)) is the coefficient of variation of Y and that
0 large is approximately equivalent to o large. Again we see
that the bias is negligible unless & € S'.

It is easy to show that, under model (4), the limiting variance
(Avar) of n'?Y equals o%(1 + Aw)¥»=2, Similarly, after a
lengthy likelihood calculation involving a small-6 approxima-
tion to the covariance matrix of é, it can be shown that for &
€ S and f normal,

Avar(n'?f) = o¥(1 + A1 + 0(?). (5)

Table 2. Asymptotic Relative Bias of Y, (100 x (Y: — E(Y))/E(Y))

Density
Contaminated
A 0 o . Normal Normal
1.0 all 6 0 .0
5 all 6 0 .0
.25 A1 0 -1
0.2 -4 -1.1
0.3 -1.6 *
1 0.1 —-44 -1341
0.2 -30.4 —-68.7
0.3 -60.4 *
.0 5 -1 -23
1.0 -9.0 -37.7
1.5 -31.0 - -92.8

* Not a permissible value of 6 for this density.
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This is hardly a surprising result, as we knew that Y5 and ¥,
were approximately equal.

Proposition 2. When estimating the mean on the original
scale of the observations, there is no additional cost incurred
[to 0(69)] due to estimating the power transformation, assuming
that model (4) is true with f normal and ¢ € S.

Proof. If 4 is assumed known, then a simple likelihood cal-
culation shows that

Avar(n'?Y,|A known) = o*(1 + Ap)®>¥1 + 0(6?).
Comparison with Equation (5) gives the result.
4.2 Monte Carlo Results

Five hundred samples of size 30 were generated according
to model (4), for a variety of parameter configurations. Normal
and contaminated-normal densities were considered. Strictly
speaking, truncated densities were considered. All nonpositive
values of Y generated in Equation (4) were discarded. The effect
of this was thought to be negligible, as less than .1% of the
generated Y values were discarded. Table 3 gives the results.

The table shows that for £ € §, Y, and Y have essentially
equal variance when f is normal, but Y, is slightly more efficient
when f is contaminated normal. As expected, the variance ratio,
var(¥,)/var(Y,/4 known), is close to one when f is normal and
less than one if f is contaminated normal, showing that there
is essentially no cost due to estimating . The results concerning
the bias of ¥, are not shown; however, in all cases (except
¢ € §') the difference between the Monte Carlo means of ¥,
and Y was negligible, and the relative bias was very similar to
the values given in Table 2. _

When & € §', ¥, is more efficient than Y, but this is also
the region where the bias of ¥, becomes significant. So it seems
that in S’, Y retains zero bias at the expense of variance and
Y, retains low variance at the expense of bias. If the mean
squared error criterion is used, then Y, is better than Y, at least
for samples of size 30. Despite this smaller mean squared error,
it would not be sensible to use Y, if the bias is large; however,
if one is prepared to tolerate a 5% bias (say), then Y, can be
up to twice as efficient as Y.

Table 3. One-Sample Monte Carlo Results: Efficiency of Y, to Y and
Efficiency of Y, to (YA known)

var(Y)/var(Y,) var(Y.)/var(Y.JA known)
Contaminated Contaminated
A |6l o Normal Normal Normal Normal
1.0 1 1.01 1.12 .99 .89
10 2 1.00 1.13 1.00 .89
1.0 3 1.00 1.00
5 A1 1.00 1.12 1.00 .90
S5 2 1.00 1.16 1.00 .86
5 3 1.00 1.00
25 A 1.01 1.27 1.00 .87
25 2 1.03 212 .99 .65
25 3 1.04 .99
-5 A1 1.09 3.81 .99 .78
-5 2 1.75 97
-1.0 A 1.01 1.01 1.00 77
-10 2 1.13 .99
.0 5 1.14 3.12 .97 .76
.0 1.0 1.77 5 x 10° .99 .53
.0 15 6.95 3 x 10* .98 47
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5. LINEAR REGRESSION
51 Theoretical Results

Consider the model A(Y;, A) = B, + B,C, + oe, Without
loss of generality, restrict {C;} such that 2".,C; = 0 and
2% .C? = n. At a value C, of the independent variable, the
smearing estimate is given by

n

A 1 an
Ys(Co) = ;2 (Y,’i + j~,31(Co - Ci))m

i=1
and the small-6 approximation is given by
Y.Co) = R'(1 + $6%1 — X)/RY),

where R = 1 + (B, + B.Co).

For a normal error distribution we can in theory obtain the
asymptotic covariance matrix of &, but in practice this would
involve numerical integrals. A small-¢ approximation to this
matrix was given by Bickel and Doksum (1981); also see Carroll
and Ruppert (1981). Then

), O

_g’:iz COV(;{, ﬁo’ Bl’ &) = (2

0

(=)

L

where
1 —ET) —E(CT)
2 =e'| —ET) ET - (ECCT))? EMECT) |,
—E(CT) E(TME(CT) E(T» — (E(T))*

where T = (1/A*)(S — 1 — Slog($)), S = 1 + A(B, + B,0),
e = E(T*) — (E(T))* — (E(CT))% and the expectations are
with respect to the distribution of C.

It is worth noting that the variances given by this approxi-
mation were in good agreement with the Monte Carlo results
when o was small; however, there were substantial differences
between the two when ¢ was not small. Carroll and Ruppert
(1981) noted a similar discrepancy.

By using (3) and (6) we obtain the limiting variance of ¥,(C,).
In a similar manner we can obtain the limiting variance of the
approximate estimator, assuming /A is known. These variances
and their ratio are given in Table 4 for a particular case.

Table 4. Linear Regression Results

Variance Ratio

Relative Bias (var(Y)/var(Y|4 known))
(100 x (Y — Y*)/Y*),
Monte Carlo Monte Carlo Small-
- - - - Analysis,
Co Ys(Co) Ya(Co) Ys(Co)  Yu(Co) Ya(Co)
—-1.508 .0053 .0055 1.22 1.22 3.38
—-1.206 .0066 .0068 1.04 1.04 2.09
~.905 .0061 .0061 1.02 1.02 1.33
—-.603 .0046 .0046 1.14 1.14 1.02
-.302 .0029 .0029 1.32 1.32 1.02
.302 -.0001 -.0001 1.28 1.28 1.02
.603 -.0008 —.0008 1.10 1.10 1.03
.905 —.0006 -.0007 1.00 1.00 1.32
1.206 .00053 .00045 1.04 1.04 1.94
1.508 .0028 .0027 1.22 1.21 2.86

NOTE: 1 =58 =4, =1,0 = .5, f = normal, n = 20.
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Table 5. Monte Carlo Regression Results

(var(Y)/var(Y|i
Relative known))

Difference Efficiency —_—

Density a (100 x (Vs — Y)/¥s) (var(Y)var(Ys) Y, Ys
Normal 5 1 .96 1.1 1.12
1.0 10 .63 1.04 1.43

Contaminated .5 4 .50 132 24
Normal 1.0 ~50 .00 .80 ~100

NOTE: 1 = .0, = -3, #y = 1. The numbers in this table are averages over the 10 values
of Co.

5.2 Monte Carlo Results

Five hundred samples of size 20 were generated for a range
of values of £ (A = 1.0, .5, .25, .0, —1.0 and ¢ = .5, 1.0).
Normal and contaminated normal errors were considered. The
values of {C;} were always those given in Table 4, with two
observations at each value. The Monte Carlo mean and variance
of the approximate estimator and the smearing estimator were
calculated for A estimated and assumed known. Table 4 gives
the detailed results for one particular case, and Table 5 sum-
marizes the results when A = .0.

Table 4 shows that the two estimators are essentially equiv-
alent and have small bias and that the cost due to estimating 4
is fairly small. In addition, the small-o asymptotics provide a
reasonable approximation in terms of order of magnitude, but
are not particularly accurate.

The general findings of the Monte Carlo study are as follows:

1. When f is normal and ¢ € S, ¥,(C,) and Y5(C,) are
essentially equivalent, the cost due to estimating A is minimal
(seldom greater than 30%), and the relative bias of ¥,(C,) com-
pared to Y5(C,) is negligible.

2. When f is contaminated normal and & € S, Y,(C,) is
slightly more efficient than Y5(C,) (0%—20%); there is no cost
due to estimating 4 (in fact in some cases there is something
to be gained). The relative bias of ¥,(C,) compared to Y5(C,)
is small (<2%).

3. When 4 is near zero and ¢ is large (¢ = 1), then ¥,(C,)
is more efficient than Y5(C,) (extremely so the larger o gets or
if f is contaminated normal). The bias of ¥,(Cy) compared to
Y5(Co) can be large. There is a small cost due to estimating 4
when f is normal and a small gain when f is contaminated
normal.

4. The cost due to estimating A is not constant-throughout
the design space. This was also noted by Carroll and Ruppert
(1984) for the conditional median.

The precise results for A = 0 are given in Table 5. The
numbers given are averaged over the 10 values of C;. The table
illustrates the extreme problem in estimating the mean if A =
0 and o is large. One estimator has a very large bias, whereas
the other estimator has a very large variance.

6. CONCLUSIONS

Two methods are given of estimating the conditional mean
after a transformation is fitted to the data; neither method re-
quires numerical integration or density estimation. Except for
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both A near zero and o large, the two methods are essentially
equivalent. They are estimating the correct quantity, and there
is generally only a small to moderate cost incurred due to
estimating A. This cost may or may not be important depending
on the context and which part of the design space is of interest.
This small cost suggests that when estimating the conditional
mean it may be satisfactory, as a first approximation, to use
the estimated value of A as if it was known beforehand. In a
final analysis, however, more accurate confidence intervals for
the conditional mean could be obtained by using a bootstrap
technique.

When 4 is near zero and o is large, the problem of estimating
the conditional mean is much harder. The two methods differ
here; the small-6 approximation method retains small efficiency
at the expense of bias, whereas the smearing estimate retains
zero bias at the expense of poor efficiency.

In this problem area, the bias of the small-@ estimator could
be reduced by retaining higher-order terms in the expansion of
E(Y|A,) in powers of 8(A,). Alternatively, making the smearing
estimator robust would reduce its variance.

[Received March 1985. Revised August 1985.]
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