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Abstract

We introduce a five-parameter continuous model, called the McDonald inverted beta distri-
bution, to extend the two-parameter inverted beta distribution and provide new four- and three-
parameter sub-models. We give a mathematical treatment of the new distribution including ex-
pansions for the density function, moments, generating and quantile functions, mean deviations,
entropy and reliability. The model parameters are estimated by maximum likelihood and the ob-
served information matrix is derived. An application of the new model to real data shows that it
can give consistently a better fit than other important lifetime models.

Keywords: Inverted beta distribution; Maximum likelihood estimation; McDonald distribution;
Moment; Moment generating function.

1 Introduction

The beta distribution with support in the standard unit interval (0, 1) has been utilized extensively
in statistical theory and practice for over one hundred years. It is very versatile and a variety of
uncertainties can be usefully modeled by this distribution, since it can take an amazingly great variety
of forms depending on the values of its parameters. On the other hand, the inverted beta (IB)
distribution with support in (0,∞) can be used to model positive real data. It is also known as the
beta prime distribution or beta distribution of the second kind. Its probability density function (pdf)
with two positive parameters α > 0 and β > 0 is given by

gα,β(x) =
xα−1

B(α, β) (1 + x)α+β
, x > 0, (1)

where B(α, β) = Γ(α)Γ(β)/Γ(α + β) is the beta function and Γ(α) =
∫∞
0 wα−1 e−wdw is the gamma

function. The cumulative distribution function (cdf) corresponding to (1) is

Gα,β(x) = I x
1+x

(α, β), x > 0, (2)
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where Iy(p, q) = By(p, q)/B(p, q) is the incomplete beta function ratio and By(p, q) =
∫ y
0 ωp−1 (1 −

ω)q−1dω is the incomplete beta function. The cdf (2) can be expressed in terms of the hypergeometric
function as

Gα,β(x) =
xα

α B(α, β) 2F1 (α, α + β; α + 1;−x) ,

where

2F1(p, q; r; y) =
Γ(r)

Γ(p) Γ(q)

∞∑

j=0

Γ(p + j) Γ(q + j)
Γ(r + j)

yj

j!
.

The hypergeometric function can be computed, for example, using the MATHEMATICA software. For
example, 2F1(p, q; r; y) is obtained from MATHEMATICA as HypergeometricPFQ[{p,q},{r},y]. For
s < β, the sth moment about zero associated with (1) is

E(Xs) =
B(α + s, β − s)

B(α, β)
.

Also, for s ∈ N and s < β, this equation simplifies to E(Xs) =
∏s

i=1(α + i − 1)/(β − i). The mean
and variance of X for β > 1 and β > 2 are given by

E(X) =
α

β − 1
and var(X) =

α(α + β − 1)
(β − 2)(β − 1)2

,

respectively. If V has the beta distribution with positive parameters α and β, then X = V/(1 − V )
has the IB distribution (1). It also arises from a linear transformation of the F distribution.

The IB distribution has been studied by several authors. McDonald and Richards (1987a) discussed
various properties of this distribution and obtain the maximum likelihood estimates (MLEs) of the
model parameters. The behavior of its hazard ratio function has been examined by McDonald and
Richards (1987b). Bookstaber and McDonald (1987) showed that this distribution is quite useful in the
empirical estimation of security returns and in facilitating the development of option pricing models
(and other models) that depend on the specification and mathematical manipulation of distributions.
Mixtures of two IB distributions have been considered by McDonald and Butler (1987) who have
applied it in the analysis of unemployment duration. McDonald and Butler (1990) have used this
distribution while discussing regression models for positive random variables. Other applications in
modeling insurance loss processes have been illustrated by Cummins et al. (1990). McDonald and
Bookstaber (1991) have developed an option pricing formula based on this distribution that includes
the widely used Black Scholes formula based on the assumption of log-normally distributed returns.

The generalized beta distribution of first kind (or, beta type I) may be characterized by the density
function (McDonald, 1984)

h(x) =
c

B(ac−1, b)
xa−1(1− xc)b−1, 0 < x < 1, (3)

where a > 0, b > 0 and c > 0 are shape parameters. Two important special models are the beta and
Kumaraswamy (Kumaraswamy, 1980) distributions defined from (3) for c = 1 and a = c, respectively.

The statistics literature is filled with hundreds of continuous univariate distributions that have
been extensively used over the past decades for modeling data in several fields such as environmental
and medical sciences, engineering, demography, biological studies, actuarial, economics, finance and
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insurance. However, in many applied areas such as lifetime analysis, finance and insurance, there is
a clear need for extended forms of these distributions. Recent developments focus on new techniques
for building meaningful distributions, including the two-piece approach introduced by Hansen (1994)
and the generator approach pioneered by Eugene et al. (2002) and Jones (2004). For any continuous
baseline cdf G(x) with parameter vector τ and density function g(x), the cumulative function F (x)
of the McDonald-G (denoted with the prefix “McG” for short) distribution is defined by

F (x) = IG(x)c(ac−1, b) =
1

B (ac−1, b)

∫ G(x)c

0
ω

a
c
−1 (1− ω)b−1dω, (4)

where a > 0, b > 0 and c > 0 are additional shape parameters to those in τ to govern skewness and
to provide greater flexibility of its tails. The density function corresponding to (4) can be reduced to

f(x) =
c

B(ac−1, b)
g(x) G(x)a−1 [1−G(x)c]b−1. (5)

Clearly, the McDonald density (3) is a basic exemplar of (5) for G(x) = x, x ∈ (0, 1).
The class of distributions (5) includes two important special sub-classes: the beta generalized

(BG) and Kumaraswamy generalized (KwG) distributions when c = 1 (Eugene et al., 2002) and a = c

(Cordeiro and de Castro, 2011), respectively. It follows from (5) that the McG distribution with
baseline cdf G(x) is the BG distribution with baseline cdf G(x)c. This simple transformation may
facilitate the derivation of some of its structural properties. The BG and KwG distributions can be
limited in one aspect. They introduce only two additional shape parameters, whereas three may be
required to control both tail weights and the distribution of weight in the center. Hence, the McDonald
distribution (5) is a more flexible model since it has one more shape parameter than the classical beta
or Kumaraswamy generators that can give additional control over both skewness and kurtosis.

Clearly, for G(x) = x, we obtain as simple sub-models the classical beta and Kumaraswamy
distributions for c = 1 and a = c, respectively. The Kumaraswamy distribution is commonly termed
the “minimax” distribution. Jones (2009) advocates its tractability, especially in simulations because
its quantile function takes a simple form, and its pedagogical appeal relative to the classical beta
distribution.

Equation (5) will be most tractable when both functions G(x) and g(x) have simple analytic
expressions. Its major benefit is the ability of fitting skewed data that cannot be properly fitted
by existing distributions. Let QG(u) be the quantile function of the G distribution. Application
of X = QG(V 1/c) to a beta random variable V with positive parameters a/c and b generates X

with cumulative function (4). The cumulative function (4) can also be expressed in terms of the
hypergeometric function as

F (x) =
cG(x)a

aB(ac−1, b) 2F1

(
ac−1, 1− b; ac−1 + 1;G(x)a

)
.

Thus, for any parent G(x), the properties of F (x) could, in principle, be obtained from the well
established properties of the hypergeometric function (see Gradshteyn and Ryzhik, 2007).

In this note, we study some mathematical properties of a new five-parameter distribution called
the McDonald inverted beta (McIB) distribution, which is defined from (5) by taking G(x) and g(x)
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to be the cdf and pdf of the IB distribution, respectively. We adopt a different approach to much
of the literature so far: rather than considering the classical beta generator (Eugene et al., 2002) or
the Kumaraswamy generator (Cordeiro and de Castro, 2011) applied to a baseline distribution, we
propose a more flexible McDonald generator applied to the IB distribution. We also discuss maximum
likelihood estimation of its parameters.

The article is outlined as follows. In Section 2, we define the McIB distribution. Section 3 provides
a useful expansion for its density function. In Section 4, we obtain a simple expansion for the moments.
Section 5 provides an expansion for the moment generating function (mgf). Section 6 deals with non-
standard measures for the skewness and kurtosis. Mean deviations, Bonferroni and Lorenz curves,
Rénvy entropy and reliability are investigated in Sections 7, 8 and 9, respectively. Maximum likelihood
estimation is discussed in Section 10. An empirical application is presented and discussed in Section
11. Finally, Section 12 offers some concluding remarks.

2 The McIB Distribution

The McIB density function can be obtained from (5) as

f(x) =
c xα−1

B(α, β) B(ac−1, b) (1 + x)α+β
I x

1+x
(α, β)a−1

[
1− I x

1+x
(α, β)c

]b−1
, x > 0. (6)

The cdf corresponding to (6) is given by F (x) = II x
1+x

(α,β)c(ac−1, b), the survival function is S(x) =

1− II x
1+x

(α,β)c(ac−1, b) and the associated hazard rate function takes the form

r(x) =
c xα−1

B(α, β) B(a, b) (1 + x)α+β

I x
1+x

(α, β)a−1
[
1− I x

1+x
(α, β)c

]b−1

[
1− II x

1+x
(α,β)c(ac−1, b)

] . (7)

The study of the new distribution is important since it includes as special sub-models some distribu-
tions not previously considered in the literature. In fact, the IB distribution (with parameters α and
β) is clearly a basic exemplar for a = b = c = 1. The beta IB (BIB) and Kumaraswamy IB (KwIB)
distributions are new models when c = 1 and a = c, respectively. For b = c = 1, it leads to a new
distribution refereed to as the exponentiated IB (EIB) distribution. The Lehmann type-II IB (LeIB)
distribution arises with a = c = 1. The McIB distribution can also be applied in engineering as the
IB distribution and can be used to model reliability and survival problems. The proposed distribution
allows for greater flexibility of its tails and can be widely applied in many areas.

Figures 1 and 2 illustrate some of the possible shapes of the density function (6) and hazard rate
function (7), respectively, for selected parameter values. The density function and hazard rate function
can take various forms depending on the parameter values.

Let Qα,β(u) be the quantile function of the beta distribution with parameters α and β. The
quantile function of the McIB(α, β, a, b, c) distribution, say x = Q(u), can be easily obtained as

x = Q(u) =
Qα,β

(
Qa/c,b(u)1/c

)

1−Qα,β

(
Qa/c,b(u)1/c

) . (8)

This scheme is useful because of the existence of fast generators for beta random variables in most
statistical packages.
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Figure 1: Plots of the density function (6) for some parameter values.
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Figure 2: Plots of the hazard rate function (7) for some parameter values.
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3 Density Function Expansion

We start this section by stating some useful expansions for the McG density function and, for brevity
of notation, we shall drop the explicit reference to the parameter vector τ in G(x). A useful expansion
for (5) can be derived as a linear combination of exponentiated-G distributions. For an arbitrary
baseline G and a > 0, a random variable X having cdf and pdf given by

Ha(x) = G(x)a and ha(x) = a g(x) G(x)a−1,

respectively, is denoted by X ∼ Expa(G). The transformation Expa(G) is called the exponentiated-G
distribution but it is also refereed to as the Lehmann type-I distribution with parameter a. The prop-
erties of exponentiated distributions have been studied by many authors in recent years, see Mudholkar
et al. (1995) and Mudholkar and Hutson (1996) for exponentiated Weibull distribution, Gupta et al.
(1998) for exponentiated Pareto distribution, Gupta and Kundu (2001) for exponentiated exponential
distribution, Nadarajah and Gupta (2007) for exponentiated gamma distribution and, more recently,
Lemonte and Cordeiro (2011) for exponentiated generalized inverse Gaussian distribution.

Expanding the binomial term in (5) yields the McG density function as a linear combination of
exponentiated-G densities, namely

f(x) =
∞∑

i=0

wi ha(i+c)(x), (9)

where ha (i+c)(x) denotes the density function of the Expa(i+c)(G) distribution and

wi =
(−1)i

(
b
i

)

(a + i) B(a, b + 1)
.

We can derive some of the McG properties from the linear combination (9) and those corresponding
properties of exponentiated-G distributions.

An expansion for (6) can be derived using the concept of exponentiated inverted beta (EIB)
distributions. We define a random variable X having the EIB distribution with parameters α, β and
a > 0, say X ∼ EIB(α, β, a), if its cdf and pdf are given by

Ha(x) = I x
1+x

(α, β)a and ha(x) =
a xα−1

B(α, β)(1 + x)α+β
I x

1+x
(α, β)a−1.

The McIB density function is then a linear combination of EIB(α, β, a(i + c)) density functions.
We can expand I x

1+x
(α, β)a−1 as

I x
1+x

(α, β)a−1 =
∞∑

r=0

sr(a− 1) I x
1+x

(α, β)r, (10)

where

sr(a− 1) =
∞∑

j=r

(−1)r+j

(
a− 1

j

) (
j

r

)
. (11)
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Thus, from equations (1), (9) and (10), we can write

f(x) =
∞∑

r=0

er xα−1

(1 + x)α+β
I x

1+x
(α, β)r, (12)

where

er = aB(α, β)−1
∞∑

i=0

(c + i) wi sr(a(i + c)− 1). (13)

The incomplete beta function expansion for β real non-integer

Ix(α, β) =
xα

B(α, β)

∞∑

m=0

(1− β)m xm

(α + m) m!
,

where (f)k = Γ(f + k)/Γ(f) is the ascending factorial, can be expressed as

I x
1+x

(α, β) =
∞∑

m=0

dm xα+m

(1 + x)α+m
,

where dm = (1−β)m/[(α+m) m! B(α, β)]. Further, we use an equation in Section 0.314 of Gradshteyn
and Ryzhik (2007) for a power series raised to a positive integer r given by

( ∞∑

m=0

dm zm

)r

=
∞∑

m=0

pr,m zm, (14)

where the coefficients pr,m (for m = 1, 2, . . .) can be obtained from the recurrence equation

pr,m = (md0)−1
m∑

k=1

(r k − i + k) dk pr,m−k, (15)

and pr,0 = dr
0. The coefficient pr,m can be determined from pr,0, . . . , pr,m−1 and then from d0, . . . , di.

Clearly, pr,m can be written explicitly in terms of the quantities dm, although it is not necessary for
programming numerically our expansions in any algebraic or numerical software. From equations (12)
and (14), we can write

f(x) =
∞∑

r,m=0

tr,m gα?,β(x). (16)

Here, α? = α?(r,m) = (r + 1)α + m, gα?,β(x) denotes the IB(α?, β) density function given by (1) and
the coefficients tr,m are calculated from (13) and (15) as

tr,m =
a pr,m B((r + 1) α + m,β)

B(α, β)

∞∑

i=0

(c + i) wi sr(a(i + c)− 1).

Equation (16) reveals that the McIB density function is a double linear combination of IB density
functions. So, some mathematical properties of the McIB distribution immediately follow from those
of the IB properties.
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4 Moments

From now on, let X ∼ McIB(α, β, a, b, c). We derive a simple representation for the sth moment
µ′s = E(Xs). For s < β, we can write from (16)

µ′s =
∞∑

r,m=0

tr,m
B((r + 1)α + m + s, β − s)

B((r + 1)α + m,β)
. (17)

The moments of the BIB and KwIB distributions are obtained from (17) when c = 1 and a = c,
respectively. Further, the central moments (µs) and cumulants (κs) of X can be expressed from (17)
as

µs =
p∑

k=0

(
s

k

)
(−1)k µ′s1 µ′s−k and κs = µ′s −

s−1∑

k=1

(
s− 1
k − 1

)
κk µ′s−k,

respectively, where κ1 = µ′1. Thus, κ2 = µ′2 − µ′21 , κ3 = µ′3 − 3µ′2µ
′
1 + 2µ′31 , etc. The pth descending

factorial moment of X is

µ′(p) = E[X(p)] = E[X(X − 1)× · · · × (X − p + 1)] =
p∑

m=0

s(p,m) µ′m,

where s(r,m) = (m!)−1[dmm(r)/dxm]x=0 is the Stirling number of the first kind. Other kinds of
moments related to the L-moments (Hosking, 1990) may also be obtained in closed form, but we
consider only these moments for reasons of space.

5 Generating function

Here, we provide three representations for the mgf of X, say M(t) = E{exp(tX)}. First, we require
the Meijer G-function defined by

Gm,n
p,q

(
x

∣∣∣∣
a1, . . . , ap

b1, . . . , bq

)
=

1
2πi

∫

L

H1(m, n, aj , bj , t)
H2(n,m, p, q, aj , bj , t)

x−tdt,

with

H1(m,n, aj , bj , t) =
m∏

j=1

Γ(bj + t)
n∏

j=1

Γ(1− aj − t),

H2(n,m, p, q, aj , bj , t) =
p∏

j=n+1

Γ (aj + t)
q∏

j=m+1

Γ (1− bj − t) ,

where i =
√−1 is the complex unit and L denotes an integration path (see, Gradshteyn and Ryzhik,

2007, § 9.3). The Meijer G-function contains many integrals with elementary and special functions.
Some of these integrals are included in Prudnikov et al. (1986).

For α > 0 and t > 0, we have the following result (Prudnikov et al., 1990)

∫ ∞

0
exp(−t x) xα−1 (1 + x)νdx = Γ(−ν) tα G1,2

2,1

(
t−1

∣∣∣∣∣
(1− α), (ν + 1)
0

)
.
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Hence, for t > 0, M(−t) = E{exp(−tX)} can be expressed from the previous integral and (16) as

M(−t) =
∞∑

r,m=0

Ar,m t(r+1)α+m G1,2
2,1

(
t−1

∣∣∣∣∣
(1− (r + 1)α−m), (1− (r + 1)α−m− β)
0

)
, (18)

where

Ar,m = tr,m
Γ((r + 1)α + m + β)2

Γ((r + 1)α + m) Γ(β)
.

A second representation for the mgf Mα,β(t) of the IB distribution follows from (1) by a simple
transformation u = x/(1 + x). We obtain

Mα,β(t) =
1

B(α, β)

∫ 1

0
exp{t u/(1− u)}uα−1(1− u)β−1du.

By expanding the binomial term and setting v = 1− u, we have

Mα,β(t) =
1

B(α, β)

∞∑

j=0

(−1)j

(
α− 1

j

) ∫ 1

0
exp{t (1− v)/v} vβ+j−1dv.

We can use MAPLE to calculate the above integral for t < 0 as

Mα,β(t) =
−e−t

B(α, β)

∞∑

j=0

(−1)j

(
α− 1

j

)
(−t)β+j

×
[
π csc(π(β + j))
Γ(β + j + 1)

+ Γ(−β − j)− Γ(−β − j,−t)
]

,

where Γ(a, x) =
∫∞
x wa−1 e−wdw is the complementary incomplete gamma function. So, the mgf of X

can be expressed from (16) as

M(t) =
∞∑

r,m=0

tr,m M(r+1)α+m,β(t).

It can be further reduced (for t < 0) to

M(t) = −e−t
∞∑

j=0

(−1)j (−t)β+j hj

[
π csc(π(β + j))
Γ(β + j + 1)

+ Γ(−β − j)− Γ(−β − j,−t)
]

, (19)

where hj =
∑∞

r,m=0
tr,m

B((r+1)α+m,β)

(
(r+1)α+m−1

j

)
.

Finally, a third representation for M(t) can be obtained using the WhittakerM (“WM” for short)
function defined by

WM(p, q, y) = e−y/2 yq+1/2
1F1(q − p + 1/2, 1 + 2q; y),

where

1F1(p, q; y) =
Γ(q)
Γ(p)

∞∑

j=0

Γ(p + j)
Γ(q + j)

yj

j!
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is the confluent hypergeometric function. For any real t, direct integration using MAPLE gives

M(t) = −Γ(a + b)−1 e−t/2
[
−(b− 1)−1 (a + b− t) tb/2−1 Γ(a) Γ(b)WM(a + b/2, (1− b)/2, t)

+ (b− 1)−1 (a + 1) tb/2−1 Γ(a) Γ(b)WM(a + b/2 + 1, (1− b)/2, t)

− (−1)b (b + 1)−1 (t− a) tb/2−1 Γ(a + b) Γ(−b)WM(a + b/2, (b + 1)/2, t)

− (−1)b (b + 1)−1 (1 + a + b) tb/2−1 Γ(a + b) Γ(−b)WM(a + b/2 + 1, (b + 1)/2, t)
]
.

(20)

Equations (18)-(20) are the main results of this section.

6 Quantile Measures

The McIB quantile function, say Q(u) = F−1(u), can be determined from the beta quantile function
as given in (8). The effects of the shape parameters a, b and c on the skewness and kurtosis can be
considered based on quantile measures. The shortcomings of the classical kurtosis measure are well-
known. The Bowley skewness (Kenney and Keeping, 1962) is one of the earliest skewness measures
defined by the average of the quartiles minus the median, divided by half the interquartile range,
namely

B =
Q(3/4) + Q(1/4)− 2Q(1/2)

Q(3/4)−Q(1/4)
.

Since only the middle two quartiles are considered and the outer two quartiles are ignored, this adds
robustness to the measure. The Moors kurtosis (Moors, 1998) is based on octiles

M =
Q(3/8)−Q(1/8) + Q(7/8)−Q(5/8)

Q(6/8)−Q(2/8)
.

Clearly, M > 0 and there is good concordance with the classical kurtosis measures for some distribu-
tions. For the normal distribution, B = M = 0. These measures are less sensitive to outliers and they
exist even for distributions without moments. Because M is based on the octiles, it is not sensitive
to variations of the values in the tails or to variations of the values around the median. The basic
justification of M as an alternative measure of kurtosis is the following: keeping Q(6/8) − Q(2/8)
fixed, M clearly decreases as Q(3/8)−Q(1/8) and Q(7/8)−Q(5/8) decrease. If Q(3/8)−Q(1/8) → 0
and Q(7/8)−Q(5/8) → 0, then M → 0 and half of the total probability mass is concentrated in the
neighborhoods of the octiles Q(2/8) and Q(6/8).

In Figures 3, 4 and 5, we plot the measures B and M for some parameter values. These plots
indicate that both measures B and M depend on all shape parameters. Figure 5 shows clearly that
they can be very sensitive to the extra third parameter c even in the case when a = b.

7 Mean Deviations

The deviations from the mean and from the median can be used as a measure of spread in a population.
We can derive the mean deviations about the mean and about the median from the relations δ1(X) =

11
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Figure 3: Plots of the measure B for some parameter values. (a) For values α = 1.5, β = 1.0 and
b = 0.5. (b) For values α = 1.5, β = 1.0 and a = 1.5.
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Figure 4: Plots of the measure M for some parameter values. (a) For values α = 1.5, β = 1.0 and
b = 0.5. (b) For values α = 1.5, β = 1.0 and a = 1.5.
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Figure 5: Plots of the measures B (a) and M (b) for some parameter values with α = 1.5 and β = 1.0.

E(|X − µ′1|) and δ2(X) = E(|X −m|), respectively, where the mean µ′1 = E(X) comes from (17) and
the median m can be obtained from (8) as m = Q(1/2). These measures can be expressed as

δ1(X) = 2µ′1 F (µ′1)− 2J(µ′1) and δ2(X) = µ′1 − 2J(m),

where J(q) =
∫ q
0 x f(x)dt. In what follows, we obtain an expression for the integral J(q). We can

write from (16)

∫ q

0
x f(x)dx =

∞∑

r,m=0

tr,m
B(α? + 1, β − 1)

B(α?, β)

∫ q

0
gα?+1,β−1(x)dx.

But ∫ q

0
gα?+1,β−1(x)dx = I q

1+q
(α? + 1, β − 1),

and then

J(q) =
∞∑

r,m=0

tr,m
B(α? + 1, β − 1)

B(α?, β)
I q

1+q
(α? + 1, β − 1).

The result

I q
1+q

(α? + 1, β − 1) =
qα?+1

(α? + 1)B(α? + 1, β − 1) 2F1 (α? + 1, α? + β; α? + 2;−q) ,

allows us to write J(q) as

J(q) =
∞∑

r,m=0

tr,m qα?+1

(α? + 1)B(α?, β) 2F1 (α? + 1, α? + β; α? + 2;−q) .

The mean deviations can be applied to obtain the Lorenz and Bonferroni curves which are important
in some fields (economics, reliability, demography, insurance and medicine). They are defined (for a
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given probability π), by L(π) = J(q)/µ′1 and B(π) = J(q)/(π µ′1), respectively, where q = Q(π) is
determined from (8). In economics, if π = F (q) is the proportion of units whose income is lower than
or equal to q, L(π) gives the proportion of total income volume accumulated by the set of units with
an income lower than or equal to q. The Lorenz curve is increasing and convex and given the mean
income, the density function of X can be obtained from the curvature of L(π). In a similar manner,
the Bonferroni curve B(π) gives the ratio between the mean income of this group and the mean income
of the population. In summary, L(π) yields fractions of the total income, while the values of B(π)
refer to relative income levels.

8 Entropy

The entropy of a random variable X with density function f(x) is a measure of variation of the
uncertainty. The Rényi entropy is defined by

IR(δ) = (1− δ)−1 log
{∫ ∞

−∞
f(x)δdx

}
,

where δ > 0 and δ 6= 1. Entropy has been used in various situations in science and engineering. For
further details, the reader is referred to Song (2001).

If X ∼McIB(α, β, a, b, c), we can show by using the binomial expansion and the results derived in
Section 3 that

I x
1+x

(α, β)δ(a−1)

[
1− I x

1+x
(α, β)c

]δ(1−b)
=

∞∑

r,j=0

(−1)j

(
δ(b− 1)

j

)
sr(δ(a− 1) + cj)

∞∑

m=0

νr,m xαr+m

(1 + x)αr+m
,

where νr,m can be obtained from the recurrence equation νr,m = (md0)−1
∑m

k=1 (rk− i+k) dk νr,m−k,
νr,0 = dr

0, dk = (1−β)k/[(α + k) k! B(α, β)] and sr(·) is defined in (11). Hence, after some algebra, we
can write

f(x)δ =
cδ B(α, β)−δ

B(ac−1, b)δ

∞∑

r,j,m=0

(−1)j

(
δ(b− 1)

j

)
sr(δ(a− 1) + cj) νr,m B(α∗, β∗) gα∗,β∗(x),

where α∗ = δ(α − 1) + αr + m + 1, β∗ = δ(β + 1) − 1 and gα∗,β∗(x) denotes the IB(α∗, β∗) density
function given by (1). Then, we have

IR(δ) = (1− δ)−1 log
{

cδ B(α, β)−δ

B(ac−1, b)δ

∞∑

r,m=0

fr νr,m B(α∗, β∗)
}

,

where

fr =
∞∑

j=0

(−1)j

(
δ(b− 1)

j

)
sr(δ(a− 1) + cj).

9 Reliability

In the context of reliability, the stress-strength model describes the life of a component which has a
random strength X1 that is subjected to a random stress X2. The component fails at the instant
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that the stress applied to it exceeds the strength, and the component will function satisfactorily
whenever X1 > X2. Hence, R = Pr(X2 < X1) is a measure of component reliability which has
many applications in engineering. Here, we derive the reliability R when X1 and X2 have indepen-
dent McIB(α, β, a1, b1, c1) and McIB(α, β, a2, b2, c2) distributions, respectively, with the same baseline
parameters α and β.

The pdf of X1 and the cdf of X2 can be written from (16) as

f1(x) =
∞∑

r,m=0

t(1)
r,m gα?

1,β(x) and F2(x) =
∞∑

k,l=0

t
(2)
k,l Gα?

2,β(x),

where α?
1 = (r + 1)α + m, α?

2 = (k + 1)α + l, gα?
1,β(x) denotes the IB(α?

1, β) density function given by
(1) and Gα?

2,β(x) denotes the IB(α?
2, β) cumulative function given by (2). Here,

t(1)
r,m =

a1 pr,m B((r + 1)α + m,β)
B(α, β)

∞∑

i=0

(c1 + i) w
(1)
i sr(a1(i + c1)− 1),

t
(2)
k,l =

a2 pk,l B((k + 1)α + l, β)
B(α, β)

∞∑

i=0

(c2 + i) w
(2)
i sk(a2(i + c2)− 1),

w
(1)
i =

(−1)i
(
b1
i

)

(a1 + i) B(a1, b1 + 1)
, w

(2)
i =

(−1)i
(
b2
i

)

(a2 + i) B(a2, b2 + 1)
,

where sr(·) and pr,m are given by (11) and (15), respectively. We have

R =
∫ ∞

0
f1(x) F2(x) dx

and then

R =
∞∑

r,m,k,l=0

t(1)
r,m t

(2)
k,l

∫ ∞

0
gα?

1,β(x) Gα?
2,β(x)dx.

After some algebra, we obtain

∫ ∞

0
gα?

1,β(x) Gα?
2,β(x)dx =

∞∑

n=0

d?
n B(α?

1 + α?
2 + n, β)

B(α?
1, β)

,

where d?
n = (1− β)n/[(α?

2 + n) n! B(α?
2, β)]. Finally, R reduces to the form

R =
∞∑

r,m,k,l=0

t(1)
r,m t

(2)
k,l

∞∑

n=0

d?
n B(α?

1 + α?
2 + n, β)

B(α?
1, β)

.

10 Estimation and Inference

Let x = (x1, . . . , xn)> be a random sample of size n from the McIB distribution with unknown pa-
rameter vector θ = (α, β, a, b, c)>. We consider estimation by the method of maximum likelihood.
However, some of the other estimators like the percentile estimators, estimators based on order statis-
tics, weighted least squares and estimators based on L-moments can also be explored. The total
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log-likelihood function for θ is

`(θ) = n log(c)− n log(B(α, β))− n log(B(ac−1, b)) + (α− 1)
n∑

i=1

log(xi)

− (α + β)
n∑

i=1

log(1 + xi) + (a− 1)
n∑

i=1

log(żi) + (b− 1)
n∑

i=1

log(1− żc
i ),

where żi = I xi
1+xi

(α, β) for i = 1, . . . , n. The components of the score vector Uθ = (Uα, Uβ, Ua, Ub, Uc)>

are obtained by taking the partial derivatives of the log-likelihood function with respect to the five
parameters. After some algebra, we obtain

Uα = n(ψ(α + β)− ψ(α)) +
n∑

i=1

log(xi)−
n∑

i=1

log(1 + xi)

+ (a− 1)
n∑

i=1

ẇi + (ψ(α + β)− ψ(α))żi

żi

− c(b− 1)
n∑

i=1

żc−1
i [ẇi + (ψ(α + β)− ψ(α))żi]

1− żc
i

,

Uβ = n(ψ(α + β)− ψ(β))−
n∑

i=1

log(1 + xi)

+ (a− 1)
n∑

i=1

ẏi + (ψ(α + β)− ψ(β))żi

żi

− c(b− 1)
n∑

i=1

żc−1
i [ẏi + (ψ(α + β)− ψ(β))żi]

1− żc
i

,

Ua =
nψ(a/c + b)

c
− nψ(a/c)

c
+

n∑

i=1

log(żi),

Ub = n(ψ(a/c + b)− ψ(b)) +
n∑

i=1

log(1− żc
i ),

Uc =
n

c
+

na

c2

(
ψ(a/c)− ψ(a/c + b)

)− (b− 1)
n∑

i=1

żc
i log(żi)
1− żc

i

.

Here, ψ(·) is the digamma function, ẇi = İ
(0)

xi
1+xi

(α, β) and ẏi = İ
(1)

xi
1+xi

(α, β), for i = 1, . . . , n, and

İ
(k)

xi
1+xi

(α, β) =
1

B(α, β)

∫ xi
1+xi

0
[log(w)]1−k[log(1− w)]kwα−1(1− w)β−1dw.

The maximum likelihood estimate (MLE) θ̂ = (α̂, β̂, â, b̂, ĉ)> of θ = (α, β, a, b, c)> is obtained
by setting Uα = Uβ = Ua = Ub = 0 = Uc = 0 and solving these equations numerically using
iterative techniques such as a Newton–Raphson type algorithm. The Broyden–Fletcher–Goldfarb–
Shanno (BFGS) method (see, for example, Nocedal and Wright, 1999; Press et al., 2007) with analytical
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derivatives has been used for maximizing the log-likelihood function `(θ). After fitting the model, the
survival function can be readily estimated (for i = 1, . . . , n) by

Ŝ(xi) = 1− I
I xi
1+xi

(α̂,β̂)ĉ(â/ĉ, b̂).

Approximate confidence intervals and hypothesis tests on the parameters α, β, a, b and c can be
constructed using the normal approximation for the MLE of θ. Under conditions that are fulfilled
for the parameters in the interior of the parameter space, we have

√
n(θ̂ − θ) A∼ N5(0, K−1

θ ), where
A∼ means approximately distributed and Kθ is the unit expected information matrix. We have the
asymptotic result Kθ = limn→∞ n−1Jn(θ), where Jn(θ) is the observed information matrix. The
average matrix evaluated at θ̂, say n−1Jn(θ̂), can estimate Kθ. The observed information matrix
Jn(θ) = −∂2`(θ)/∂θ∂θ> is given in the Appendix. The multivariate normal N5(0, Jn(θ̂)−1) dis-
tribution can be used to construct approximate confidence intervals and confidence regions for the
parameters. In fact, asymptotic 100(1−η)% confidence intervals for α, β, a, b and c are given, respec-
tively, by α̂± zη/2 × [v̂ar(α̂)]1/2, β̂ ± zη/2 × [v̂ar(β̂)]1/2, â± zη/2 × [v̂ar(â)]1/2, b̂± zη/2 × [v̂ar(̂b)]1/2 and
ĉ±zη/2× [v̂ar(ĉ)]1/2, where var(·) is the diagonal element of Jn(θ̂)−1 corresponding to each parameter,
and zη/2 is the quantile (1− η/2) of the standard normal distribution.

We can compute the maximum values of the unrestricted and restricted log-likelihood functions
to obtain the likelihood ratio (LR) statistics for testing some sub-models of the McIB distribution.
For example, we can use the LR statistic to check if the fit using the McIB distribution is statistically
“superior” to a fit using the BIB distribution for a given data set. We consider the partition θ =
(θ>1 , θ>2 )> of the parameter vector of the McIB distribution, where θ1 is a subset of parameters of
interest and θ2 is a subset of the remaining parameters. The LR statistic for testing the null hypothesis
H0 : θ1 = θ

(0)
1 against the alternative hypothesis H1 : θ1 6= θ

(0)
1 is given by w = 2{`(θ̂) − `(θ̃)},

where θ̂ and θ̃ are the MLEs under the alternative and null hypotheses, respectively, and θ
(0)
1 is a

specified parameter vector. The statistic w is asymptotically (n →∞) distributed as χ2
k, where k is the

dimension of the subset θ1 of interest. Then, we can compare the McIB model against the BIB model by
testingH0 : c = 1 versusH1 : c 6= 1 and the LR statistic becomes w = 2{`(α̂, β̂, â, b̂, ĉ)−`(α̃, β̃, ã, b̃, 1)},
where α̂, β̂, â, b̂ and ĉ are the MLEs under H1 and α̃, β̃, ã and b̃ are the MLEs under H0.

11 Application

We provide an application of the McIB distribution and their sub-models: BIB, KwIB, EIB, LeIB and
IB distributions. We compare the results of the fits of these models. We shall consider the real data
set corresponding to daily ozone concentrations in New York during May-September, 1973. They were
provided by the New York State Department of Conservation and are reported in Nadarajah (2008).
All the computations were done using the Ox matrix programming language (Doornik, 2006) which is
freely distributed for academic purposes and available at http://www.doornik.com.

Table 1 lists the MLEs (and the corresponding standard errors in parentheses) of the model pa-
rameters and the following statistics: AIC (Akaike Information Criterion), BIC (Bayesian Information
Criterion) and HQIC (Hannan–Quinn Information Criterion). These results show that the BIB distri-
bution has the lowest AIC, BIC and HQIC values among all fitted models, and so it could be chosen
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as the best model. Additionally, it is evident that the IB distribution presents the worst fit to the
current data and that the proposed models outperform this distribution. In order to assess if the
model is appropriate, the Kaplan–Meier (K-M) estimate and the estimated survival functions of the
fitted McIB, BIB, KwIB, EIB, LeIB and IB distributions are shown in Figure 6. From these plots, we
can conclude that the McIB and BIB models yield the best fits and hence can be adequate for these
data. Again, the IB model presents the worst fit to the data.

Table 1: MLEs (standard errors in parentheses) and the measures AIC, BIC and HQIC.
Estimates Statistic

Distribution α β a b c AIC BIC HQIC

McIB 248.4614 0.0901 0.1044 12573.5 1.8889 1071.70 1085.42 1077.27
(37.620) (0.0888) (0.0177) (31.460) (0.4946)

BIB 559.3609 0.0189 0.0487 12573.1 1069.78 1080.76 1074.23
(28.318) (0.0054) (0.0050) (5190.8)

KwIB 3166.72 17.9265 0.0105 0.9149 1075.84 1086.82 1080.30
(1.0014) (1.0230) (0.0015) (0.1606)

EIB 3167.95 16.6888 0.0109 1074.96 1083.20 1078.31
(36.833) (0.9992) (0.0011)

LeIB 25.3831 0.0052 448.962 1080.55 1088.79 1083.89
(2.9312) (0.0009) (36.615)

IB 41.6087 1.7771 1083.34 1088.83 1085.57
(5.7768) (0.2160)
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Figure 6: Empirical survival and estimated survival functions of the McIB, BIB, KwIB, EIB, LeIB
and IB distributions.

18



Further, we compare these models using two other criteria. First, we consider LR statistics and
then formal goodness-of-fit tests. The McIB model includes some sub-models (described in Section
2) thus allowing their evaluation relative to each other and to a more general model. As mentioned
before, we can compute the maximum values of the unrestricted and restricted log-likelihoods to obtain
LR statistics for testing some McIB sub-models. The values of the LR statistics are listed in Table 2.
From the figures in this table, we conclude that there is no difference among the fitted McIB, BIB,
KwIB and EIB models to the current data. In addition, these models provide a better representation
for the data than the IB model based on the LR test at the 5% significance level.

Table 2: LR tests.
Model w p-value

McIB versus BIB 0.0757 0.7832

McIB versus KwIB 6.1425 0.0132

McIB versus EIB 7.2639 0.0265

McIB versus LeIB 12.8507 0.0016

McIB versus IB 17.6374 0.0005

BIB versus EIB 7.1882 0.0073

BIB versus LeIB 12.7750 0.0004

BIB versus IB 17.5617 0.0002

KwIB versus EIB 1.1214 0.2896

KwIB versus LeIB 6.7083 0.0096

KwIB versus IB 11.4949 0.0032

EIB versus IB 10.3735 0.0013

LeIB versus IB 4.7866 0.0287

Now, we apply formal goodness-of-fit tests in order to verify which distribution fits better to these
data. We consider the Cramér–von Mises (W ∗) and Anderson–Darling (A∗) statistics. The statistics
W ∗ and A∗ are described in details in Chen and Balakrishnan (1995). In general, the smaller the
values of these statistics, the better the fit to the data. Let H(x; θ) be the cdf, where the form of
H is known but θ (a k-dimensional parameter vector, say) is unknown. To obtain the statistics W ∗

and A∗, we can proceed as follows: (i) Compute vi = H(xi; θ̂), where the xi’s are in ascending order,
and then yi = Φ−1(vi), where Φ(·) is the standard normal cdf and Φ−1(·) its inverse; (ii) Compute
ui = Φ{(yi − ȳ)/sy}, where ȳ = (1/n)

∑n
i=1 yi and s2

y = (n− 1)−1
∑n

i=1(yi − ȳ)2; (iii) Calculate W 2 =∑n
i=1{ui−(2i−1)/(2n)}2+1/(12n) and A2 = −n−(1/n)

∑n
i=1{(2i−1) ln(ui)+(2n+1−2i) ln(1−ui)}

and then W ∗ = W 2 (1 + 0.5/n) and A∗ = A2 (1 + 0.75/n + 2.25/n2). The values of the statistics W ∗

and A∗ for all models are listed in Table 3. Based on these statistics, we conclude that the BIB model
fits the current data better than the other models. Additionally, all the proposed models outperform
the IB model according to these statistics.

We also fit for the sake of comparison the Birnbaum–Saunders (BS), gamma and Weibull models
to the data. The density functions of the BS, gamma and Weibull distributions are (for x > 0)

f(x) =
1

2
√

2παβ

[(
β

x

)1/2

+
(

β

x

)3/2]
exp

{
− 1

2α2

(
x

β
+

β

x
− 2

)}
,
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Table 3: Goodness-of-fit tests.
Statistic

Distribution W ∗ A∗

McIB 0.02820 0.17537

BIB 0.02669 0.17217

KwIB 0.05896 0.44217

EIB 0.06272 0.47069

LeIB 0.10039 0.74268

IB 0.13965 1.01826

f(x) =
βα

Γ(α)
xα−1 exp(−βx) and f(x) = α β xα−1 exp(−βxα),

respectively, with α > 0 and β > 0. The MLEs (standard errors in parentheses) and the statistics
W ∗ and A∗ are listed in Table 4. Based on the statistics W ∗ and A∗, the BS model presents the

Table 4: MLEs (standard errors in parentheses) and the measures W ∗ and A∗.
Estimates Statistic

Distribution α β W ∗ A∗

BS 0.8555 31.0439 0.04939 0.35286

(0.0564) (2.2542)

Gamma 1.8102 0.0426 0.15794 0.92646

(0.2203) (0.0060)

Weibull 1.3720 0.0051 0.20885 1.20586

(0.0976) (0.0021)

best fit. On the other hand, according to these statistics, the McIB and BIB models outperform the
BS model (compare the figures in Tables 3 and 4) and the new models outperform the gamma and
Weibull models. So, the proposed distributions can yield a better fit than the BS, gamma and Weibull
models and therefore may be an interesting alternative to these distributions for modeling positive
real data sets.

In summary, the new McIB distribution (and their sub-models) produce better fits for the current
data than the IB distribution. Additionally, among all the proposed models, the BIB distribution
presents the best fit and should be chosen, since it yields the lowest AIC, BIC and HQIC values (see
Table 1) and the lowest W ∗ and A∗ values (see Table 3). These results illustrate the potentiality of
the new distribution (and their sub-models) and the necessity of the additional shape parameters.

12 Concluding remarks

We propose a new five-parameter distribution, called the McDonald inverted beta (McIB) distribution,
and study some of its general structural properties. This distribution has the support on the positive
real line and it can be used to analyze lifetime data. We provide expansions for the density function,
moments, generating function, mean deviations, entropy and reliability. The parameter estimation is
approached by maximum likelihood and the observed information matrix is derived. The usefulness of
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the new model is illustrated in an application to real data using likelihood ratio statistics and goodness-
of-fit tests. In a real application, we show that the proposed model is a very competitive model to
the Birnbaum–Saunders, gamma and Weibull distributions. The formulae related with the new model
are manageable and may turn into adequate tools comprising the arsenal of applied statisticians. The
McIB model has the potential to attract wider applications in survival analysis.
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Appendix

The observed information matrix for the parameter vector θ = (α, β, a, b, c)> is

Jn(θ) = − ∂2`(θ)
∂θ∂θ>

= −




Uαα Uαβ Uαa Uαb Uαc

· Uββ Uβa Uβb Uβc

· · Uaa Uab Uac

· · · Ubb Ubc

· · · · Ucc




,

whose elements are, after extensive algebraic manipulations, given by

Uαα = −nψ′α + (a− 1)
n∑

i=1

ẅi − 2ψαẇi + ψ2
αżi − ψ′αżi

żi
− (a− 1)

n∑

i=1

ẇi(ẇi − ψαżi)
ż2
i

+ (a− 1)ψα

n∑

i=1

ẇi − ψαżi

żi
− c2(b− 1)

n∑

i=1

żc−2
i (ẇi − ψαżi)2

1− żc
i

− c(b− 1)
n∑

i=1

żc−1
i (ẅi − 2ψαẇi + ψ2

αżi − ψ′αżi)
1− żc

i

+ c(b− 1)
n∑

i=1

żc−2
i ẇi(ẇi − ψαżi)

1− żc
i

− c(b− 1)ψα

n∑

i=1

żc−1
i (ẇi − ψαżi)

1− żc
i

− c2(b− 1)
n∑

i=1

ż
2(c−1)
i (ẇi − ψαżi)2

(1− żc
i )2

,
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Uαβ = nψ′(α + β) + (a− 1)
n∑

i=1

ẇi − ψβẇi − ψαẏi + ψαψβ żi + ψ′(α + β)żi

żi

− (a− 1)
n∑

i=1

ẏi(ẇi − ψαżi)
ż2
i

+ (a− 1)ψβ

n∑

i=1

ẇi − ψαżi

żi

− c2(b− 1)
n∑

i=1

żc−2
i (ẏi − ψβ żi)(ẇi − ψαżi)

1− żc
i

− c(b− 1)
n∑

i=1

żc−1
i (ẏi − ψβẇi − ψαẏi + ψαψβ żi + ψ′(α + β)żi)

1− żc
i

+ c(b− 1)
n∑

i=1

żc−2
i ẏi(ẇi − ψαżi)

1− żc
i

− c(b− 1)ψβ

n∑

i=1

żc−1
i (ẇi − ψαżi)

1− żc
i

− c2(b− 1)
n∑

i=1

ż
2(c−1)
i (ẏi − ψβ żi)(ẇi − ψαżi)

(1− żc
i )2

,

Uαa =
n∑

i=1

ẇi − ψαżi

żi
, Uαb = −c

n∑

i=1

żc−1
i (ẇi − ψαżi)

1− żc
i

,

Uαc = −(b− 1)
n∑

i=1

żc−1
i (ẇi − ψαżi)(1 + c log(żi))

1− żc
i

,

Uββ = −nψ′β + (a− 1)
n∑

i=1

ÿi − 2ψβ ẏi + ψ2
β żi − ψ′β żi

żi
− (a− 1)

n∑

i=1

ẏi(ẏi − ψβ żi)
ż2
i

+ (a− 1)ψβ

n∑

i=1

ẏi − ψβ żi

żi
− c2(b− 1)

n∑

i=1

żc−2
i (ẏi − ψβ żi)2

1− żc
i

− c(b− 1)
n∑

i=1

żc−1
i (ÿi − 2ψβ ẏi + ψ2

β żi − ψ′β żi)
1− żc

i

+ c(b− 1)
n∑

i=1

żc−2
i ẏi(ẏi − ψβ żi)

1− żc
i

− c(b− 1)ψβ

n∑

i=1

żc−1
i (ẏi − ψβ żi)

1− żc
i

− c2(b− 1)
n∑

i=1

ż
2(c−1)
i (ẏi − ψβ żi)2

(1− żc
i )2

,

Uβa =
n∑

i=1

ẏi − ψβ żi

żi
, Uβb = −c

n∑

i=1

żc−1
i (ẏi − ψβ żi)

1− żc
i

,

Uαc = −(b− 1)
n∑

i=1

żc−1
i (ẏi − ψβ żi)(1 + c log(żi))

1− żc
i

,

Uaa = − n

c2

(
ψ′(a/c)− ψ′(b + a/c)

)
, Uab =

nψ′(a/c + b)
c

,

Uac =
n

c2

(
ψ(a/c)− ψ(b + a/c)

)
+

na

c3

(
ψ′(a/c)− ψ′(b + a/c)

)
,

Ubb = n
(
ψ′(b + a/c)− ψ′(b)

)
, Ubc = −naψ′(b + a/c)

c2
−

n∑

i=1

żc
i log(żi)
1− żc

i

,

Ucc = − n

c2
− 2naψ(a/c)

c3
− na2ψ′(a/c)

c4
+

2naψ(b + a/c)
c3

+
na2ψ′(b + a/c)

c4
− (b− 1)

n∑

i=1

żc
i [log(żi)]2

(1− żc
i )2

,
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where ψ′(·) is the trigamma function, ψα = ψ(α)− ψ(α + β), ψβ = ψ(β)− ψ(α + β), ψ′α = ψ′(α)− ψ′(α + β),
ψ′β = ψ′(β)− ψ′(α + β), ẅi = Ï

(0)
xi

1+xi

(α, β), ÿi = Ï
(1)

xi
1+xi

(α, β), for i = 1, . . . , n, with

Ï
(k)

xi
1+xi

(α, β) =
1

B(α, β)

∫ xi
1+xi

0

[log(w)]2(1−k)[log(1− w)]2kwα−1(1− w)β−1dw,

and żi, ẇi and ẏi were defined in Section 10.
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