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Abstract

For the first time, we introduce a generalized form of the exponentiated generalized gamma
distribution (Cordeiro et al., 2010) that is the baseline for the log-exponentiated generalized
gamma regression model. The new distribution can accommodate increasing, decreasing, bath-
tub and unimodal shaped hazard functions. A second advantage is that it includes classical
distributions reported in lifetime literature as special cases. We obtain explicit expressions for
the moments of the baseline distribution of the new regression model. The proposed model
can be applied to censored data since it includes as sub-models several widely-known regression
models. It therefore can be used more effectively in the analysis of survival data. We obtain
maximum likelihood estimates for the model parameters by considering censored data. We show
that our extended regression model is very useful by means of two applications to real data.

Keywords: Censored data; Exponentiated generalized gamma distribution; Log-gamma genera-
lized regression; Survival function.

1 Introduction

Standard lifetime distributions usually present very strong restrictions to produce bathtub
curves, and thus appear to be unappropriate for interpreting data with this characteristic. The
gamma distribution is the most popular model for analyzing skewed data. The generalized gamma

1Address for correspondence: Departamento de Ciências Exatas, ESALQ/USP, Av. Pádua Dias 11 - Caixa Postal
9, 13418-900, Piracicaba - São Paulo - Brazil. e-mail: edwin@esalq.usp.br
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distribution (GG) was introduced by Stacy (1962) and includes as special sub-models: the exponen-
tial, Weibull, gamma and Rayleigh distributions, among others. The GG distribution is suitable
for modeling data with hazard rate function of different forms: increasing, decreasing, bathtub
and unimodal, which makes it useful for estimating individual hazard functions as well as both
relative hazards and relative times (Cox, 2008). Recently, the GG distribution has been used in
several research areas such as engineering, hydrology and survival anlaysis. Ortega et al. (2003)
discussed influence diagnostics in GG regression models, Nadarajah and Gupta (2007) used this
distribution with application to drought data, Cox et al. (2007) presented a parametric survival
analysis and taxonomy of GG hazard functions and Ali et al. (2008) derived the exact distribu-
tions of the product X1X2 and the quotient X1/X2, when X1 and X2 are independent GG random
variables providing applications of their results to drought data from Nebraska. Further, Gomes
et al. (2008) focused on the parameter estimation, Ortega et al. (2008) compared three types of
residuals based on the deviance component in GG regression models under censored observations,
Cox (2008) discussed and compared the F -generalized family with the GG model, Almpanidis and
Kotropoulos (2008) presented a text-independent automatic phone segmentation algorithm based
on the GG distribution and Nadarajah (2008a) analyzed some incorrect references with respect to
the use of this distribution in electrical and electronic engineering. More recently, Barkauskas et
al. (2009) modeled the noise part of a spectrum as an autoregressive moving average (ARMA)
model with innovations following the GG distribution, Malhotra et al. (2009) provided a unified
analysis for wireless system over generalized fading channels that is modeled by a two parameter
GG model and Xie and Liu (2009) analyzed three-moment auto conversion parametrization based
on the GG distribution. Further, Ortega et al. (2009) proposed a modified GG regression model
to allow the possibility that long-term survivors may be presented in the data and Cordeiro et al.
(2010) proposed the exponentiated generalized gamma (EGG) distribution. This distribution due
to its flexibility in accommodating many forms of the risk function seems to be an important model
that can be used in a variety of problems in survival analysis.

In the last decade, new classes of distributions for modeling survival data based on extensions
of the Weibull distribution were developed. Mudholkar et al. (1995) introduced the exponentiated
Weibull (EW) distribution, Xie and Lai (1995) presented the additive Weibull distribution, Lai et
al. (2003) proposed the modified Weibull (MW) distribution and Carrasco et al. (2008) defined
the generalized modified Weibull (GMW) distribution. Furthermore, the main motivation for the
use of the EGG distribution is that it contains as special sub-models several distributions such as
the generalized gamma (GG), EW, exponentiated exponential (EE) (Gupta and Kundu, 1999) and
generalized Rayleigh (GR) (Kundu and Raqab, 2005) distributions. The EGG distribution can
model four types of the failure rate function (i.e. increasing, decreasing, unimodal and bathtub)
depending on the values of its parameters. It is also suitable for testing goodness-of-fit of some
special sub-models, such as the GG, EW, Weibull and GR distributions.

Different forms of regression models have been proposed in survival analysis. Among them,
the location-scale regression model (Lawless, 2003) is distinguished since it is frequently used in
clinical trials. In this article, we propose an extension of the EGG distribution and obtain some
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of its structural properties. Further, we propose a location-scale regression model based on this
distribution, referred to as the log-exponentiated generalized gamma (LEGG) regression model,
which is a feasible alternative for modeling the four existing types of failure rate functions.

The article is organized as follows. In Section 2, we define an extended version of the EGG dis-
tribution. In Section 3, we consider its moments, generating function, mean deviations, reliability,
order statistics and their moments. In Section 4, we provide a simulation study. In Section 5, we
define the LEGG distribution and derive an expansion for its moments. In Section 6, we propose a
LEGG regression model for censored data. We consider the method of maximum likelihood to esti-
mate the model parameters and derive the observed information matrix. In Section 7, we give two
applications using well-known data sets to demonstrate the applicability of the proposed regression
model. Section 8 ends with some concluding remarks.

2 The Exponentiated Generalized Gamma Distribution

Cordeiro et al. (2010) proposed the EGG distribution with four parameters α > 0, τ > 0, k > 0
and λ > 0 to extend the GG distribution (Stacy, 1962) that should be able to fit various types of
data. The probability density function (pdf) of the EGG distribution has the form

f(t) =
λτ

αΓ(k)

( t

α

)τk−1
exp

[
−

( t

α

)τ] {
γ1

[
k,

( t

α

)τ]}λ−1

, t > 0, (1)

where Γ(·) is the gamma function, γ(k, x) =
∫ x
0 wk−1 e−wdw is the incomplete gamma function and

γ1(k, x) = γ(k, x)/Γ(k) is the incomplete gamma function ratio. The function γ1(k, x) is simply
the cumulative distribution function (cdf) of a standard gamma distribution with shape parameter
k. In (1), α is a scale parameter and τ , k and λ are shape parameters. The Weibull and GG
distributions arise as special sub-models of (1) when λ = k = 1 and λ = 1, respectively. The EGG
distribution approaches the log-normal distribution when λ = 1 and k →∞.

If T is a random variable with density (1), we write T ∼ EGG(α, τ, k, λ). The survival and
hazard rate functions corresponding to (1) are

S(t) = 1− F (t) = 1−
{

γ1

[
k,

( t

α

)τ]}λ

(2)

and

h(t) =
λτ

αΓ(k)

( t

α

)τk−1
exp

[
−

( t

α

)τ]{
γ1

[
k,

( t

α

)τ]}λ−1{
1−

[
γ1

(
k,

( t

α

)τ)]λ
}−1

, (3)

respectively. The EGG distribution has a hazard rate function that involves a complicated function,
although it can be easily computed numerically. Moreover, it is quite flexible for modeling survival
data.
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We consider a generalized form of the EGG density function (1) given by

f(t) =
λ |τ |

αΓ(k)

( t

α

)τk−1
exp

[
−

( t

α

)τ]{
γ1

[
k,

( t

α

)τ]}λ−1

, t > 0, (4)

where τ is not zero and the other parameters are positive. If τ > 0, (4) is the EGG distribution
and if λ = 1 and τ > 0 it becomes the GG distribution. The special case λ = k = 1 and τ > 0
gives the Weibull distribution. For λ = k = 1 and τ < 0, it yields to the reciprocal Weibull (or
inverse Weibull) distribution. Other special sub-models of the EGG distribution are discussed by
Cordeiro et al. (2010). Plots of the EGG density function for selected values of τ > 0 and τ < 0
are given in Figure 1.

(a) (b) (c)
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Figure 1: The EGG density function: (a) For some values of τ > 0. (b) For some values of τ < 0.
(c) For some values of τ > 0 and τ < 0.

The cdf of the EGG distribution can be defined by

F (t) =





{
γ1

[
k, ( t

α)τ
]}λ if τ > 0,

1− {
γ1

[
k, ( t

α)τ
]}λ if τ < 0.

(5)
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The survival function corresponding to (5) is

S(t) =





1− {
γ1

[
k, ( t

α)τ
]}λ if τ > 0,

{
γ1

[
k, ( t

α)τ
]}λ if τ < 0.

(6)

Let gα,τ,k(t) be the density function of the GG(α, τ, k) distribution (Stacy and Mihram, 1965)
given by

gα,τ,k(t) =
|τ |

αΓ(k)

(
t

α

)τk−1

exp

[
−

(
t

α

)τ
]
, t > 0. (7)

Theorem 1. If T ∼ EGG(α, τ, k, λ), we have the representation

f(t) =
∞∑

m,i=0

w(m, i, k, λ) gα,τ,k(m+1)+i(t), t > 0, (8)

where gα,τ,k(m+1)+i(t) is the GG(α, τ, k(m + 1)i) density function defined by (7) and the weighted
coefficients w(m, i, k, λ) are given by

w(m, i, k, λ) =
∞∑

m,i=0

λ sm(λ) cm,i Γ[k(m + 1) + i]
Γ(k)m+1

, (9)

where the quantity sm(λ) is given by (37) and the constants cm,i can be determined from the

recurrence equation (40). Clearly, the coefficients satisfy
∞∑

m,i=0
w(m, i, k, λ) = 1,

Some mathematical properties of the EGG distribution can follow directly from those prop-
erties of the GG distribution, since equation (8) is expressed in terms of a linear combination of
GG densities. For example, the ordinary, inverse and factorial moments and moment generating
function (mgf) of the EGG distribution can be derived directly from those quantities of the GG
distribution. The proof of the theorem is in Appendix B.

3 General Properties

3.1 Moments

Here, we give two different expansions for the moments of the EGG distribution. Let µ′r = E(T r)
be the rth ordinary moment of the EGG distribution. First, we obtain an infinite sum representation
for µ′r from equation (8). The rth moment of the GG(α, τ, k) distribution is

µ′r,GG =
αr Γ(k + r/τ)

Γ(k)
.
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Equation (8) then immediately gives

µ′r = λαr
∞∑

m,i=0

sm(λ) cm,i Γ([k(m + 1) + i] + r/τ)
Γ(k)m+1

. (10)

Equation (10) has the inconvenient that depends on the constants cm,i that can be calculated
recursively from (40).
Theorem 2. If T ∼EGG(α, τ, k, λ), the rth moment of T reduces to

µ′r =
λαr sgn(τ)

Γ(k)

∞∑

j=0

j∑

m=0

(−1)j+m

(
λ− 1

j

)(
j

m

)
I

(
k,

r

τ
,m

)
, (11)

where A(k, r/τ,m) = k−m Γ
(
r/τ + k(m + 1)

)
and

I
(
k,

r

τ
, m

)
= A(k, r/τ, m)F

(m)
A

(
r/τ + k(m + 1); k, · · · , k; k + 1, · · · , k + 1;−1, · · · ,−1

)
. (12)

Hence, as an alternative representation to (10), the rth moment of the EGG distribution follows
from both equations (11) and (12) as an infinite weighted sum of the Lauricella functions of type
A. The proof of the theorem is in Appendix B.

3.2 Moment Generating Function

Theorem 3. If T ∼EGG(α, τ, k, λ), the mgf of T reduces to

M(t) =
∞∑

m,i=0

w(m, i, k, λ) Mα,τ,k(m+1)+i(s), (13)

where w(m, i, k, λ) is defined by (9) and

Mα,τ,k(m+1)+i(s) =
sgn(τ)

Γ(k(m + 1) + i)

∞∑

m=0

Γ
(m

τ
+ k(m + 1) + i

) (sα)m

m!
.

The proof of the theorem is in Appendix B.

3.3 Deviations

If T has the EGG density function f(t), the deviations about the mean δ1 = E(| T − µ′1 |) and
about the median δ2 = E(| T −m |) can be calculated from the relations

δ1 = 2µ′1F (µ′1)− 2I(µ′1) and δ2 = µ′1 − 2I(m), (14)

6
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where F (a) is easily obtained from (5), m is the solution of F (m) = 1/2 and I(s) =

∫ s
0 t f(t)dt.

This integral can be determined from (8) as

I(s) =
∞∑

m,i=0

w(m, i, k, λ) J(α, τ, [k(m + 1) + i], s), (15)

where
J(α, τ, k, s) =

∫ s

0
t gα,τ,k(t)dt.

We can obtain from the density of the GG(α, τ, k) distribution by setting x = t/α

J(α, τ, k, s) =
α|τ |
Γ(k)

∫ s/α

0
xτk exp(−xτ )dx.

The substitution w = xτ yields J(α, τ, k, s) in terms of the incomplete gamma function

J(α, τ, k, s) =
α sgn(τ)

Γ(k)

∫ (s/α)τ

0
wk+τ−1−1 exp(−w)dw = γ(k + τ−1, (s/α)τ ).

Hence, inserting the last result into (15) gives

I(s) =
∞∑

m,i=0

w(m, i, k, λ)γ(k(m + 1) + i + τ−1, (s/α)τ ). (16)

The mean deviations of the EGG distribution can be obtained from equations (14) and (16).

3.4 Reliability

In the context of reliability, the stress-strength model describes the life of a component which
has a random strength X1 that is subjected to a random stress X2. The component fails at
the instant that the stress applied to it exceeds the strength, and the component will function
satisfactorily whenever X1 > X2. For X1 and X2 independent random variables having a common
EGG distribution, the reliability

R = R = Pr(X2 < X1) =
∫ ∞

0
f(t) F (t)dt,

where f(t) and F (t) are calculated from (4) and (5), respectively, can be written explicitly as
follows:

7
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• For τ > 0,

R =
∞∑

m,i=0

|τ |w(m, i, k, λ)
αΓ[k(m + 1) + i]

∫ ∞

0
exp

[
−

(
t

α

)τ
](

t

α

)τ [k(m+1)+i]−1

×
(

1−
{

γ1

[
k,

(
t

α

)τ
]}λ)

dt.

Setting x =
(

t
α

)τ in the last equation gives

R =
∞∑

m,i=0

sgn(τ) w(m, i, k, λ)
Γ[k(m + 1) + i]

∫ ∞

0
xk(m+1)+i−1 exp(−x) γ1(k, x)λdx.

By equation (36) in Appendix A, we obtain

R =
∞∑

m,i,j=0

j∑

m1=0

v1(m,m1, i, j, k, λ) I[k(m + 1), i,m1], (17)

where

v1(m,m1, i, j, k, λ) =
(−1)j+m1 sgn(τ)λ sm(λ) cm,i

Γ(k)m+1

(
λ

j

)(
j

m1

)
,

and

I[k(m + 1), i, m1] =
∫ ∞

0
xk(m+1)+i−1 exp(−x) γ1(k, x)m1dx.

Defining C = [k(m + 1)]−m1Γ
(
i + k(m + m1 + 1)

)
and using the Lauricella function of type

A (see Appendix B), this integral can be expressed as (see Nadarajah, 2008b, equation (23))

I [k(m + 1), i, m1] = C F
(m1)
A

(
i + k(m + m1 + 1); k(m + 1), . . . , k(m + 1);

k(m + 1) + 1, . . . , k(m + 1) + 1;−1, . . . ,−1
)
. (18)

• For τ < 0,

R =
∞∑

m,i=0

|τ |w(m, i, k, λ)
α Γ[k(m + 1) + i]

∫ ∞

0
exp

[
−

(
t

α

)τ
](

t

α

)τ [k(m+1)+i]−1

×

1−

{
γ1

[
k,

(
t

α

)τ
]}λ


 dt.
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Setting x =

(
t
α

)τ in the last equation yields

R = 1−
∞∑

m,i=0

sgn(τ)w(m, i, k, λ)
Γ[k(m + 1)] + i

∫ ∞

0
xk(m+1)+i−1 exp(−x) γ1(k, x)λdx.

Again, by equation (36), we obtain

R = 1−
∞∑

m,i,j=0

j∑

m1=0

v2(m,m1, i, j, k, τ, λ) I [k(m + 1), i, m1] , (19)

where

v2(m,m1, i, j, k, τ, λ) =
(−1)j+m1sgn(τ)
Γ[k(m + 1) + i]

(
λ

j

)(
j

m1

)
,

w(m, i, k, λ) is just defined after (8) and I [k(m + 1), i, m1] is given by (18).

3.5 Order Statistics

The density function fi:n(t) of the ith order statistic, for i = 1, . . . , n, from random variables
T1, . . . , Tn having density (4), can be written as

fi:n(t) =
1

B(i, n− i + 1)
f(t)

n−i∑

l=0

(
n− i

l

)
(−1)l F (t)i+l−1, (20)

where f(t) and F (t) are the pdf and cdf of the EGG distribution, respectively, and B(·, ·) denotes the
beta function. Let fα,τ,k,λ(t) be the density function of the EGG(α, τ, k, λ) distribution. Plugging
(4) and (5) in the last equation and after some algebra, we can write:

• For τ > 0,

fi:n(t) =
1

B(i, n− i + 1)

n−i∑

l=0

(−1)l

(i + l)

(
n− i

l

)
fα,τ,k,λ(i+l)(t). (21)

Equation (21) gives the density function of the ith order statistic as a finite linear combination
of EGG densities. Hence, the moments of the order statistics can be calculated directly from
(21) using equations (11) and (12). The rth moment of the ith order statistic, say µ′r(i:n),
reduces to

µ′r(i:n) =
λαrsgn(τ)

B(i, n− i + 1)

n−i∑

l=0

∞∑

j=0

j∑

m=0

(−1)l+j+m

Γ(k)

(
n− i

l

)(
λ(i + l)− 1

j

)(
j

m

)
I

(
k,

r

τ
,m

)
, (22)

where I(k, r/τ, m) comes from (12).
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• For τ < 0,

fi:n(t) =
λ|τ |

αΓ(k)B(i, n− i + 1)

(
t

α

)τk−1

exp

[
−

(
t

α

)τ
]{

γ1

[
k,

(
t

α

)τ
]}λ−1

×
n−i∑

l=0

(
n− i

l

)
(−1)l

(
1−

{
γ1

[
k,

(
t

α

)τ]}λ
)i+l−1

.

Using the binomial expansion in the last expression, we have

fi:n(t) =
1

B(i, n− i + 1)

n−i∑

l=0

i+l−1∑

j1=0

(−1)l+j1

(1 + j1)

(
n− i

l

)(
i + l − 1

j1

)
fα,τ,k,λ(1+j1)(t). (23)

Equation (23) shows that the density function of the ith order statistic is a finite linear
combination of EGG densities and then its moments can be determined directly from (23)
using equations (11) and (12). We obtain

µ′r(i:n) =
λαrsgn(τ)

B(i, n− i + 1)

n−i∑

l=0

i+l−1∑

j1=0

∞∑

j=0

j∑

m=0

(−1)l+j+j1+m

Γ(k)

(
n− i

l

)(
i + l − 1

j1

)

×
(

λ(1 + j1)− 1
j

)(
j

m

)
I

(
k,

r

τ
,m

)
. (24)

4 Simulation study

We perform some Monte Carlo simulation studies to assess on the finite sample behavior of
the maximum likelihood estimators (MLEs) of α, τ , k and λ. The results were obtained from
3000 Monte Carlo replications and the simulations were carried out using the software R. In each
replication, a random sample of size n is drawn from the EGG(α, τ, k, λ) distribution and the
parameters were estimated by maximum likelihood. The EGG random variable was generated
using the inversion method. The true parameter values used in the data generating processes are
α = 0.1, τ = 0.4, k = 1.2 and λ = 2.0. The mean estimates of the four model parameters and the
corresponding root mean squared errors (RMSEs) for sample sizes n = 50, n = 100, n = 200 and
n = 300 are listed in Table 1.

The figures in Table 1 show that the biases and RMSEs of MLEs of α, τ , k and λ decay toward
zero when the sample size increases, as expected. There is a small sample bias in the estimation
of the model parameters. Future research should be conducted to obtain bias corrections for these
estimators.
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Table 1: Mean estimates and RMSEs of α, τ , k and λ

n Parameter Mean RMSE
50 α 0.1616 0.2885

τ 0.5159 1.0505
k 2.0871 2.3444
λ 2.5206 2.2346

100 α 0.1325 0.2011
τ 0.4106 0.1152
k 1.7954 1.8229
λ 2.4522 2.0495

200 α 0.1180 0.1433
τ 0.3991 0.0762
k 1.5024 1.2270
λ 2.3891 1.9163

300 α 0.1221 0.1318
τ 0.3997 0.0657
k 1.3492 1.0322
λ 2.3936 1.7632

5 The Log-Exponentiated Generalized Gamma Distribution

Henceforth, let T be a random variable having the EGG density function (4) and Y = log(T ).
It is easy to verify that the density function of Y obtained by replacing k = q−2, τ = (σ

√
k)−1 and

α = exp[µ− τ−1 log(k)] reduces to

f(y) =
λ|q|(q−2)q−2

σΓ(q−2)
exp

{
q−1

(y − µ

σ

)
− q−2exp

[
q
(y − µ

σ

)]}

×
{

γ1

[
q−2, q−2exp

{
q
(y − µ

σ

)}]}λ−1
, (25)

where −∞ < y < ∞, −∞ < µ < ∞, σ > 0, λ > 0 and q is different from zero. We consider an
extended form including the case q = 0 (Lawless, 2003). Thus, the density of Y can be written as

f(y) =





λ|q|(q−2)q−2

σΓ(q−2)
exp

{
q−1

(y−µ
σ

)− q−2exp
[
q
(y−µ

σ

)]}×
{

γ1

[
q−2, q−2exp

{
q
(y−µ

σ

)}]}λ−1
if q 6= 0,

λ√
2πσ

exp
[
− 1

2

(y−µ
σ

)2
]
Φ(λ−1)

(y−µ
σ

)
if q = 0,

(26)
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where Φ(·) is the standard normal cumulative distribution. The sub-model defined by q = 0 is
exactly the skew normal distribution, whereas if λ = 1 and q = 1, we obtain the extreme value
distribution. Further, the sub-model λ = 1 corresponds to the log-gamma generalized distribution
and, if in addition q = −1, it reduces to the log-inverse Weibull distribution. We refer to equation
(26) as the LEGG distribution, say Y ∼ LEGG(µ, σ, q, λ), where µ ∈ R is the location parameter,
σ > 0 is the scale parameter and q and λ are shape parameters. So,

if T ∼ EGG(α, τ, k, λ) then Y = log(T ) ∼ LEGG(µ, σ, q, λ).

The plots of the density function (26) for selected values of λ, µ = 0 and σ = 1 for q < 0,
q > 0 and q = 0 are given in Figure 2. These plots show that the LEGG distribution could be very
flexible for modeling its kurtosis. The corresponding survival function is

(a) (b) (c)
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Figure 2: The LEGG density curves: (a) For some values of q < 0. (b) For some values of q > 0.
(c) For some values of q = 0.

• q > 0

S(y) = 1− F (y) = P (Y > y) = P (µ + σZ > y) = P

(
Z >

y − µ

σ

)
= P (Z > z)

=
∫ ∞

z

λq(q−2)q−2

Γ(q−2)
exp

{
q−1u− q−2exp(qu)

}{
γ1

[
q−2, q−2exp(qu)

]}λ−1
du;
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• q < 0

S(y) = 1− F (y) = P (Y > y) = P (µ + σZ > y) = P

(
Z >

y − µ

σ

)
= P (Z > z)

=
∫ ∞

z

−λq(q−2)q−2

Γ(q−2)
exp

{
q−1u− q−2exp(qu)

}{
γ1

[
q−2, q−2exp(qu)

]}λ−1
du.

These integrals have explicit forms

S(y) =





1−
{

γ1

(
q−2, q−2exp

[
q(y−µ

σ )
])}λ

if q > 0,

{
γ1

(
q−2, q−2exp

[
q(y−µ

σ )
])}λ

if q < 0,

1− Φλ
(y−µ

σ

)
if q = 0.

(27)

Theorem 4. If Y ∼ LEGG(µ, σ, q, λ), then the rth moment is given by

i. For q 6= 0,

µ′r =
∞∑

m,i=0

r∑

l=0

λ sgn(q)sm(λ) cm,i

Γ (q−2)m+1

(
r

l

) [
2σ

q
log(|q|) + µ

]r−l [
Γ̇(q−2(m + 1) + i)

]σl
q

, (28)

where Γ̇(p) = ∂Γ(p)
∂p .

ii. For q = 0,

µ′r = λ
∞∑

p=0

r∑

j=0

sp(λ)
(

r

j

)
σj µr−j τj,p, (29)

where sp(λ) is given by (37), and when j + p− l is even, we obtain

τj,p = 2j/2π−(p+1/2)
p∑

l=0
(j+p−l) even

(
p

l

)
2−l πl Γ

(
j + p− l + 1

2

)
×

F
(p−l)
A

(
j + p− l + 1

2
;
1
2
, · · · ,

1
2
;
3
2
, · · · ,

3
2
;−1, · · · ,−1

)
. (30)

Inserting (30) in (29) yields the rth moment of the LEGG distribution when q = 0. The proof of
Theorem 4 is given in Appendix B.

The skewness and kurtosis measures can be calculated from the ordinary moments using well-
known relationships. Plots of the skewness and kurtosis for selected values of µ and σ versus λ are
shown in Figures 3 and 4, respectively.
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Figure 3: Skewness and kurtosis of the LEGG distribution for some values of µ with σ = 0.8, λ = 2
and q = 2.5.
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Figure 4: Skewness and kurtosis of the LEGG distribution for some values of σ with µ = 0.001,
λ = 2 and q = 0.5.

6 The Log-Exponentiated Generalized Gamma Regression Model

In many practical applications, the lifetimes are affected by explanatory variables such as the
cholesterol level, blood pressure, weight and many others. Parametric models to estimate univaria-
te survival functions for censored data regression problems are widely used. A parametric model
that provides a good fit to lifetime data tends to yield more precise estimates of the quantities
of interest. If Y ∼ LEGG(µ, σ, q, λ), we define the standardized random variable Z = (Y − µ)/σ
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having density function

f(z) =





λ|q|
Γ(q−2)

(q−2)q−2
exp

{
q−1z − q−2exp(qz)

}{
γ1

[
q−2, q−2exp(qz)

]}λ−1 if q 6= 0,

λ√
2π

exp
(− z2

2

)
Φ(λ−1)(z) if q = 0.

(31)

We write Z ∼ LEGG(0, 1, q, λ). Now, we propose a linear location-scale regression model linking
the response variable yi and the explanatory variable vector xT

i = (xi1, . . . , xip) by

yi = xT
i β + σzi, i = 1, . . . , n, (32)

where the random error zi has density function (31), β = (β1, . . . , βp)T , σ > 0, λ > 0 and −∞ <
q < ∞ are unknown parameters. The parameter µi = xT

i β is the location of yi. The location
parameter vector µ = (µ1, . . . , µn)T is is given by a linear model µ = Xβ, where X = (x1, . . . ,xn)T

is a known model matrix. The LEGG model (32) opens new possibilities for fitted many different
types of data. It contains as special sub-models the following well-known regression models. For
λ = q = 1, we obtain the classical Weibull regression model (see, Lawless, 2003). If σ = 1 and
σ = 0.5, in addition to λ = q = 1, the LEGG regression model reduces to the exponential and
Rayleigh regression models, respectively. For q = 1, we obtain the log-exponentiated Weibull
regression model introduced (Mudholkar et al., 1995). See, also, Cancho et al. (1999), Ortega et
al. (2006), Cancho et al. (2008) and Hashimoto et al. (2010). If σ = 1, in addition to q = 1, the
LEGG regression model reduces to the log-exponentiated exponential regression model. If σ = 0.5,
in addition to q = 1, the LEGG model reduces to the log-generalized Rayleigh regression model.
For λ = 1, we obtain the log-gamma generalized (LGG) regression model (Lawless, 2003; Ortega
et al., 2003). More recently, the LGG distribution has been used in several research areas. See,
for example, Ortega et al. (2008, 2009). For q = −1, it gives the log-generalized inverse Weibull
regression model. If λ = 1, in addition to q = −1, we obtain the log-inverse Weibull regression
model (Gusmão et al., 2009). Finally, for q = 0, it yields the log-exponentiated normal regression
model.

6.1 Maximum Likelihood Estimation

Consider a sample (y1,x1), . . . , (yn,xn) of n independent observations, where each random
response is defined by yi = min{log(ti), log(ci)}. We assume non-informative censoring such that
the observed lifetimes and censoring times are independent. Let F and C be the sets of individuals
for which yi is the log-lifetime or log-censoring, respectively. Conventional likelihood estimation
techniques can be applied here. The log-likelihood function for the vector of parameters θ =
(λ, σ, q,βT )T from model (32) has the form l(θ) =

∑
i∈F

li(θ) +
∑
i∈C

l
(c)
i (θ), where li(θ) = log[f(yi)],

l
(c)
i (θ) = log[S(yi)], f(yi) is the density (26) and S(yi) is the survival function (27) of Yi. The total
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log-likelihood function for θ reduces to

l(θ) =





∑
i∈F

log
{

λq(q−2)q−2

σΓ(q−2)
exp

[
q−1zi − q−2exp(qzi)

]{
γ1

[
q−2, q−2exp(qzi)

]}λ−1
}

+
∑
i∈C

log
{

1− {
γ1[q−2, q−2exp(qzi)]

}λ
}

, if q > 0,

∑
i∈F

log
{−λq(q−2)q−2

σΓ(q−2)
exp

[
q−1zi − q−2exp(qzi)

]{
γ1

[
q−2, q−2exp(qzi)

]}λ−1
}

+λ
∑
i∈C

log
{

γ1[q−2, q−2exp(qzi)]
}

, if q < 0,

∑
i∈F

log
{

λ√
2πσ

exp(−1
2z2

i )Φ(λ−1)(zi)
}

+
∑
i∈C

log
[
1− Φλ(zi)

]
, if q = 0,

(33)
where zi = (yi − xT

i β)/σ. The MLE θ̂ of the vector of unknown parameters can be calculated
by maximizing the log-likelihood (33). The maximization of (33) follows the same two steps for
obtaining the MLE of θ for the uncensored case. In general, it is reasonable to expect that the
shape parameter q belongs to the interval [−3, 3]. We fixed, in the first step of the iterative process,
different values of q in this interval. Then, we obtain the MLEs λ̃(q), σ̃(q) and β̃(q) and the max-
imized log-likelihood function Lmax(q) is determined. We use, in this step, a subroutine NLMixed
of SAS. In the second step, the log-likelihood Lmax(q) is maximized, and then q̂ is obtained. The
MLEs of λ, σ and β are, respectively, given by λ̂ = λ̃(q̂), σ̂ = σ̃(q̂) and β̂ = β̃(q̂). Initial values for
β and σ are obtained by fitting the Weibull regression model with λ = 1 and q = 1. The fit of the
LEGG model yields the estimated survival function for yi (ẑi = (yi − xT

i β̂)/σ̂) given by

Ŝ(yi; λ̂, σ̂, q̂, β̂
T
) =





1−
{

γ1

(
q̂−2, q̂−2exp[q̂(ẑi)]

)}λ̂
, if q > 0,

{
γ1

(
q̂−2, q̂−2exp[q̂(ẑi)]

)}λ̂
, if q < 0,

1− Φλ̂
(
ẑi

)
, if q = 0.

(34)

Under conditions that are fulfilled for the parameter vector θ in the interior of the parameter
space but not on the boundary, the asymptotic distribution of

√
n(θ̂ − θ) is multivariate normal

Np+2(0,K(θ)−1), where K(θ) is the information matrix. The asymptotic covariance matrix K(θ)−1

of θ̂ can be approximated by the inverse of the (p+2)×(p+2) observed information matrix −L̈(θ).
The elements of the observed information matrix−L̈(θ), namely −Lλλ, −Lλσ, −Lλβj , −Lσσ, −Lσβj

and −Lβjβs for j, s = 1, . . . , p, are given in Appendix C. The approximate multivariate normal
distribution Np+2(0,−L̈(θ)−1) for θ̂ can be used in the classical way to construct approximate
confidence regions for some parameters in θ.
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We can construct likelihood ratio (LR) statistics for comparing some special sub-models with

the LEGG model. We consider the partition θ = (θT
1 , θT

2 )T , where θ1 is a subset of parameters of
interest and θ2 is a subset of remaining parameters. The LR statistic for testing the null hypothesis
H0 : θ1 = θ

(0)
1 versus the alternative hypothesis H1 : θ1 6= θ

(0)
1 is w = 2{`(θ̂) − `(θ̃)}, where θ̃

and θ̂ are the estimates under the null and alternative hypotheses, respectively. The statistic w is
asymptotically (as n →∞) distributed as χ2

k, where k is the dimension of the subset of parameters
θ1 of interest.

7 Applications

In this section, we provide two applications to show the usefulness of the proposed regression
model.

Example 1: The diabetic retinopathy study

We consider a data set analyzed by Huster et al. (1989), Liang et al. (1993) and Wada and
Hotta (2000). Patients with diabetic retinopathy in both eyes and 20/100 or better visual acuity
for both eyes were eligible for the study. One eye was randomly selected for the treatment and the
other was observed without treatment. The patients were followed for two consecutively completed
4 month follow-ups and the endpoint was the occurrence of visual acuity less than 5/200. We choose
only the treatment time. A 50% sample of the high-risk patients defined by diabetic retinopathy
criteria was taken for the data set (n = 197) and the percentage of censored observations was
72.4%. The variables involved in the study are: ti - failure time for the treatment (in min); censi -
censoring indicator (0=censoring, 1=lifetime observed); xi1 - age (0 = patient is an adult diabetic,
1 = patient is a juvenile diabetic). We adopt the model

yi = β0 + β1xi1 + σzi,

where the random variable yi has the LEGG distribution (26) for i = 1, 2, . . . , 197. The MLEs of
the model parameters are calculated using the NLMixed procedure in SAS. In order to estimate λ,
σ and β of the LEGG regression model, we take some values for q. We choose the value q̂ = −1.743
that maximizes the likelihood function over several values of q ∈ (−3, 3). Hence, this value is
assumed for the MLE of the parameter q. Iterative maximization of the logarithm of the likelihood
function (33) starts with initial values for β and σ taken from the fitted log-Weibull regression
model (with λ = 1). The MLEs (approximate standard errors and p-values in parentheses) are:
λ̂ = 1.263(0.537), σ̂ = 2.929(0.659), β̂0 = 4.009(2.494)(0.109) and β̂1 = 0.710(0.397)(0.075). The
explanatory variable x1 is marginally significant for the model at the significance level of 10%.

In order to assess if the model is appropriate, the empirical survival function and the estimated
survival function (34) from the fitted LEGG regression model are plotted in Figure 5a. In fact, the
LEGG regression model provides a good fit for these data.
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Example 2: Voltage data

Lawless (2003) reports an experiment in which specimens of solid epoxy electrical-insulation
were studied in an accelerated voltage life test. The sample size was n = 60 and the percentage
of censored observations was 10%. We considered three levels of voltage 52.5, 55.0 and 57.5. The
variables involved in the study are: ti - failure time for epoxy insulation specimens (in min); censi

- censoring indicator (0=censoring, 1=lifetime observed); xi1 - voltage (kV). Now, we consider the
model

yi = β0 + β1xi1 + σzi,

where the random variable yi follows the LEGG distribution (26) for i = 1, 2, . . . , 60. We choose
the value of q that maximizes the likelihood function over selected values of q ∈ (−3, 3) yielding
q̂ = −0.5393. Hence, this value is assumed for the MLE of the parameter q. Iterative maximization
of the logarithm of the likelihood function (33) starts with initial values for β and σ taken from
the fitted log-Weibull regression model (with λ = 1). The MLEs (approximate standard errors and
p-values in parentheses) are: λ̂ = 1.0153(0.144), σ̂ = 0.902(0.443), β̂0 = 16.048(4.112)(0.0002) and
β̂1 = −0.178(0.066)(0.009). The fitted LEGG regression model shows that x1 is significant at (5%)
and that there is a significant difference between the voltages 52.5, 55.0 and 57.5 for the survival
times.

In order to assess if the model is appropriate, the empirical survival function and estimated
survival functions of the LEGG regression model are plotted in Figure 5b for different voltage
levels. We conclude that the LEGG regression model provides a good fit to these data.

8 Concluding Remarks

We introduce a generalized form of the exponentiated generalized gamma (EGG) distribution
whose hazard rate function accommodates the four types of shape forms, i.e. increasing, decreasing,
bathtub and unimodal. We derive expansions for its moments, moment generating function, mean
deviations, reliability, order statistics and their moments. Further, we define the log-exponentiated
generalized gamma (LEGG) distribution and propose a LEGG regression model very suitable for
modeling censored and uncensored lifetime data. The new regression model serves as a good
alternative for lifetime data analysis, since we can adopt goodness of fit tests for several widely
known regression models as special sub-models. We demonstrate in two applications to real data
that the LEGG model can produce better fits than the usual models.

Acknowledgment: The authors are grateful to the Editor and an anonymous referee for very useful
comments and suggestions. This work was supported by CNPq and CAPES.
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Figure 5: Estimated survival function by fitting the LEGG regression model and the empirical
survival (a) For each level of the diabetic retinopathy study. (b) For each level of the voltage data.

Appendix A

We derive an expansion for γ1(k, x)λ−1 for any λ > 0 real non-integer. By simple binomial expansion
since 0 < γ1(k, x) < 1, we can write

γ1(k, x)λ−1 =
∞∑

j=0

j∑

m=0

(−1)j+m

(
λ− 1

j

) (
j

m

)
γ1(k, x)m, (35)

which always converges. We can substitute
∑∞

j=0

∑j
m=0 for

∑∞
m=0

∑∞
j=m to obtain

γ1(k, x)λ−1 =
∞∑

m=0

sm(λ) γ1(k, x)m, (36)
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where

sm(λ) =
∞∑

j=m

(−1)j+m

(
λ− 1

j

)(
j

m

)
. (37)

A power series expansion for the incomplete gamma function ratio is given by

γ1(k, x) =
xk

Γ(k)

∞∑

i=0

(−x)i

(k + i)i!
. (38)

We use an equation in Section 0.314 of Gradshteyn and Ryzhik (2000) for a power series raised to
a positive integer m

( ∞∑

i=0

ai x
i

)m

=
∞∑

i=0

cm,i x
i, (39)

where the coefficients cm,i (for i = 1, 2, . . .) satisfy the recurrence relation

cm,i = (ia0)−1
i∑

p=1

(mp− i + p) ap cm,i−p (40)

and cm,0 = am
0 . Here, cm,i can be calculated from cm,0, . . . , cm,i−1 and also be expressed explicitly

as a function of a0, . . . , ai, although it is not necessary for programming numerically our expansions
using any software with numerical facilities. By equation (39), we obtain

γ1(k, x)m =
xkm

Γ(k)m

∞∑

i=0

cm,i x
i, (41)

whose coefficients cm,i are determined from (40) with ap = (−1)p/(k + p)p!. Combining (36) and
(41), we can rewrite (36) as

γ1(k, x)λ−1 =
∞∑

m,i=0

sm(λ) cm,i

Γ(k)m
xkm+i. (42)

Appendix B

Proof of Theorem 1: From (4) and (42), the EGG(α, τ, k, λ) density function can be written as

f(t) =
λ |τ |

α Γ(k)
exp

[
−

(
t

α

)τ
] ∞∑

m,i=0

sm(λ) cm,i

Γ(k)m

(
t

α

)τ [k(m+1)+i]−1

, t > 0.
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We can express f(t) as a linear combination given by

f(t) =
∞∑

m,i=0

w(m, i, k, λ) gα,τ,k(m+1)+i(t), t > 0,

where gα,τ,k(m+1)+i(t) denotes the GG(α, τ, k(m + 1)i) density function defined by (7) and the
weighted coefficients w(m, i, k, λ) are

w(m, i, k, λ) =
∞∑

m,i=0

λ sm(λ) cm,i Γ[k(m + 1) + i]
Γ(k)m+1

. ¤

Proof of Theorem 2: The rth moment of the EGG distribution comes from (4) as

µ′r =
λ |τ |αr−1

Γ(k)

∫ ∞

0

(
t

α

)τk+r−1

exp

[
−

(
t

α

)τ
] {

γ1

[
k,

(
t

α

)τ
]}λ−1

dt.

Setting x =
(

t
α

)τ , we have

µ′r =
λαr sgn(τ)

Γ(k)

∫ ∞

0
xk+ r

τ
−1 exp(−x) γ1 (k, x)λ−1 dx. (43)

Equation (35) for γ1(k, x)λ−1 leads to

γ1(k, x)λ−1 =
∞∑

j=0

j∑

m=0

(−1)j+m

(
λ− 1

j

) (
j

m

)
γ1(k, x)m.

Inserting the last equation into (43) and interchanging terms gives

µ′r =
λαr sgn(τ)

Γ(k)

∞∑

j=0

j∑

m=0

(−1)j+m

(
λ− 1

j

)(
j

m

)
I

(
k,

r

τ
,m

)
,

where

I
(
k,

r

τ
,m

)
=

∫ ∞

0
xk+ r

τ
−1 exp(−x) γ1 (k, x)m dx.

We calculate the last integral using the series expansion (38) for the incomplete gamma function

I
(
k,

r

τ
,m

)
=

∫ ∞

0
xk+ r

τ
−1 exp(−x)

[
xk

Γ(k)

∞∑

i=0

(−x)i

(k + i)i!

]m

dx.
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This integral can be determined from equations (24) and (25) of Nadarajah (2008b) in terms of the
Lauricella function of type A (Exton, 1978; Aarts, 2000) defined by

F
(n)
A (a; b1, . . . , bn; c1, . . . , cn; x1, . . . , xn) =
∞∑

m1=0

· · ·
∞∑

mn=0

(a)m1+...+mn (b1)m1
· · · (bn)mn

(c1)m1
· · · (cn)mn

xm1
1 . . . xmn

n

m1! . . .mn!
,

where (a)i = a(a + 1) · · · (a + i− 1) is the ascending factorial defined by (with the convention that
(a)0 = 1). Numerical routines for the direct computation of the Lauricella function of type A are
available, see Exton (1978) and Mathematica (Trott, 2006). We obtain

I
(
k,

r

τ
, m

)
= k−m Γ

(
r/τ + k(m + 1)

)×

F
(m)
A

(
r/τ + k(m + 1); k, . . . , k; k + 1, . . . , k + 1;−1, . . . ,−1

)
. ¤

Proof of Theorem 3: Suppose that T is a random variable having a GG(α, τ, k) density function
(7). First, we provide a closed form expression for the mgf of T using the Wright function (Wright,
1935). Setting u = t/α, we have

Mα,τ,k(s) =
|τ |

Γ(k)

∫ ∞

0
exp(sαu) uτk−1 exp(−uτ )du.

Expanding the exponential in Taylor series and using
∫∞
0 uτk+m−1 exp(−uτ )du = τ−1 Γ(k + m/τ),

we obtain

Mα,τ,k(s) =
sgn(τ)
Γ(k)

∞∑

m=0

Γ
(m

τ
+ k

) (sα)m

m!
. (44)

Equation (44) holds for any τ different from zero. However, if τ > 1, we can simplify it by using
the Wright generalized hypergeometric function (Wright, 1935) defined by

pΨq

[ (
α1, A1

)
, · · · ,

(
αp, Ap

)
(
β1, B1

)
, · · · ,

(
βq, Bq)

; x

]
=

∞∑

m=0

∏p
j=1 Γ(αj + Aj m)∏q
j=1 Γ(βj + Bj m)

xm

m!
. (45)

This function exists if 1 +
∑q

j=1 Bj −
∑p

j=1 Aj > 0. By combining (44) and (45), we have

Mα,τ,k(s) =
1

Γ(k) 1Ψ0

[
(1, 1/τ)
− ; sα

]
. (46)

Finally, the mgf of the EGG distribution follows from (8) as

M(t) =
∞∑

m,i=0

w(m, i, k, λ) Mα,τ,k(m+1)+i(s),
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where Mα,τ,k(m+1)+i(s) is easily obtained from equations (44) or (46). ¤

Proof of Theorem 4: The rth moment of the LEGG distribution can be obtained from (26)

• For q 6= 0, we have

µ′r = E(Y r) =
∫ ∞

−∞
yr λ|q| (q−2

)q−2

σΓ(q−2)
exp

{
q−1

(
y − µ

σ

)
− q−2 exp

[
q

(
y − µ

σ

)]}

×
(

γ1

{
q−2, q−2 exp

[
q

(
y − µ

σ

)]})λ−1

dy.

Setting x = q−2 exp
[
q
(y−µ

σ

)]
in the last equation yields

µ′r =
λ sgn(q)
Γ (q−2)

∫ ∞

0

{
σ

q
[log(x) + 2 log(|q|)] + µ

}r

xq−2−1 exp(−x) γ1

(
q−2, x

)λ−1
dx.

Using expansion (42) for γ1(q−2, x)λ−1 leads to

γ1(q−2, x)λ−1 =
∞∑

m,i=0

sm(λ) cm,i

Γ (q−2)m xq−2m+i.

Inserting the last equation into µ′r and interchanging terms, we obtain

µ′r =
λ sgn(q)
Γ (q−2)

∫ ∞

0

{
σ

q
[log(x) + 2 log(|q|)] + µ

}r

xq−2−1 exp(−x)
∞∑

m,i=0

sm(λ) cm,i

Γ (q−2)m xq−2m+i.

The binomial expansion in
{

σ
q [log(x) + 2 log(|q|)] + µ

}r
gives

µ′r =
∞∑

m,i=0

r∑

l=0

λ sgn(q)sm(λ) cm,i

Γ (q−2)m+1

(
r

l

) [
2σ

q
log(|q|) + µ

]r−l

× σl

q

∫ ∞

0
log(x) exp(−x) xq−2(m+1)+i−1dx.

The last integral is given in Prudnikov et al. (1986, vol 1, Section 2.6.21, integral 1) and then

µ′r =
∞∑

m,i=0

r∑

l=0

λ sgn(q)sm(λ)cm,i

Γ (q−2)m+1

(
r

l

)[
2σ

q
log(|q|) + µ

]r−l [
Γ̇(q−2(m + 1) + i)

]σl
q

,

where Γ̇(p) = ∂Γ(p)
∂p .
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• For q = 0, we obtain

µ′r = E(Y r) =
λ√
2πσ

∫ ∞

−∞
yrexp

[
− 1

2

(y − µ

σ

)2]
Φ(λ−1)

(y − µ

σ

)
dy.

Setting y = µ + σz and using (36) for Φ(λ−1)(z), we have

µ′r = λ
∞∑

p=0

r∑

j=0

sp(λ)
(

r

j

)
σjµr−jτj,p,

where sp(λ) is given by (37). We define the integral for j and p non-negative integers

τj,p =
∫ ∞

−∞
zjφ(z)Φp(z)dz,

where φ(z) is the standard normal density. The standard normal cdf can be written as

Φ(x) =
1
2

{
1 + erf

(
x√
2

)}
, x ∈ R.

By the binomial expansion and interchanging terms, we obtain

τj,p =
1

2j
√

2π

p∑

l=0

(
p

l

) ∫ ∞

−∞
xj exp(−x2/2) erf

(
x√
2

)p−l

dx.

Using the series expansion for the error function erf(.)

erf(x) =
2√
π

∞∑

m=0

(−1)mx2m+1

(2m + 1)m!
,

we can solve the last integral by equations (9)-(11) of Nadarajah (2008b). When j + p− l is
even, we obtain

τj,p = 2j/2π−(p+1/2)
p∑

l=0
(j+p−l) even

(
p

l

)
2−lπlΓ

(
j + p− l + 1

2

)
×

F
(p−l)
A

(
j + p− l + 1

2
;
1
2
, · · · ,

1
2
;
3
2
, · · · ,

3
2
;−1, · · · ,−1

)
. ¤

Appendix C: Matrix of second derivatives −L̈(θ)
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Here, we provide the formulas to obtain the second-order partial derivatives of the log-likelihood
function. After some algebraic manipulations, we obtain

Lα,α =
nτk

α2
− τ

α2

n∑

i=1

(vi + τvi)− (λ− 1)τ
α2Γ(k)

n∑

i=1

{
−vk

i exp(−vi)
γ1(k, vi)

− τkvk
i exp(−vi)

γ1(k, vi)

+
τv

(k+1)
i exp(−vi)

γ1(k, vi)
+

τ

Γ(k)
[vk

i ]2[exp(−vi)]2

[γ1(k, vi)]2

}
,

Lα,τ = −nk

α
+

1
α

n∑

i=1

[vi + vi log(vi)]− (λ− 1)
αΓ(k)

n∑

i=1

{
vk
i exp(−vi)
γ1(k, vi)

+
vk
i exp(−vi) log(vk

i )
γ1(k, vi)

−v
(k+1)
i exp(−vi) log(vi)

γ1(k, vi)
− 1

Γ(k)
[vk

i ]2[exp(−vi)]2 log(vi)
[γ1(k, vi)]2

}
,

Lα,k = −nτ

α
− τ(λ− 1)

αΓ(k)

n∑

i=1

vk
i exp(−vi)

{
log(vi)
γ1(k, vi)

− [γ̇1(k, vi)]k
Γ(k)[γ1(k, vi)]2

}
,

Lα,λ = − τ

αΓ(k)

n∑

i=1

vk
i exp(−vi)
γ1(k, vi)

, Lτ,λ =
1

τΓ(k)

n∑

i=1

vk
i exp(−vi) log(vi)

γ1(k, vi)
,

Lτ,τ = − n

τ2
− 1

τ2

n∑

i=1

vi[log(vi)]2 +
(λ− 1)
τ2Γ(k)

n∑

i=1

{
vk
i exp(−vi) log(vi)k+1

γ1(k, vi)

−(vi)k+1exp(−vi)[log(vi)]2

γ1(k, vi)
− [vk

i ]2[exp(−vi)]2[log(vi)]2

Γ(k)[γ1(k, vi)]2

}
,

Lτ,k =
1
τ

n∑

i=1

log(vi) +
(λ− 1)
τΓ(k)

n∑

i=1

vk
i exp(−vi) log(vi)

{
log(vi)
γ1(k, vi)

− [γ̇1(k, vi)]k
Γ(k)[γ1(k, vi)]2

}
,

Lk,k = −nλψ′(k) +
(λ− 1)
Γ(k)

n∑

i=1

{
[γ̈1(k, vi)]kk

γ1(k, vi)
− {[γ̇1(k, vi)]k}2

Γ(k)[γ1(k, vi)]2

}
,

Lk,λ = −nψ(k) +
1

Γ(k)

n∑

i=1

{
[γ̇1(k, vi)]k
γ1(k, vi)

}
, Lλ,λ =

−n

λ2
,

25

Page 26 of 41

URL: http:/mc.manuscriptcentral.com/gscs

Journal of Statistical Computation and Simulation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
where

vi =
( ti
α

)τ
, [γ̇1(k, vi)]k =

∫ vi

0
wk−1exp(−w) log(w)dw,

[γ̈1(k, vi)]kk =
∫ vi

0
wk−1exp(−w)[log(w)]2dw,

ψ(.) is the digamma function and ψ′(.) is the polygamma function.
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