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Abstract

Motivation: DNA microarrays are now capable of pro-

viding genome-wide patterns of gene expression across

many di�erent conditions. The �rst level of analysis of

these patterns requires determining whether observed dif-

ferences in expression are signi�cant or not. Current

methods are unsatisfactory due to the lack of a system-

atic framework that can accommodate noise, variability,

and low replication often typical of microarray data.

Results: We develop a Bayesian probabilistic frame-

work for microarray data analysis. At the simplest level,

we model log-expression values by independent normal

distributions, parameterized by corresponding means and

variances with hierarchical prior distributions. We de-

rive point estimates for both parameters and hyperpa-

rameters, and regularized expressions for the variance

of each gene by combining the empirical variance with

a local background variance associated with neighboring

genes. An additional hyperparameter, inversely related

to the number of empirical observations, determines the

strength of the background variance. Simulations show

that these point estimates, combined with a t-test, pro-

vide a systematic inference approach that compares fa-

vorably with simple t-test or fold methods, and partly

compensate for the lack of replication.

Availability: The approach is implemented in a soft-

ware called Cyber-T accessible through a Web interface at

www.genomics.uci.edu/software.html. The code is avail-

able as Open Source and is written in the freely available

statistical language R.
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1 Introduction

DNA gene expression microarrays allow biologists to

study genome-wide patterns of gene expression (DeRisi

et al., 1997; Eisen et al., 1998; Holstege et al., 1998). In

these arrays, total RNA is reverse-transcribed to create

either radioactive- or uorescent-labeled cDNA which is

hybridized with a large DNA library of gene fragments

attached to a glass or membrane support. Phospho-

rimaging or other imaging techniques are used to pro-

duce expression measurements for thousands of genes un-

der various experimental conditions. Use of these arrays

is rapidly creating terabytes of information, potentially

capable of providing fundamental insights into biolog-

ical processes ranging from gene function, to develop-

ment, to cancer (Spellman et al., 1998; Alon et al., 1999;

Golub et al., 1999; Lee et al., 1999; White et al., 1999;

Ly et al., 2000). Unfortunately, data analysis techniques

for microarray data are still at an early stage of devel-

opment (Zhang, 1999). Our goal here is to develop a

general Bayesian statistical framework for the analysis

of array data.

Gene expression array data can be analyzed on at least

three levels of increasing complexity. First, the level

of single genes, where one seeks to establish whether

each gene in isolation behaves di�erently in a control

versus a treatment situation. The second level consid-

ers gene combinations, where clusters of genes are ana-

lyzed in terms of common functionalities, interactions,

co-regulation, and so forth. The third level attempts to

infer the underlying regulatory regions and gene/protein

networks that ultimately are responsible for the patterns



observed. This paper focuses on the �rst level of analy-

sis.

For simplicity, we assume that for each gene X we

have a set of measurements xc1; : : : ; x
c
nc

and xt1; : : : ; x
t
nt

representing expression levels, or rather their logarithms,

in both a control and treatment situation. Treatment is

of course taken in a broad sense to mean any condition

di�erent from the control. For each gene, the fundamen-

tal question we wish to address is whether the level of

expression is signi�cantly di�erent in the two situations.

While it might seem that standard statistical techniques

could easily address such a problem, this is in fact not

the case.

One approach commonly used in the current literature

is a simple-minded fold approach, in which a gene is de-

clared to have signi�cantly changed if its average expres-

sion level varies by more than a constant factor, typically

2, between the treatment and control conditions. Inspec-

tion of gene expression data suggests, however, that such

a simple \2-fold rule" is unlikely to yield optimal results,

since a factor of 2 can have quite di�erent signi�cance

depending on expression levels.

A related approach to the same question is the use of

a t-test, for instance on the logarithm of the expression

levels. This is similar to the fold approach because the

di�erence between two logarithms is the logarithm of

their ratio. This approach is not necessarily identical to

the �rst because the logarithm of the mean is not equal

to the mean of the logarithms; in fact it is always strictly

greater, by convexity of the logarithm function. But

with a reasonable degree of approximation, a test of the

signi�cance of the di�erence between the log expression

levels of two genes is equivalent to a test of whether or

not their fold change is signi�cantly di�erent from 1.

In a t-test, the empirical means mc and mt and vari-

ances s2c and s2t are used to compute a normalized dis-

tance between the two populations in the form:

t = (mc �mt)=

s
s2
c

nc
+
s2
t

nt
(1)

where, for each population, m =
P

i
xi=n and s2 =P

i
(xi � m)2=(n � 1) are the well-known estimates for

the mean and standard deviation. It is known that t

follows approximately a Student distribution, with

f =
[(s2

c
=nc) + (s2

t
=nt)]

2

(s2
c
=nc)2

nc�1
+

(s2
t
=nt)2

nt�1

(2)

degrees of freedom. When t exceeds a certain threshold

depending on the con�dence level selected, the two pop-

ulations are considered to be di�erent. Because in the

t-test the distance between the population means is nor-

malized by the empirical standard deviations, this has

the potential for addressing some of the shortcomings

of the �xed fold-threshold approach. The fundamental

problem with the t-test for microarray data, however,

is that the repetition numbers nc and/or nt are often

small because experiments remain costly or tedious to

repeat, even with current technology. Small populations

of size n = 1; 2 or 3 are still very common and lead,

for instance, to signi�cant underestimates of the vari-

ances. Thus a better framework is needed to address

these shortcomings.

Here we develop a Bayesian probabilistic framework

for microarray data, which bears some analogies with

the framework used for sequence data (Baldi & Brunak,

1998) and addresses the problem of detecting gene di�er-

ences. Because a complete Bayesian treatment is compu-

tationally demanding, we also develop approximate com-

putational shortcuts to strike a balance between rigor

and computational e�ciency. In particular, we develop

methods for the regularization of the t-test approach.

2 Bayesian probabilistic frame-

work

Several decades of research in sequence analysis and

other areas have demonstrated the advantages and ef-

fectiveness of probabilistic approaches to biological data.

Indeed, DNA microarray data is characterized by a high

degree of measurement noise and variability. Biological

systems also have very high dimensionality: even in a

large array experiment, only a very small subset of rel-

evant variables is measured, or even under control. The

vast majority of variables remains hidden and must be

inferred or integrated out by probabilistic methods.

The general Bayesian statistical framework codi�es

how to proceed with data analysis and inference in a

rational way. Under a small set of common sense ax-

ioms, it can be shown remarkably that subjective de-

grees of belief must obey the rules of probability and

proper induction must proceed in a unique way, by prop-

agation of information through Bayes theorem. In par-

ticular, at any given time, any hypothesis or model

M can be assessed by computing its posterior proba-

bility in light of the data according to Bayes theorem:

P (M jD) = P (DjM)P (M)=P (D), where P (DjM) is the

data likelihood and P (M) is the prior probability cap-

turing any background information one may have.

Probabilistic modeling of microarray data

In sequence data, the most simple probabilistic model

is that of a die (Figure 1), associated with the average

composition of the family of DNA, RNA, or protein se-

quences under study. The next level of modeling com-

plexity is a �rst-order Markov model with one die per

position or per column in a multiple alignment. In spite
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Figure 1: DNA dice.

of their simplicity, these models are routinely used, for

instance as a background models against which the per-

formances of more sophisticated models can be assessed.

In array data, the simplest model would assume that

all data points are independent from each other and

extracted from a single continuous distribution, for in-

stance a Gaussian distribution. While trivial, this Gaus-

sian die model still requires the computation of inter-

esting quantities, such as the average level of activity

and its standard deviation, which can be useful to cali-

brate or assess global properties of the data. The next

equivalent level of modeling is a set of independent dis-

tributions, one for each dimension, i.e. for instance each

gene. While it is obvious that genes interact with each

other in complex ways and therefore are not indepen-

dent, the independence approximation is still useful and

underlies any attempt, probabilistic or other, to deter-

mine whether expression level di�erences are signi�cant

solely on a gene-by-gene basis.

Here we �rst assume that the expression-level mea-

surements of a gene in a given situation have a roughly

Gaussian distribution. In our experience, with com-

mon technologies this assumption is reasonable, espe-

cially for the logarithm of the expression levels, corre-

sponding to lognormal raw expression levels. To the best

of our knowledge, large-scale replicate experiments have

not been carried out yet to make more precise assess-

ments. It is clear, however, that other distributions, such

as gammas or mixtures of Gaussians/gammas, could be

introduced at this stage. These would impact the de-

tails of the analysis (see also (Wiens, 1999)), but not the

general Bayesian probabilistic framework.

Thus, in what follows we assume that the data has

been pre-processed{taking logarithms if needed{to the

point where we can model the corresponding measure-

ments of each gene in each situation (treatment or con-

trol) with a normal distribution N (x;�; �2). For each

gene and each condition, we have a two-parameter model

w = (�; �2), and by focusing on one such model we can

omit indices identifying the gene or the condition. As-

suming that the observations are independent, the like-

lihood of the data D is given by:

P (Dj�; �2) �
nY
i=1

N (xi;�; �
2)

= C(�2)�n=2e
�

P
i

(xi��)
2
=2�2

= C(�2)�n=2e�(n(m��)
2+(n�1)s2)=2�2(3)

Here and everywhere else, we write C to denote the nor-

malizing constant of any distribution. All the informa-

tion about the sample that is relevant for the likelihood

is summarized in the su�cient statistics n, m, and s2.

The case in which either the mean or the variance of the

Gaussian model is supposed to be known is of course

easier and is well studied in the literature (Box & Tiao,

1973; Pratt et al., 1995).

Priors

A full Bayesian treatment requires introducing a prior

distribution P (�; �2). The choice of a prior is part of

the modeling process, and several alternatives (Box &

Tiao, 1973; Pratt et al., 1995) are possible, a sign of

the exibility of the Bayesian approach rather than its

arbitrariness. Several kinds of priors for the mean and

variance of a normal distribution have been studied in

the literature, including the non-informative improper

prior and the conjugate prior. For microarray data, the

conjugate prior seems to be more suitable and exible,

not only because of its convenient form, but also because

it incorporates the basic observation that � and �2 are

typically not independent.

The conjugate prior When both the prior and the

posterior have the same functional form, the prior is

said to be a conjugate prior. When estimating the mean

alone of a normal model of known variance, the obvi-

ous conjugate prior is also a normal distribution. In the

case of dice models for biological sequences, the stan-

dard conjugate prior is a Dirichlet distribution (Baldi

& Brunak, 1998). The form of the likelihood in Equa-

tion 3 shows that the conjugate prior density must also

have the form P (�j�2)P (�2), where the marginal P (�2)
is scaled inverse gamma (Appendix) and the conditional

distribution P (�j�2) is normal. This leads to a hierar-

chical model with a vector of four hyperparameters for

the prior � = (�0; �0; �0 and �
2
0) with the densities:

P (�j�2) = N (�;�0; �
2=�0) (4)
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and

P (�2) = I(�2; �0; �20) (5)

The expectation of the prior is �nite if and only if �0 > 2.

The prior P (�; �2) = P (�; �2j�) is given by:

C��1(�2)�(�0=2+1) exp

�
�
�0

2�2
�20 �

�0

2�2
(�0 � �)2

�
(6)

Notice that it makes perfect sense with array data to

assume a priori that � and �2 are dependent, as suggested

immediately by visual inspection of typical microarray

data sets (Figure 2). The hyperparameters �0 and �
2=�0

can be interpreted as the location and scale of �, and the

hyperparameters �0 and �20 as the degrees of freedom

and scale of �2. Applying Bayes theorem and after some

algebra, the posterior has the same functional form as

the prior

P (�; �2jD;�) = N (�;�n; �
2=�n)I(�2; �n; �2n) (7)

with

�n =
�0

�0 + n
�0 +

n

�0 + n
m (8)

�n = �0 + n (9)

�n = �0 + n (10)

�n�
2
n = �0�

2
0 + (n� 1)s2 +

�0n

�0 + n
(m� �0)

2(11)

The parameters of the posterior combine information

from the prior and the data in a sensible way. The mean

�n is a convex weighted average of the prior mean and

the sample mean. The posterior degree of freedom �n
is the prior degree of freedom plus the sample size. The

posterior sum of squares �n�
2
n is the sum of the prior sum

of squares �0�
2
0 , the sample sum of squares (n�1)s2, and

the residual uncertainty provided by the discrepancy be-

tween the prior mean and the sample mean.

While it is possible to use a prior mean �0 for gene

expression data, in many situations it is su�cient to use

�0 = m. The posterior sum of squares is then obtained

precisely as if one had �0 additional observations all as-

sociated with deviation �20 . While super�cially this may

seem like setting the prior after having observed the data

(MacKay, 1992), a similar e�ect is obtained using a pre-

set value �0 with �0 ! 0, i.e., with a very broad stan-

dard deviation so that the prior belief about the location

of the mean is essentially uniform and vanishingly small.

The selection of the hyperparameters for the prior is dis-

cussed in more detail below.

It can readily be shown that the conditional poste-

rior distribution P (�j�2; D; �) of the mean is normal

N (�n; �
2=�n), the marginal posterior P (�jD;�) of the

mean is Student t(�n; �n; �
2
n=�n), and the marginal pos-

terior P (�2jD;�) of the variance is scaled inverse gamma
I(�n; �2n).
In the literature, semi-conjugate prior distributions

also are used where the functional form of the prior

distributions on � and �2 are the same as in the con-

jugate case (normal and scaled inverse gamma, respec-

tively) but independent of each other, i.e. P (�; �2) =

P (�)P (�2). However, as previously discussed, this as-

sumption of independence is unlikely to be suitable for

DNA microarray data. More complex priors also could

be constructed using mixtures, a mixture of conjugate

priors leading to a mixture of conjugate posteriors.

3 Parameter point estimates

The posterior distribution P (�; �2jD;�) is the funda-

mental object of Bayesian analysis and contains the rel-

evant information about all possible values of � and �2.

However, it can be useful to collapse this information-

rich distribution into single point estimates. This can be

done in a number of ways. In general, the most robust

answer is obtained using the mean of the posterior (MP)

estimate. An alternative is to use the mode of the pos-

terior, or MAP (maximum a posteriori) estimate. For

completeness, we derive and compare both kinds of es-

timates for the conjugate prior. By integration, the MP

estimate is given by

� = �n and �2 =
�n

�n � 2
�2n (12)

provided �n > 2. If we take �0 = m, we then get the

following MP estimate:

� = m and �2 =
�n�

2
n

�n � 2
=
�0�

2
0 + (n� 1)s2

�0 + n� 2
(13)

provided �0 + n > 2. This is the default estimate imple-

mented in the Cyber-T software described below. From

Equation 7, the MAP estimates are:

� = �n and �2 =
�n�

2
n

�n � 1
(14)

If we use �0 = m, these reduce to:

� = �n and �2 =
�n�

2
n

�n � 1
=
�0�

2
0 + (n� 1)s2

�0 + n� 1
(15)

The modes of the marginal posterior are given by

� = �n and �2 =
�n�

2
n

�n + 2
(16)

In practice, Equations 13 and 15 give similar results

and can be used with gene expression arrays. The
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slight di�erences between the two closely parallel what

is seen with Dirichlet priors on sequence data (Baldi &

Brunak, 1998), Equation 13 generally being a slightly

better choice. The Dirichlet prior is equivalent to the

introduction of pseudo-counts to avoid setting the prob-

ability of any amino acid or nucleotide to zero. In array

data, few observation points are likely to result in a poor

estimate of the variance. With a single point (n = 1),

for instance, we certainly want to refrain from setting the

corresponding variance to zero; hence the need for regu-

larization, which is achieved by the conjugate prior. In

the MP estimate, the empirical variance is modulated by

�0 \pseudo-observations" associated with a background

variance �20 .

4 Full Bayesian treatment and

hyperparameter point esti-

mates

At this stage of modeling, each gene is associated with

two models wc = (�c; �
2
c ) and wt = (�t; �

2
t ); two sets of

hyperparameters �c and �t; and two posterior distribu-

tions P (wcjD;�c) and P (wtjD;�t). A full probabilistic

treatment would require introducing prior distributions

over the hyperparameters. These could be integrated out

to obtain the true posterior probabilities P (wcjD) and
P (wtjD), which then could be integrated over all values

of wt and wc to determine whether the two models are

di�erent or not. Notice that this approach is signi�cantly

more general than the plain t-test and could in principle

detect interesting changes that are beyond the scope of

the t-test or fold approaches. For instance, a gene with

the same mean but a very di�erent variance between

the control and treatment situations goes undetected by

these methods, although the change in variance might

be biologically relevant. Even if we restrict ourselves to

an analysis of the means �c and �t only, the probabil-

ity P (�c � �tjD;�t; �c) must be computed, and would

typically require numerical integration. While the latter

can be performed easily on today's computers, here we

use a simple approximation strategy to the full Bayesian

treatment that relies solely on point estimates.

Point estimates, however, require determining hyper-

parameter values, and this can be addressed in a number

of ways (MacKay, 1992; MacKay, 1999). Here again, one

possibility is to de�ne a prior on the hyperparameters

and try to integrate them out in order to compute the

true posterior P (wjD) and determine the location of its

mode, leading to true MAP estimates of w. More pre-

cisely, this requires integrating P (wj�) and P (wj�jD)
with respect to the hyperparameter vector �. An alter-

native that avoids the integration of the hyperparam-

eters is the evidence framework described in (MacKay,

1992). In the evidence framework, we compute point

estimates of the hyperparameters by MAP estimation

(MP would again require integrating over hyperparame-

ters) over the posterior

P (�jD) =
P (Dj�)P (�)

P (D)
(17)

If we take a uniform prior P (�), then this is equivalent

to maximizing the evidence P (Dj�)

P (Dj�) = P (Djw;�)P (wj�)=P (wjD;�)
= P (Djw)P (W j�)=P (wjD;�) (18)

In principle, computing the evidence requires integrating

out the parameters w of the model. Using the expression

for the likelihood and the conjugate prior and posterior,

however, we can here obtain the evidence without inte-

gration, directly from Equation 18

P (Dj�) = (2�)�n=2
p
�0p
�n

(�0=2)
�0=2

(�n=2)�n=2
��00
��nn

�(�n=2)

�(�0=2)
(19)

The partial derivatives and critical points of the evidence

are discussed in the Appendix, where it is shown, for

instance, that the mode is achieved for �0 = m.

5 Implementation

For e�ciency, we have implemented an intermediate

solution in which we use the t-test with the regular-

ized standard deviation of Equation 13 and the num-

ber of degrees of freedom associated with the corre-

sponding augmented populations of points, which inci-

dentally can be fractional. This solution has been im-

plemented in a Web server called Cyber-T accessible at:

http://128.200.5.223/CyberT/ (see also Appendix and

www.genomics.uci.edu for more details). In Cyber-T,

plain and Bayesian versions of the t-test can be per-

formed on both the raw data and the log-transformed

data.

In the simplest case, where we use �0 = m, we must

select the values of the background standard deviation

�20 , and its strength �0. The parameter �0 represents

the degree of con�dence in the background variance �20
versus the empirical variance. In Cyber-T, the value of

�0 can be set by the user by clicking on the correspond-

ing button. The smaller n, the larger �0 ought to be.

A simple rule of thumb is to assume that K > 2 points

are needed to properly estimate the standard deviation

and keep n + �0 = K. This allows for a exible treat-

ment of situations in which the number n of available

data points varies from gene to gene. In our current im-

plementation, we use a default of K = 10. A special
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case can be made for genes with activity levels close to

the minimal detection level of the technology being used.

The measurements for these genes being particularly un-

reliable, it may be wise to use a stronger prior for them

with a higher value of �0 (this feature is currently not

implemented).

For �0, one could use the standard deviation of the

entire set of observations or, depending on the situation,

of particular categories of genes. We favored a exible

implementation under which the background standard

deviation is estimated by pooling together all the neigh-

boring genes contained in a window of size w. Cyber-T

automatically ranks the expression levels of all the genes

and lets the user choose this window size using the corre-

sponding button. The default is w = 101, corresponding

to 50 genes immediately above and below the gene un-

der consideration. Adaptive window sizes are briey dis-

cussed in the last section, together with the possibility

of deriving regression estimates of �20 .

6 Simulations

We have used the Bayesian approach and Cyber-T to

analyze a number of published and unpublished data

sets. In every high density array experiments we have

analyzed, we have observed a strong scaling of the ex-

pression variance over replicated experiments with the

average expression level (on both a log-transformed and

raw scale). As a result, a threshold for signi�cance based

solely on fold changes is likely to be too liberal for genes

expressed at low levels and too conservative for highly

expressed genes. While several biologically relevant re-

sults are reported elsewhere (Long et al., 2001), we have

found that the Bayesian approach compares favorably

to a simple fold approach or a straight t-test and par-

tially overcomes de�ciencies related to low replication in

a statistically consistent way.

One particularly informative data set for comparing

the Bayesian approach to simple t-test or fold change

is the high density array experiment reported in (Ar�n

et al., 2000) comparing Escherichia coli cells that were

wild type to cells that were mutant for the global regu-

latory protein IHF (integration host factor). The main

advantage of this data set is its four-fold replication for

both wild type and mutant alleles. The regularizing ef-

fect of the Cyber-T prior based on the background stan-

dard deviation is shown for this data in Figure 2 and

in the simulation described below. The �gure clearly

shows that standard deviations vary substantially over

the range of expression levels, in this case roughly in a

monotonic decreasing fashion, although other behaviors

also have been observed. Interestingly, in these plots the

variance in log-transformed expression levels is higher

for genes expressed at lower levels rather than at higher

ones. These plots con�rm that genes expressed at low or

near background levels may require a stronger value of

�0, or alternatively could be ignored in expression analy-

ses. The variance in the measurement of genes expressed

at a low level is large enough that in many cases it will

be di�cult to detect signi�cant changes in expression for

this class of loci.

In analyzing the data we found that large fold changes

in expression were often associated with p-values not in-

dicative of statistical change in the Bayesian analysis,

and conversely subtle fold changes were often highly sig-

ni�cant as judged by the Bayesian analysis. In these two

situations, the conclusions drawn using the Bayesian ap-

proach appear robust relative to those drawn from fold

change alone, as large non-statistically signi�cant fold

changes were often associated with large measurement

errors, and statistically signi�cant genes showing less

than two fold changes were often measured very accu-

rately. As a result of the level of experimental replica-

tion seen in (Ar�n et al., 2000), we were able to look

at the consistency of the Bayesian estimator relative to

the t-test. We found that in independent samples of

size 2 drawn from the IHF data set (i.e., two experi-

ments versus two controls) the set of 120 most signi�cant

genes identi�ed using the Bayesian approach had approx-

imately 50% of their members in common, whereas the

set of 120 most signi�cant genes identi�ed using the t-

test had only approximately 25% of their members in

common. This suggests that for two fold replication the

Bayesian approach is approximately twice as consistent

as a simple t-test at identifying genes as up- or down-

regulated, although with only two fold replication there

is a great deal of uncertainty associated with high den-

sity array experiments.

To further assess the Bayesian approach, here we simu-

late an arti�cial data set assuming Gaussian distribution

of log expressions, with means and variances in ranges

similar to those encountered in the data set of (Ar�n

et al., 2000), with 1000 replicates for each parameter

combination. Selected means for the log data and asso-

ciated standard deviations (in brackets) are as follows:

-6 (0.1), -8 (0.2), -10 (0.4), -11 (0.7), -12 (1.0). On this

arti�cially generated data, we can compare the behav-

ior of a simple ratio (2-fold and 5-fold) approach, with a

simple t-test, with the Bayesian t-test using the default

settings of Cyber-T. The main results, reported in Table

1, can be summarized as follows:

� By 5 replications (5 control and 5 treatment) the

Bayesian approach and t-test give similar results.

� When the number of replicates is\low" (2 or 3), the

Bayesian approach performs better than the t-test.

� The false positive rate for the Bayesian and t-test

approach are as expected (0.05 and 0.01 respec-
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Figure 2: DNAmicroarray experiment on Escherichia coli. Data obtained from reverse transcribed P33 labele RNA hybridized

to commercially available nylon arrays (Sigma Genosys) containing each of the 4,290 predicted E. coli genes. The sample

included a wild-type strain (control) and an otherwise isogenic strain lacking the gene for the global regulatory gene, integration

host factor (IHF) (treatment). n = 4 for both control and experimental situations. The horizontal axis represents the mean

� of the logarithm of the expression levels, and the vertical axis shows the corresponding standard deviations (std=�). The

left column corresponds to raw data; the right column to regularized standard deviations using Equation 13. Window size is

w = 101 and K = 10 (see main text). Data are from Ar�n et al. 2000.

tively) except for the Bayesian with very small repli-

cation (i.e., 2) where it appears elevated.

� The false positive rate on the ratios is a function

of expression level and is much higher at lower ex-

pression levels. At low expression levels the false

positive rate on the ratios is unacceptably high.

� For a given level of replication the Bayesian ap-

proach at p < 0:01 detects more di�erences than

a 2-fold change except for the case of low expression

levels (where the false positive rate from ratios is

elevated).

� The Bayesian approach with 2 replicates outper-

forms the t-test with 3 replicates (or 2 versus 4 repli-

cates).

� The Bayesian approach has a similar level of perfor-

mance when comparing 3 treatments to 3 controls,

or 2 treatments to 4 controls. This suggests an ex-

perimental strategy where the controls are highly

replicated and a number of treatments less highly

replicated.

7 Discussion and Extensions

We have developed a probabilistic framework for ar-

ray data analysis to address a number of current ap-

proach shortcomings related to small sample bias and

the fact that fold di�erences have di�erent signi�cance
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Table 1: Number of positives detected out of 1000 genes). Data was generated using normal distribution on a log scale in

the range of Ar�n et al. 2000, with 1000 replicates for each parameter combination. Means of the log data and associated

standard deviations (in brackets) are as follows: -6 (0.1), -8 (0.2), -10 (0.4), -11 (0.7), -12 (1.0). For each value of n, the �rst

three experiments correspond to the case of no change and therefore yield false positive rates. Analysis was carried out using

Cyber-T with default settings (w = 101, K = 10) and degrees of freedom n+ �0 � 2.

Log expression Ratio Plain t-test Bayes

n from to 2-fold 5-fold p < 0:05 p < 0:01 p < 0:05 p < 0:01

2 -8 -8 1 0 38 7 73 9

2 -10 -10 13 0 39 11 60 11

2 -12 -12 509 108 65 10 74 16

2 -6 -6.1 0 0 91 20 185 45

2 -8 -8.5 167 0 276 71 730 419

2 -10 -11 680 129 202 47 441 195

3 -8 -8 0 0 42 9 39 4

3 -10 -10 36 0 51 11 39 6

3 -12 -12 406 88 44 5 45 4

3 -6 -6.1 0 0 172 36 224 60

3 -8 -8.5 127 0 640 248 831 587

3 -10 -11 674 62 296 139 550 261

5 -8 -8 0 0 53 13 39 8

5 -10 -10 9 0 35 6 31 3

5 -12 -12 354 36 65 11 54 4

5 -6 -6.1 0 0 300 102 321 109

5 -8 -8.5 70 0 936 708 966 866

5 -10 -11 695 24 688 357 752 441

2v4 -8 -8 0 0 35 4 39 6

2v4 -10 -10 38 0 36 9 40 3

2v4 -12 -12 446 85 46 17 43 5

2v4 -6 -6.1 0 0 126 32 213 56

2v4 -8 -8.5 123 0 475 184 788 509

2v4 -10 -11 635 53 233 60 339 74

at di�erent expression levels. The framework is a form

of hierarchical Bayesian modeling with Gausssian gene-

independent models. Although the Gaussian represen-

tation requires further testing, other distributions can

easily be incorporated in a similar framework. As a �rst

step, we have implemented a regularized t-test approach

that is only a shortcut with respect to the full Bayesian

treatment. While there can be no perfect substitute for

experimental replication (see also (Lee et al., 2000)), we

have shown nonetheless that this approach is e�ective

and indeed has a regularizing e�ect on the data. In par-

ticular, in controlled experiments, it compares favorably

with a standard fold approach or a conventional t-test.

Depending on goals and implementation constraints,

the method can be extended in a number of directions.

For instance, regression functions could be computed o�-

line to establish the relationship between standard de-

viation and expression levels and used to produce back-

ground standard deviations. Another possibility is to use

adaptive window sizes to compute the local background

variance, where the size of the window could depend, for

instance, on the derivative of the regression function. In

an expression range in which the standard deviation is

relatively at (i.e. between -8 and -4 in Figure 2), the size

of the window is less relevant than in a region where the

standard deviation varies rapidly (i. e., between -12 and

-10 in Figure 2). A more complete Bayesian approach

could also be implemented, for instance integrating the

marginal posterior distributions, which in the case con-

sidered here are Student distributions), to estimate the

probability P (�c � �tjD;�t; �c).
The approach also can be extended to more complex

designs and/or designs involving gradients of an exper-

imental variable and/or time series designs. Examples

would include a design in which cells are grown in the

presence of di�erent stressors (urea, ammonia, oxygen

peroxide), or when the molarity of a single stressor is

varied (0, 5, 10 mM). Generalized linear and non-linear

models can be used in this context.

The most challenging problem, however, is to extend
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the probabilistic framework towards the second level of

analysis, taking into account possible interactions and

correlations amongst genes. If two or more genes have

similar behavior in a given treatment situation, deci-

sions regarding their expression changes can be made

more robustly at the level of the corresponding clus-

ter. A number of ad hoc clustering procedures have

been applied to DNA microarray data (Eisen et al., 1998;

Alon et al., 1999; Haussler et al., 1999; Heyer et al., 1999;

Tamayo et al., 1999) without any clear emerging consen-

sus. Of all clustering algorithms, k-means has probably

the cleanest probabilistic interpretation as a form of EM

(expectation-maximization) on the underlying mixture

model. Multivariate normal models and Gaussian pro-

cesses could provide the starting probabilistic models for

this level of analysis.

With a multivariate normal model, for instance, � is

a vector of means and � is a symmetric positive de�nite

covariance matrix with determinant j�j. The likelihood
has the form

Cj�j�n=2 exp[�
1

2

nX
i=1

(Xi � �)t��1(Xi � �)] (20)

The conjugate prior, generalizing the normal-scaled-

inverse-gamma distribution, is based on the inverse

Wishart distribution (Appendix) which generalizes the

scaled inverse gamma distribution and provides a prior

on �. In analogy with the one-dimensional case, the

conjugate prior is parameterized by (�0;�0=�0; �0;�0).

� has an inverse Wishart distribution with parameters

�0 and ��10 (Appendix). Conditioned on �, � has a

multvariate normal prior N (�;�0;�=�0). The poste-

rior then has the same form, a product of a multivari-

ate normal with an inverse Wishart, parameterized by

(�n;�n=�n; �n;�n). The parameters satisfy:

�n =
�0

�0 + n
�0 +

n

�0 + n
m

�n = �0 + n

�n = �0 + n

�n = �0 +

nX
1

(Xi �m)(Xi �m)t

+
�0n

�0 + n
(m� �0)(m� �0)

t (21)

Thus estimates similar to Equation 13 can be derivedin

this multidimensional case.

Bayesian methods are being applied increasingly to a

variety of data-rich domains. Whether or not one sub-

scribes to the axioms and practices of Bayesian statistics

(Box & Tiao, 1973; Berger, 1985; Pratt et al., 1995), it

is wise to model biological data in general, and microar-

ray data in particular, in a probabilistic manner for the

reasons outlined in Section 2. Besides DNA microarrays,

there are several other kinds of biological arrays, at dif-

ferent stages of development, that could bene�t from a

similar probabilistic treatment. By enabling the combi-

natorial interaction of a large number of molecules with

a large library, these high-throughput approaches are

rapidly generating terabytes of information, which are

overwhelming conventional methods of biological analy-

sis. Going directly to a systematic probabilistic frame-

work may contribute to the acceleration of the discov-

ery process by avoiding some of the pitfalls observed in

the history of sequence analysis, where it took several

decades for probabilistic models to emerge as the proper

framework.

Appendix:

Estimating hyperparameters from the evidence

The evidence P (Dj�) (Equation 19) is continuous and
di�erentiable with respect to the hyperparameters over

their corresponding valid ranges. Considering convexity

and setting the vector of partial derivatives @P (Dj�)@�
to 0 shows that the maximum of the evidence is achieved

at a point satistying

�0 = m (22)

�20 = s2(n� 1)=n (23)

Note that the estimate for �20 leads only to a small

upward revision of the standard deviation estimate in

Equation 13. The relation @P (Dj�)=@�0 can be solved

in closed form. It is easy to see, however, that when

�0 = m, the derivative is always positive and the critical

equation has no solutions. The evidence is 0 for �0 = 0

and grows with �0 to a computable asymptotic value. In

practice, it is su�cient to ensure that �0 is large with

respect to n, for instance �0 = 10n. In terms of priors,

a large value of �0 in this case corresponds to a very

narrow Gaussian distribution for � centered on m.

The critical equation for �0 cannot be solved in closed

form but must be handled numerically. As a function of

�0, and when �0 = m, the evidence has the form:

P (Dj�) = C
(�0=2)

�0=2

[(�0 + n)=2](�0+n)=2
�((�0 + n)=2)

�(�0=2)

��00
[(�0s2 + (n� 1)s2)=(�0 + n)](�0+n)=2

(24)

As a function of �0, the asymptotic value of the ev-

idence P (Dj�) with �0 = m, �0 = +1, and �20 =

s2(n� 1)=n is
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(2�)�n=2
(�0=2)

�0=2

[(�0 + n)=2](�0+n)=2
�((�0 + n)=2)

�(�0=2)

1

2
s�n (25)

The scaled inverse gamma distribution

The scaled inverse gamma distribution I(x; �; s2) with
� > 0 degrees of freedom and scale s > 0 is given by:

(�=2)�=2

�(�=2)
s�x�(�=2+1)e��s

2
=(2x) (26)

for x > 0. The expectation is (�=� � 2)s2 when � > 2;

otherwise it is in�nite. The mode is always (�=� +2)s2.

The inverse-Wishart distribution

The inverse Wishart distribution I(W ; �; S�1), where

� represents the degrees of freedom and S is a k � k

symmetric, positive de�nite scale matrix, is given by

(2�k=2�k(k�1)=4
kY
i=1

�(
� + 1� i

2
))�1jSj�=2jW j�(�+k+1)=2

exp(�
1

2
tr(SW�1)) (27)

where W is also positive de�nite. The expectation of W

is E(W ) = (� � k � 1)�1S.

The Cyber-T software

Cyber-T is particularly suited to experimental designs

in which replicate control cDNA samples are compared

to replicate experimental cDNA samples. The program

calculates basic summary statistics, performs statistical

analyses to determine whether observed di�erences be-

tween the control and experimental values are likely to

be real, and automatically produces a number of useful

plots of the data.

Cyber-T is designed to accept data in the large data

spreadsheet format, which is generated as output by soft-

ware typically used to analyze array experiment images.

An element may correspond to a single spot on the array

(typical of membrane- or glass slide-based arrays) or a

set of spots (typical of GeneChips (Fodor et al., 1991;

Lipschutz et al., 1999)) designed to query labeled RNA.

We will refer to these elements as genes or gene probes

since each element is generally designed to query a gene.

For each gene, data consists of background-subtracted

expression levels for both experimental and control treat-

ment. It is assumed that data from independent hy-

bridization experiments within a given experiment treat-

ment will be contained in adjacent columns. Each gene

will have a number of \labels" that identify a number of

properties of that gene contained in adjacent columns.

Examples of labels include: gene name, map location of

gene, function of gene, and mRNA length. In order to

use Cyber-T, this data matrix should be saved on the

user's computer as a tab-delimited text �le with column

headings removed or pre�xed with the hash character

(#). Extra blank lines at the end of the �le should be

removed. These data are uploaded to Cyber-T using the

\Browse" button in the Cyber-T browser window. After

uploading the data �le, the user de�nes the columns on

which analysis will be performed. Missing data should

be coded as \NA" and data that are at or below back-

ground should be coded as \0" and treated as the \lowest

expression level reliably detected", which is de�ned as

the 0.0025 percentile associated with all detected genes.

Detailed instructions for using Cyber-T can be found on

the corresponding web page.

All statistical analysis is carried out using the hdar-

ray library of functions written in R. R is a freely

available statistical analysis environment (http://cran.r-

project.org) adhering to the Open Source development

model (http://www.ci.tuwien.ac.at/R/). The hdarray

functions are normally invoked through the Cyber-T

Web-based interface, but also can be used directly and

extended or modi�ed through an X-Window interface

(http://www.x.org/about x.htm) to R. A brief tuto-

rial on how to analyze data directly in R is available

at http://genomics.biochem.uci.edu/CyberT/, together

with instructions for installing the Cyber-T interface and

software. This tutorial lists the functions available as

part of the hdarray library and R resources. The library

and the Cyber-T Web interface also include routines

for analyzing paired samples, which would be produced

from two-dye glass-slide microarray experiments (Schena

et al., 1995a; Schena et al., 1995b; Shalon et al., 1996;

Heller et al., 1997; Lashkari et al., 1997). The Web-

based interface is written in Perl (http://www.perl.com)

to pass the data and other information to a series of

functions. This combination of a hard-wired front-end

Web interface to a exible back end allows users to eas-

ily explore their data while simultaneously providing a

framework for growth and evolution of non-proprietary

analysis routines.

Cyber-T generates three output �les, two of which

(allgenes.txt and siggenes.txt) can either be viewed in

the browser window or downloaded and imported into

a spreadsheet application for user-speci�c formatting.

These �les return the original data and a number of ad-

ditional columns containing summary statistics, includ-

ing the mean and standard deviation of both raw and

log transformed data, estimates of the standard devia-

tions employing the Bayesian prior, t-tests incorporating

the Bayesian prior on both the raw and log-transformed

data, p-values associated with t-tests, and \signed fold-

change" associated with the experiment. The exact con-

tent of these �les is detailed online. Cyber-T also gener-

ates automatically a postscript �le CyberT.ps containing
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a series of graphs that are useful in visualizing the data.
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