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In this paper we introduce, for the first time, the Weibull-Geometric distribution which ge-
neralizes the exponential-geometric distribution proposed by Adamidis and Loukas [2]. The
hazard function of the last distribution is monotone decreasing but the hazard function of the
new distribution can take more general forms. Unlike the Weibull distribution, the proposed
distribution is useful for modeling unimodal failure rates. We derive the cumulative distribu-
tion and hazard functions, the density of the order statistics and obtain expressions for its
moments and for the moments of the order statistics. We give expressions for the Rényi and
Shannon entropies. The maximum likelihood estimation procedure is discussed and an algo-
rithm EM (Dempster et al. [5]; McLachlan and Krishnan [11]) is provided for estimating the
parameters. We obtain the information matrix and discuss inference methods. Applications
to real data sets are given to show the flexibility and potentiality of the proposed distribution.

Keywords: EM algorithm, Exponential distribution, Geometric distribution, Hazard
function, Information matrix, Maximum likelihood estimation, Weibull distribution.

1. Introduction

Several distributions have been proposed in the literature to model lifetime data.
Adamidis and Loukas [2] introduced the two-parameter exponential-geometric
(EG) distribution with decreasing failure rate. Kus [8] introduced the exponential-
Poisson distribution (following the same idea of the EG distribution) with
decreasing failure rate and discussed various of its properties. Marshall and Olkin
[10] presented a method for adding a parameter to a family of distributions with
application to the exponential and Weibull families. Adamidis et al. [1] proposed
the extended exponential-geometric (EEG) distribution which generalizes the
EG distribution and discussed various of its statistical properties along with its
reliability features. The hazard function of the EEG distribution can be monotone
decreasing, increasing or constant.

The Weibull distribution is one of the most commonly used lifetime distribution
in modeling lifetime data. In practice, it has been shown to be very flexible in
modeling various types of lifetime distributions with monotone failure rates but it is
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2 The WG Distribution

not useful for modeling the bathtub shaped and the unimodal failure rates which are
common in reliability and biological studies. In this paper we introduce the Weibull-
geometric (WG) distribution that generalizes the EG and Weibull distributions
and study some of its properties. The paper is organized as follows. In Section
2, we define the WG distribution and plot its probability density function (pdf).
In Section 3, some properties of the new distribution are given. We obtain the
cumulative distribution function (cdf), survivor and hazard functions and the pdf
of the order statistics. We also give expressions for its moments and for the moments
of the order statistics. Maximum likelihood estimation using the algorithm EM is
studied in Section 4 and asymptotic methods of inference are discussed in Section
5. Illustrative examples based on two real data sets are given in Section 6. Finally,
Section 7 concludes the paper.

2. The WG distribution

The EG distribution (Adamidis and Loukas [2]) can be obtained by compounding
an exponential with a geometric distribution. In fact, if X follows an exponential
distribution with parameter βZ, where Z is a geometric random variable with
parameter p, then the marginal distribution of X has the EG distribution with
parameters (β, p). The Weibull distribution extends the exponential distribution
and then it is natural to generalize the EG distribution by replacing in the above
compounding mechanism the exponential by the Weibull distribution.

Suppose that {Yi}Z
i=1 are independent and identically distributed (iid) random

variables following the Weibull distribution W (β, α) with scale parameter β > 0,
shape parameter α > 0 and pdf

g(x;β, α) = αβαxα−1e−(βx)α

, x > 0,

and N a discrete random variable having a geometric distribution with probability
function P (n; p) = (1 − p)pn−1 for n ∈ N and p ∈ (0, 1). The marginal pdf of
X = min {Yi}N

i=1 is

f(x; p, β, α) = αβα(1− p)xα−1e−(βx)α{1− p e−(βx)α}−2, x > 0, (1)

which defines the WG distribution. It is evident that (1) is much more flexible
than the Weibull distribution. The EG distribution is a special case of the WG
distribution for α = 1. When p approaches zero, the WG distribution leads to the
Weibull W (β, α) distribution. Figure 1 plots the WG density for some values of
the vector φ = (β, α) for p = 0.01, 0.2, 0.5 and 0.9. For all values of parameters,
the WG density tends to zero as x →∞.

For α > 1, the WG density is unimodal (see appendix A) and the mode x0 =
β−1u1/α is obtained by solving the nonlinear equation

u + pe−u

(
u +

α− 1
α

)
=

α− 1
α

. (2)

The WG pdf can be expressed as an infinite mixture of Weibull distributions with
the same shape parameter α. If |z| < 1 and k > 0, we have the series representation

(1− z)−k =
∞∑

j=0

Γ(k + j)
Γ(k)j!

zj . (3)
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Figure 1. Pdf of the WG distribution for selected values of the parameters.

Expanding {1− p e−(βx)α}−2 as in (3), we rewrite (1) as

f(x; p, β, α) = αβα(1− p)xα−1e−(βx)α

∞∑

j=0

(j + 1)pje−j(βx)α

.

From the Weibull pdf given before, we obtain

f(x; p, β, α) = (1− p)
∞∑

j=0

pjg(x; β(j + 1)1/α, α). (4)

Hence, some mathematical properties (cdf, moments, percentiles, moment gene-
rating function, factorial moments, etc.) of the WG distribution can be obtained
using (4) from the corresponding properties of the Weibull distribution.
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3. Properties of the WG distribution

3.1. The distribution and hazard functions and order statistics

Let X be a random variable such that X follows the WG distribution with parame-
ters p, β and α. In the sequel, the distribution of X will be referred to WG(p, β, α).
Its cdf is given by

F (x) =
1− e−(βx)α

1− p e−(βx)α
, x > 0. (5)

The survivor and hazard functions are

S(x) =
(1− p)e−(βx)α

1− p e−(βx)α
, x > 0 (6)

and

h(x) = αβαxα−1{1− p e−(βx)α}−1, x > 0, (7)

respectively.

The hazard function (7) is decreasing for 0 < α ≤ 1. However, for α > 1 it can
take different forms. As the WG distribution converges to the Weibull distribution
when p → 0+, the hazard function for very small values of p can be decreasing,
increasing and almost constant. When p → 1−, the WG distribution converges to
a distribution degenerate in zero. Hence, the parameter p can be interpreted as a
concentration parameter. Figure 2 illustrates some of the possible shapes of the
hazard function for selected values of the vector φ = (β, α) for p = 0.01, 0.2, 0.5
and 0.9. These plots show that the hazard function of the new distribution is quite
flexible.

We now calculate the pdf of the order statistics. Let X1, . . . , Xn be iid random
variables such that Xi ∼ WG(p, β, α) for i = 1, . . . , n. The pdf of the ith order
statistic, say Xi:n, is given by (for x > 0)

fi:n(x) =
αβα(1− p)n−i+1

B(i, n− i + 1)
xα−1e−(n−i+1)(βx)α {1− e−(βx)α}i−1

{1− pe−(βx)α}n+1
, (8)

where B(a, b) =
∫∞
0 ωa−1(1− ω)b−1dω is the beta function. Let gi:n(x) be the pdf

of the ith order statistic in a sample of size n from the Weibull distribution with
parameters β and α. We have

gi:n(x) =
αβα

B(i, n− i + 1)
xα−1e−(n−i+1)(βx)α{1− e−(βx)α}i−1.

Equation (8) can be rewritten in terms of gi:n(x) as

fi:n(x) = (1− p)n−i+1{1− pe−(βx)α}−(n+1)gi:n(x).

Further, we can express the pdf of Xi:n as an infinite mixture of Weibull order



Journal of Statistical Computation & Simulation 5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

φ=(0.5,0.8)

x

h(
x)

p=0.01
p=0.2
p=0.5
p=0.9

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

φ=(0.5,1.5)

x

h(
x)

p=0.01
p=0.2
p=0.5
p=0.9

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4

φ=(0.9,2)

x

h(
x)

p=0.01
p=0.2
p=0.5
p=0.9

0.0 0.5 1.0 1.5

0
2

4
6

8
10

φ=(0.9,5)

x

h(
x)

p=0.01
p=0.2
p=0.5
p=0.9

Figure 2. Hazard rate function of the WG distribution for selected values of the parameters.

statistic densities. Using (3) in (8), we obtain

fi:n(x) = (1− p)n−i+1 n!(n + j − i)!
(n + j)!(n− i)!

∞∑

j=0

(
n + j

n

)
pjgi:n+j(x). (9)

Hence, equation (9) shows that some mathematical properties of the WG order
statistics can be obtained immediately from the corresponding properties of the
Weibull order statistics.

3.2. Quantiles and moments

The quantile γ (xγ) of the WG distribution follows from (5) as

xγ = β−1

{
log

(
1− p γ

1− γ

)}1/α

.

In particular, the median is simply x0.5 = β−1{log(1− p)}1/α.
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The rth moment of X is given by

E(Xr) = αβα(1− p)
∫ ∞

0
xr+α−1e−(βx)α

{
1− p e−(βx)α

}−2
dx.

Expanding the term {1− p e−(βx)α}−2 as in (3) yields

E(Xr) =
(1− p)Γ(r/α + 1)

p βr
L(p; r/α),

where L(p; a) =
∑∞

j=1 pjj−a is Euler’s polylogarithm function (see, Erdelyi et al.
[6], p. 31) which is readily available in standard software such as Mathematica.

Figure 3 plots the skewness and kurtosis of the WG distribution as functions
of p for β = 1 and some values of α. When p → 1−, the coefficients of skewness
and kurtosis tend to zero as expected, since the WG distribution converges to a
degenerate distribution (in zero) when p → 1−.
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Figure 3. Skewness and kurtosis of the WG distribution as functions of p for β = 1 and some values of α.

The rth moment of the ith order statistic Xi:n is given by

E(Xr
i:n) =

αβα(1− p)n−i+1

B(i, n− i + 1)

∫ ∞

0
xα+r−1e−(n−i+1)(βx)α {1− e−(βx)α}i−1

{1− pe−(βx)α}n+1
dx.

Expanding the term {1−pe−(βx)α}−(n+1) as in (3) and using the binomial expansion
for {1− e−(βx)α}i−1, the rth moment of Xi:n becomes

E(Xr
i:n) =

(1− p)n−i+1Γ(r/α + 1)
B(i, n− i + 1)βr

∞∑

j=0

i−1∑

k=0

(−1)k
(
n+j
n

)(
i−1
k

)
pj

(n + j + k − i + 1)r/α+1
. (10)

We now give an alternative expression to (10) by using a result due to Barakat and
Abdelkader [3]. We have

E(Xr
i:n) = r

n∑

k=n−i+1

(−1)k−n+i−1

(
k − 1
n− i

)(
n

k

) ∫ ∞

0
xr−1S(x)kdx,
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where S(x) is the survivor function (6).

Using the expansion (3) and changing variables u = (k + j)(βx)α, we have

∫ ∞

0
xr−1S(x)kdx = (1− p)k

∞∑

j=0

(
k + j − 1

k − 1

)
pj

∫ ∞

0
xr−1e−(k+j)(βx)α

dx

=
(1− p)k

αβr

∫ ∞

0
ur/α−1e−udu

∞∑

j=0

(
k + j − 1

k − 1

)
pj

(k + j)r/α

=
(1− p)kΓ(r/α)

αβr

∞∑

j=0

(
k + j − 1

k − 1

)
pj

(k + j)r/α
.

Hence,

E(Xr
i:n) =

Γ(r/α + 1)
(−1)n−i+1βr

∞∑

j=0

n∑

k=n−i+1

(−1)k

(
n

k

)(
k − 1
n− i

)(
k + j − 1

k − 1

)
pj(1− p)k

(k + j)r/α
.

(11)

Expressions (10) and (11) give the moments of the order statistics and can be
compared numerically. Table 1 gives numerical values for the first four moments
of the order statistics X1:15, X7:15 and X15:15 from (10) and (11) with the index
j stopping at 100 and by numerical integration. We take the parameter values as
p = 0.8, β = 0.4 and α = 2. The figures in this table show good agreement among
the three methods.

Xi:15 ↓ rth moment→ r = 1 r = 2 r = 3 r = 4
Expression (10) 0.25717 0.08697 0.035116 0.016265

i = 1 Expression (11) 0.25717 0.08697 0.035116 0.016265
Numerical 0.26102 0.08795 0.035408 0.016364

Expression (10) 0.96660 0.98827 1.06643 1.21249
i = 7 Expression (11) 0.98502 0.99295 1.06784 1.21298

Numerical 0.96674 0.98836 1.06649 1.21253
Expression (10) 3.33109 11.97872 46.35371 192.32090

i = 15 Expression (11) 3.33126 11.97875 46.35375 192.32090
Numerical 3.33126 11.97875 46.35375 192.32090

Table 1. First four moments of some order statistics from (10) and (11) and by numerical integration.
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3.3. Rényi and Shannon entropies

Entropy has been used in various situations in science and engineering. The entropy
of a random variable X is a measure of variation of the uncertainty. Rényi entropy
is defined by IR(γ) = 1

1−γ log{∫R fγ(x)dx}, where γ > 0 and γ 6= 1. From (3), we
obtain

∫ ∞

0
fγ(x; p, β, α)dx =

[αβα(1− p)]γ

Γ(2γ)

∞∑

j=0

pj Γ(2γ + j)
j!

∫ ∞

0
x(α−1)γe−(γ+j)(βx)α

dx.

If (α− 1)(γ − 1) ≥ 0, this expression reduces to

∫ ∞

0
fγ(x; p, β, α)dx =

Γ(α)[α(1− p)]γ

βα(1−γ)Γ(2γ)

∞∑

j=0

pj Γ(2γ + j)
j!(α + j)

E(Y (α−1)(γ−1)
j ),

where Yj follows a gamma distribution with scale parameter (γ + j)1/α and shape
parameter α. Then, we have

IR(γ) =
1

1− γ
log





[α(1− p)]γΓ(γ(α− 1) + 1)
β1−γΓ(2γ)

∞∑

j=0

pjΓ(2γ + j)
j!(α + j)(α−1)(γ−1)/α+1



 .

Shannon entropy is defined as E{− log[f(X)]}. This is a special case obtained
from limγ→1 IR(γ). Hence,

E[− log f(X)] = − log[αβα(1−p)]−(α−1)E[log(X)]+βαE(Xα)−2E{log[1−pe−(βX)α

]}.

We can show that

E[log(X)] = ψ(1)/α,

E(Xα) = −(1− p)
pβα

log(1− p),

E{log[1− pe−(βX)α

]} = −1− p

p
{1 + (1− p)[1 + log(1− p)]}.

Further, the Shannon entropy reduces to

E[− log f(X)] = − log[αβα(1− p)]− α− 1
α

ψ(1)− 1− p

p
[4− 2p + (3− 2p) log(1− p)].

4. Estimation

Let x = (x1, . . . , xn) be a random sample of the WG distribution with unknown
parameter vector θ = (p, β, α). The log likelihood ` = `(θ; x) for θ is

` = n[log α + α log β + log(1− p)] + (α− 1)
n∑

i=1

log(xi)−
n∑

i=1

(βxi)α

− 2
n∑

i=1

log[1− p e−(βxi)α

].
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The score function U(θ) = (∂`/∂p, ∂`/∂β, ∂`/∂α)T has components

∂`

∂p
= −n(1− p)−1 + 2

n∑

i=1

e−(βxi)α

[1− p e−(βxi)α

]−1,

∂`

∂β
= nαβ−1 − αβα−1

n∑

i=1

xα
i {1 + 2p e−(βxi)α

[1− p e−(βxi)α

]−1},

∂`

∂α
= nα−1 +

n∑

i=1

log(βxi)−
n∑

i=1

(βxi)α log(βxi){1 + 2p e−(βxi)α

[1− p e−(βxi)α

]−1}.

The maximum likelihood estimate (MLE) θ̂ of θ is calculated numerically from
the nonlinear equations U(θ) = 0 using the EM algorithm (Dempster et al. [5];
McLachlan and Krishnan [11]) and defining an hypothetical complete-data distri-
bution with density function

f(x, z; θ) = αβα(1− p)zxα−1pz−1e−z(βx)α

,

for x, β, α> 0, p ∈ (0, 1) and z ∈ N. Under this formulation, the E-step of
an EM cycle requires the conditional expectation of (Z|X; θ(r)), where θ(r) =
(p(r), β(r), α(r)) is the current estimate of θ. From the probability function
P (z|x; θ) = zpz−1e−(z−1)(βx)α{1−pe−(βx)α}2 for z ∈ N , it follows that E(Z|X; θ) =
{1 + pe−(βx)α}{1 − pe−(βx)α}−1. The EM cycle is completed with the M-step by
using the maximum likelihood estimation over θ, with the missing Z’s replaced by
their conditional expectations given above. Hence, an EM iteration reduces to

p(r+1) = 1− n
∑n

i=1 w
(r)
i

, β(r+1) = n

{
n∑

i=1

xα(r+1)

i w
(r)
i

}−1/α(r+1)

,

where α(r+1) is the solution of the nonlinear equation

n

α(r+1)
+

n∑

i=1

log xi − n

∑n
i=1 w

(r)
i xα(r+1)

i log xi∑n
i=1 w

(r)
i xα(r+1)

i

= 0,

where

w
(r)
i =

1 + p(r)e−(β(r)xi)α(r)

1− p(r)e−(β(r)xi)α(r) .

An implementation of this algorithm using the software R is given in Appendix B.

5. Inference

For asymptotic interval estimation and hypothesis tests on the model parameters,
we require the information matrix. Invert the joint observed information matrix
for the parameters p, β and α to obtain the large-sample covariance matrix of
the estimates p̂, β̂ and α̂ will provide confidence regions for any parameters using
the asymptotic normality of these estimates. Then, asymptotic standard errors for



10 The WG Distribution

the MLEs can be given by the square root of the diagonal elements of the esti-
mated inverse observed information matrix, and from these quantities asymptotic
confidence intervals can be formed and hypothesis tests made.The 3× 3 observed
information matrix Jn = Jn(θ) is given by

Jn =




Jpp Jpβ Jpα

Jpβ Jββ Jβα

Jpα Jβα Jαα


 ,

where

−Jpp =
∂2`

∂p2
= 2

n∑

i=1

T
(i)
0,0,2,2 − n(1− p)−2,

−Jpα =
∂2`

∂p∂α
= −2βα

n∑

i=1

(p T
(i)
1,1,2,2 + T

(i)
1,1,1,1),

−Jpβ =
∂2`

∂p∂β
= −2αβα−1

n∑

i=1

(p T
(i)
1,0,2,2 + T

(i)
1,0,1,1),

−Jαα =
∂2`

∂α2
= −nα−2 +

n∑

i=1

(2p2β2αT
(i)
2,2,2,2 + 2pβ2αT

(i)
2,2,1,1 − βαT

(i)
1,2,0,0 −

2pβαT
(i)
1,2,1,1),

−Jβα =
∂2`

∂α∂β
= nβ−1 − βα−1

n∑

i=1

(αT
(i)
1,1,0,0 + T

(i)
1,0,0,0)(1 + 2pT

(i)
0,0,1,1) +

2pαβ2α−1
n∑

i=1

(p T
(i)
2,1,2,2 + T

(i)
2,1,1,1),

−Jββ =
∂2`

∂β2
= −nαβ−2 − α(α− 1)βα−2

n∑

i=1

(T (i)
1,0,0,0 + 2pT

(i)
1,0,1,1) +

2α2β2α−2p
n∑

i=1

(pT
(i)
2,0,2,2 + T

(i)
2,0,1,1).

Here,

T
(i)
j,k,l,m = T

(i)
j,k,l,m(xi, θ) = xαj

i {log(βxi)}k{1− p e−(βxi)α}−le−m(βxi)α

,

for (j, k, l, m) ∈ {0, 1, 2} and i = 1, . . . , n.
Under conditions that are fulfilled for the parameter θ in the interior of the

parameter space but not on the boundary, the asymptotic distribution of
√

n(θ̂ −
θ) ismultivariate normal N3(0,K(θ)−1), where K(θ) = limn→∞ n−1Jn(θ) is the
unit information matrix. This asymptotic behavior remains valid if K(θ) is replaced
by the average observed information matrix evaluated at θ̂, i.e., n−1Jn(θ̂). We can
use the asymptotic multivariate normal N3(0, Jn(θ̂)−1) distribution of θ̂ to cons-
truct approximate confidence regions for some parameters and for the hazard and
survival functions. In fact, an asymptotic 100(1− γ)% confidence interval for each
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parameter θr is given by

ACIr = (θ̂r − zγ/2

√
Ĵθrθr , θ̂r + zγ/2

√
Ĵθrθr),

where Ĵθrθr represents the (r, r)th diagonal element of Jn(θ̂)−1 for r = 1, 2, 3 and
zγ/2 is the quantile 1− γ/2 of the standard normal distribution.

The asymptotic normality is also useful for testing goodness of fit of the three
parameter WG distribution and for comparing this distribution with some of its
special sub-models via the likelihood ratio (LR) statistic. We consider the partition
θ = (θT

1 , θT
2 )T , where θ1 is a subset of parameters of interest of the WG distribution

and θ2 is a subset of the remaining parameters. The LR statistic for testing the
null hypothesis H0 : θ1 = θ

(0)
1 versus the alternative hypothesis H1 : θ1 6= θ

(0)
1

is given by w = 2{`(θ̂) − `(θ̃)}, where θ̃ and θ̂ are the MLEs under the null and
alternative hypotheses, respectively. The statistic w is asymptotically (as n →∞)
distributed as χ2

k, where k is the dimension of the subset θ1 of interest. For example,
we can compare the EG model against the WG model by testing H0 : α = 1
versus H1 : α 6= 1 and the Weibull model against the WG model by testing
H0 : α = 1, p = 0 versus H1 : H0 is false.

6. Applications

In this section, we fit the WG models to two real data sets. The first data set
consist of the number of successive failures for the air conditioning system of
each member in a fleet of 13 Boeing 720 jet airplanes. The pooled data with 214
observations were first analyzed by Proschan [12] and discussed further by Dahiya
and Gurland [4], Gleser [7], Adamidis and Loukas [2] and Kus [8]. The second
data set is an uncensored data set from Nichols and Padgett [9] consisting of 100
observations on breaking stress of carbon fibres (in Gba).

For the first data set, the estimated parameters using an EM algorithm were
p̂ = 0.7841, β̂ = 0.0048 and α̂ = 1.2246. The fitted pdf and the estimated quantiles
versus observed quantiles are given in Figures 4. This figure shows a good fit of the
WG model for the first data set.
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Figure 4. Plots of the fitted pdf and of the estimated quantiles versus observed quantiles for the first
data set.
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For the second data set, the estimates obtained using an EM algorithm are
p̂ = 0.3073, β̂ = 0.3148 and α̂ = 3.0093. The plot of the fitted pdf and the
estimated quantiles versus observed quantiles in Figure 5 shows a good fit of the
WG model.
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Figure 5. Plots of the fitted pdf and of the estimated quantiles versus observed quantiles for the second
data set.

7. Conclusions

We define a new model so called the Weibull-geometric (WG) distribution that
generalizes the exponential-geometric (EG) distribution introduced by Adamidis
and Loukas [2]. Some mathematical properties are derived and plots of the pdf and
hazard functions are presented to show the flexibility of the new distribution. We
give closed form expressions for the moments of the distribution. We obtain the
pdf of the order statistics and provide expansions for the moments of the order
statistics. Estimation by maximum likelihood is discussed and an algorithm EM is
proposed. We give asymptotic confidence intervals for the model parameters and
present the use of the LR statistic to compare the fit of the WG model with special
sub-models. Finally, we fit WG models to two real data sets to show the flexibility
and the potentially of the new distribution.
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Appendix A.

We now show that the WG density is unimodal when α > 1. Let

h(u) = u + pe−u

(
u +

α− 1
α

)
.

When u → 0+, h(u) → pα−1
α and when u → ∞, h(u) → ∞. Thus, if h(u)

is an increasing function, the solution in (2) is unique and the WG distribution
is unimodal. We have h′(u) = 1 − pe−u

(
u + α−1

α

)
+ pe−u. Using the inequalities

−pe−u α−1
α > −pe−u and −pe−uu > e−1, it follows that h′(u) > 1 − e−1 > 0,

∀u > 0. Hence, h(u) is an increasing function and the WG distribution is unimodal
if α > 1.

Appendix B.

The following R function estimates the model parameters p, β and α through an
EM algorithm.

fit.WG<-function(x,par,tol=1e-4,maxi=100){

# x Numerical vector of data.
# par Vector of initial values for the parameters p, beta and alpha
# to be optimized over, on this exactly order.
# tol Convergence tolerance.
#maxi Upper end point of the interval to be searched.

p<-par[1]
beta<-par[2]
alpha<-par[3]
n<-length(x)
z.temp<-function(){
(1+p*exp(-(beta*x)^alpha))/(1-p*exp(-(beta*x)^alpha))
}
alpha.sc<-function(alpha){
n/alpha+sum(log(x))-n*sum(z*x^alpha*log(x))/sum(z*x^alpha)
}
test<-1
while(test>tol){
z<-z.temp()
alpha.new<-(alpha.sc,interval=c(0,maxi))$root
beta.new<-(n/sum(x^alpha.new*z))^(1/alpha.new)
p.new<-1-n/sum(z)
test<-max(abs(c(((alpha.new-alpha)),



14 The WG Distribution

((beta.new-beta)),
((p.new-p)))))

alpha<-alpha.new
beta<-beta.new
p<-p.new
}
c(p,beta,alpha)
}


