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In this chapter we discuss the design and analysis of factorial experiments in which 
all factors have 2 levels. 
 
Definition VIII.1: An experiment that involves k factors all at 2 levels is called a 2k 
experiment. ■ 
 
These designs represent an important class of designs for the following reasons: 
 
1. They require relatively few runs per factor studied, and although they are unable 

to explore fully a wide region of the factor space, they can indicate trends and so 
determine a promising direction for further experimentation. 

2. They can be suitably augmented to enable a more thorough local exploration. 
3. They can be easily modified to form fractional designs in which only some of the 

treatment combinations are observed. 
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4. Their analysis and interpretation is relatively straightforward, compared to the 
general factorial. 

 

VIII.A Replicated 2k experiments 
 (Box, Hunter and Hunter, ch. 10; Cochran & Cox, sec. 5.24–26, Mead, sec. 

13.1–3, Mead & Curnow, sec. 6.6) 
 
An experiment involving three factors — a 23 experiment — will be used to illustrate. 
 
a) Design of replicated 2k experiments, including R expressions 
 
The design of this type of experiment is exactly the same as for the general factorial 
experiments as outlined in VII.A, Design of factorial experiments. However, the levels 
used for the factors are specific to these two-level experiments. 
 
Definition VIII.2: There are three systems of specifying treatment combinations 
in common usage. The first uses a minus sign for the low level of a quantitative factor 
and a plus for the high level. Qualitative factors are coded arbitrarily but consistently 
as minus and plus. In the second notation, the upper level of a factor is denoted by a 
lower case letter used for that factor and the lower level by the absence of this letter. 
The third notation uses 0 and 1 in place of − and +. ■ 
 
We shall use the ± notation as it relates to the computations for the designs. 
 
Example VIII.1 23 pilot plant experiment 
 
An experimenter conducted a 23 experiment in which there are two quantitative 
factors — temperature and concentration — and a single qualitative factor — 
catalyst. Altogether 16 tests were conducted with the three factors assigned at 
random so that each occurred just twice. At each test the chemical yield was 
measured and the data is shown in the following table: 
 

       Replicate 
T C K  T C K 1 2 
− −  − 1 0 0 0 59 61 
+ − − t 1 0 0 74 70 
− + − c 0 1 0 50 58 
+ + − tc 1 1 0 69 67 
− − + k 0 0 1 50 54 
+ − + tk 1 0 1 81 85 
− + + ck 0 1 1 46 44 
+ + + tck 1 1 1 79 81 

 
This table also gives the treatment combinations, using the three systems, for the 
experiment and associated with each observation. 
 
The first consideration in entering the design into R is whether to enter all the values 
for one rep first or to enter the two reps for a treatment consecutively. For the first 
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option, the times argument would be set to 2, while for the second option we need 
to set the each argument to 2. The following output contains the commands to 
generate the design for the example using second option and includes the design 
produced: 
 
> # 
> #obtain randomized layout 
> # 
> n <- 16 
> mp <- c("-", "+") 
> Fac3Pilot.ran <- fac.gen(generate = list(Te = mp, C = mp, K = mp), each = 2,  
+                          order="yates") 
> Fac3Pilot.unit <- list(Tests = n) 
> Fac3Pilot.lay <- fac.layout(unrandomized = Fac3Pilot.unit,  
+                             randomized = Fac3Pilot.ran, seed = 897) 
> #sort treats into Yates order 
> Fac3Pilot.lay <- Fac3Pilot.lay[Fac3Pilot.lay$Permutation,]  
> Fac3Pilot.lay 
   Units Permutation Tests Te C K 
4      4          14     4  - - - 
11    11          10    11  - - - 
8      8           6     8  + - - 
14    14           1    14  + - - 
2      2          11     2  - + - 
9      9          12     9  - + - 
7      7           7     7  + + - 
6      6           9     6  + + - 
12    12          16    12  - - + 
13    13          15    13  - - + 
10    10          13    10  + - + 
16    16           3    16  + - + 
15    15           5    15  - + + 
1      1           4     1  - + + 
5      5           2     5  + + + 
3      3           8     3  + + + 
> #add Yield  
> Fac3Pilot.dat <- data.frame(Fac3Pilot.lay,  
+                             Yield = c(59, 61, 74, 70, 50, 58, 69, 67,  
+                                       50, 54, 81, 85, 46, 44, 79, 81)) 
> Fac3Pilot.dat 
   Units Permutation Tests Te C K Yield 
4      4          14     4  - - -    59 
11    11          10    11  - - -    61 
8      8           6     8  + - -    74 
14    14           1    14  + - -    70 
2      2          11     2  - + -    50 
9      9          12     9  - + -    58 
7      7           7     7  + + -    69 
6      6           9     6  + + -    67 
12    12          16    12  - - +    50 
13    13          15    13  - - +    54 
10    10          13    10  + - +    81 
16    16           3    16  + - +    85 
15    15           5    15  - + +    46 
1      1           4     1  - + +    44 
5      5           2     5  + + +    79 
3      3           8     3  + + +    81 
> #re-sort into randomized order 
> Fac3Pilot.dat <- Fac3Pilot.dat[Fac3Pilot.dat$Units,] 
> attach(Fac3Pilot.dat) 
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Notes: 
• mp stands for minus-plus 
• Note Te must be used for Temperature as T is reserved for a function name. 
• Note that need to have the treatment factors in Yates order to add the data. ■ 
 
b) Analysis of variance 
 
The analysis of replicated 2k factorial experiments is the same as for the general 
factorial experiment.  
 
Example VIII.1 23 pilot plant experiment (continued) 
 
The features of this experiment are: 
 

1. Observational unit − a test 
2. Response variable − Yield 
3. Unrandomized factors − Tests 
4. Randomized factors − Temp, Conc, Catal 
5. Type of study − Three-factor CRD 

 
The experimental structure for this experiment is: 
 

Structure Formula 
unrandomized 16 Tests 
randomized 2 Temp*2 Conc*2 Catal 

 
The sources derived from the randomized structure formula are: 
 

Temp*Conc*Catal = Temp + (Conc*Catal) + Temp#(Conc*Catal) 
 = Temp + Conc + Catal + Conc#Catal 
   + Temp#Conc + Temp#Catal + Temp#Conc#Catal 

 
Since all the factors have two levels, the number of levels minus one will in every 
case be one. Thus, using the cross product rule, the degrees of freedom for any term 
will be a product of ones and hence be one. 
 
Given that the only random factor is Tests, the following are the symbolic expressions 
for the maximal expectation and variation models: 

[ ]
[ ]

=Temp Conc Catal

var =Tests

E Y

Y

ψ = ∧ ∧
 

 
From this we conclude that the aov function will have a model formula of the form 
 

Yield ~ Temp * Conc * Catal + Error(Tests) 
 
The R output file containing the analysis of the example is: 
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> attach(Fac3Pilot.dat) 
> interaction.ABC.plot(Yield, Te, C, K, data=Fac3Pilot.dat, 
+                      title="Effect of Temperature(Te), Concentration(C) and 
Catalyst(K) on Yield") 
> Fac3Pilot.aov <- aov(Yield ~ Te * C * K + Error(Tests), Fac3Pilot.dat) 
> summary(Fac3Pilot.aov) 
 
Error: Tests 
          Df    Sum Sq   Mean Sq   F value    Pr(>F) 
Te         1      2116      2116   264.500 2.055e-07 
C          1       100       100    12.500 0.0076697 
K          1         9         9     1.125 0.3198134 
Te:C       1         9         9     1.125 0.3198134 
Te:K       1       400       400    50.000 0.0001050 
C:K        1 6.453e-30 6.453e-30 8.066e-31 1.0000000 
Te:C:K     1         1         1     0.125 0.7328099 
Residuals  8        64         8                     
> # 
> # Diagnostic checking 
> # 
> res <- resid.errors(Fac3Pilot.aov) 
> fit <- fitted.errors(Fac3Pilot.aov) 
>  
> plot(fit, res, pch=16) 
> plot(as.numeric(Te), res, pch=16) 
> plot(as.numeric(C), res, pch=16) 
> plot(as.numeric(K), res, pch=16) 
> qqnorm(res, pch=16) 
> qqline(res) 

 

 
 
There appears to be a TK interaction. 
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All the residuals plots appear to be satisfactory, Note have not obtained Tukey's one-
degree-of-freedom-for-nonadditivity. This is because the design is a CRD and there 
are no additive expectation terms — a warning message would be produced for this 
design. 
 
The hypothesis test for this experiment is given below. The hypotheses are the same 
as for the general three-factor factorial experiment, given in Chapter VII, Factorial 
Experiments. However, here, they have not been given in terms of parameters, but 
terms being tested.  
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Step 1: Set up hypotheses 
 

a) H0: A#B#C interaction effect is zero 
 H1: A#B#C interaction effect is nonzero  
 
b) H0: A#B interaction effect is zero  
 H1: A#B interaction effect is nonzero  
 
c) H0: A#C interaction effect is zero  
 H1: A#C interaction effect is nonzero  
 
d) H0: B#C interaction effect is zero  
 H1: B#C interaction effect is nonzero  
 
e) H0: α1 = α2 
 H1: α1 ≠ α2 
 
f) H0: β1 = β2 
 H1: β1 ≠ β2 
 
g) H0: δ1 = δ2 
 H1: δ1 ≠ δ2 

 
 Set α = 0.05 
 
Step 2: Calculate test statistics 
 
 The analysis of variance table for the three-factor factorial CRD is:  
 
 

Source df SSq MSq F Prob 
Tests 15 2699.0    
 T 1 2116.0 2116.0 264.5 <0.001 
 C 1 100.0 100.0 12.5 0.008 
 T#C 1 9.0 9.0 1.1 0.320 
 K 1 9.0 9.0 1.1 0.320 
 T#K 1 400.0 400.0 50.0 <0.001 
 C#K 1 0.0 0.0 0.0 1.000 
 T#C#K 1 1.0 1.0 0.1 0.733 
 Residual 8 64.0 8.0   

 
Step 3: Decide between hypotheses 
 
 For T#C#K interaction: the T#C#K interaction is not significant. 
 
 For T#C, T#K and C#K interactions: only the T#K interaction is significant. 
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 For C: the C effect is significant. 
 
Thus, the yield depends on the particular combination of Temperature and Catalyst, 
whereas Concentration also affects the yield but independently of the other factors. 
Hence the model that best fits the data is: 
 

ψ = E[Y] = C + T∧K 
 
c) Calculation of responses and Yates effects 
 
When all the factors in a factorial experiment are at 2 levels the calculations for the 
analysis presented in chapter VII simplify greatly, in particular the calculation of the 
effects. This is because main effects, elements of ae, be and ce, which are of the form 

.iy y− , for i = 1,2, where ( ). 1 2 2y y y= + , simplify to 

1 2 1 2 1 2
1 . 1 2 2 2 2

y y y y y yy y y + −− = − = − =  and ( )2 1
2 . 1 .2

y yy y y y−− = = − −  

 
This is in some ways obvious. It is merely saying that the distance of one of two 
means from their mean is half the difference between two means. Note there is really 
only one independent main effect and this is reflected in the fact that they have just 
one degree of freedom. 
 
Also, two-factor interactions, elements of (a∧b)e, (a∧c)e and (b∧c)e, are of the form 

. . ..ij i jy y y y− − + , for i = 1,2; j = 1,2. For any pair of factors, say B and C, the means 
can be places in a 2 2×  table as follows. 
 

  C  
  1 2 Mean 
 1 11y  12y  ( )1. 11 12 2y y y= +  

B     
 2 21y  22y  ( )2. 21 22 2y y y= +  
 Mean ( ).1 11 21 2y y y= +  ( ).2 12 22 2y y y= +  11 12 21 22

.. 4
y y y yy + + +=  

 
Thus, for i = 1, j = 1, . . ..ij i jy y y y− − +  simplifies to  

11 12 11 21 11 12 21 22
11 1. .1 .. 11

11 11 12 11 21 11 12 21 22

11 12 21 22

2 2 4
4 2 2 2 2

4

4

y y y y y y y yy y y y y

y y y y y y y y y

y y y y

+ + + + +− − + = − − +

− − − − + + + +=

− − +=

 

Similarly, 
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11 12 21 22
12 1. .2 ..

11 12 21 22
21 2. .1 ..

11 12 21 22
22 2. .2 ..

4

4

4

y y y yy y y y

y y y yy y y y

y y y yy y y y

− + + −− − + =

− + + −− − + =

− − +− − + =

 

 
Once again there is only one independent quantity and so only one degree of 
freedom. Notice that what is computed is the difference between 12 11y y−  and 

22 21y y− . Each of these is the difference between the first and second level of factor 
B, the simple effects of B, one for the first level and the other for the second level of 
A. 
 
Indeed all effects in a 2k experiment have only one degree of freedom, as 
contemplation of the cross-product rule for crossed factors will reveal. So to 
accomplish an analysis we actually only need to compute a single value for each 
effect, instead of a vector of effects. We do not compute exactly the quantities above. 
However, we do compute quantities that are proportional to them. We compute what 
are called the responses and, from these, the Yates main and interaction effects. 
 
Definition VIII.3: A one-factor response and a Yates main effect is the difference 
between the means for the high and low levels of the factor: y y+ −− .  ■ 
 
Definition VIII.4: A two-factor response is the difference of the simple effects: 
( ) ( )y y y y++ +− −+ −−− − − . A two-factor Yates interaction effect is half the two-factor 
response. ■ 
 
Definition VIII.5: A three-factor response is the difference in the response of two 
factors at each level of the other factor:  

( ) ( )y y y y y y y y+++ +−+ −++ −−+ ++− +−− −+− −−−− − + − − − +  or 

( ) ( )y y y y y y y y+++ ++− +−+ +−− −++ −+− −−+ −−−− − + − − − + .  
 
A three-factor Yates interaction is the half difference in the Yates interaction effects 
of two factors at each level of the other factor; it is thus one-quarter of the response. ■ 
 
Definition VIII.6: Sums of squares can be computed from the Yates effects by 
squaring them and multiplying by 22kr −  where k is the number of factors and r is the 
number of replicates of each treatment combination. ■ 
 
Example VIII.1 23 pilot plant experiment (continued) 
 
We obtain the responses and Yates interaction effects for this experiment. This can 
be conveniently carried out on the means over the replicates.  
 
The treatment means for the example are: 
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   Yield  
T C K Rep 1 Rep 2 Mean
− −  − 59 61 60 
+ − − 74 70 72 
− + − 50 58 54 
+ + − 69 67 68 
− − + 50 54 52 
+ − + 81 85 83 
− + + 46 44 45 
+ + + 79 81 80 

 
Thus, for the three factors in this experiment we have the following one-factor 
responses/main effects: 
 
Temperature,  

72 68 83 80 60 54 52 45 75.75 52.75 23
4 4

+ + + + + +− = − =  

Concentration,  
54 68 45 80 60 72 52 83 61.75 66.75 5

4 4
+ + + + + +− = − = −  

Catalyst,  
52 83 45 80 60 72 54 68 65.0 63.5 1.5

4 4
+ + + + + +− = − =  

 
The two-factor T#K response is the difference between the simple effects of K for 
each T or the difference between the simple effects of T for each K — it does not 
matter which. The T#K Yates interaction effect is then half this response. 
 
The simple effect of K  

at + (180°C) = 83 80 72 68 81.5 70 11.5
2 2
+ +− = − =  

at − (160°C) = 52 45 60 54 48.5 57 8.5
2 2
+ +− = − = −  

so that the response is 
11.5 − (−8.5) = 20 

 
and the Yates interaction effect is 10. 
 
The computation for the Yates interaction effect can be gathered together as follows: 
 

1
2

83 80 72 58 52 45 60 54
2 2 2 2
+ + + +⎧ ⎫− − +⎨ ⎬

⎩ ⎭
 

which is equal to 
83 80 60 54 72 58 52 45

4 4
+ + + + + +−  
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Thus, the Yates interaction is just the difference between two averages of four (half) 
of the observations. Similar results can be demonstrated for the other two two-factor 
interactions, T#C and C#K. 
 
The three-factor T#C#K response is the half difference between the T#C interaction 
effects at each level of K. If one follows through the computations, in the same way 
as for two-factor interaction above, it will be found that the three-factor Yates 
interaction effect consists of the difference between the following two means of four 
observations each: 
 

72 54 52 80 60 68 83 45 64.5 64 0.5
4 4

+ + + + + +− = − =  

 
Since, for the example, k=3 and r =2, the multiplier for the sums of squares is 

2 3 22 2 2 4kr − −= × = . Hence, the T#C#K sums of squares is: 
 

2T#C#K SSq 4 0.5 1= × =  
 
 ■ 
 
Summary of effects 
 
 General Effects (ch.VII) For 2k experiments only 
  simplified  for 

2k 

Response Yates effects 

Main .iy y−  2 1
2

y y−  
y y+ −−  y y+ −−  

Two-
factor 
simple 

ij iky y−  12 11y y− and 

22 21y y−  
not applicable not applicable 

Two-
factor 
interact
-ion 

.

. ..

ij i

j

y y

y y

−

− +
 11 12

21 22

22 21

12 11

4

4

y y
y y

y y
y y

−
− +

−
− +=

 

( )
( )

y y

y y
++ +−

−+ −−

−

− −
 

( )
( )

2

y y

y y
++ +−

−+ −−

−

− −
 

Three-
factor 
interact
-ion 

. . .

.. . . ..

...

ijk

ij i k jk

i j k

y

y y y

y y y

y

− − −

+ + +

−
 

not given y y
y y

y y
y y

+++ +−+

−++ −−+

++− +−−

−+− −−−

−⎛ ⎞
⎜ ⎟− +⎝ ⎠

−⎛ ⎞
− ⎜ ⎟− +⎝ ⎠

 4

y y
y y

y y
y y

+++ +−+

−++ −−+

++− +−−

−+− −−−

−⎛ ⎞
⎜ ⎟− +⎝ ⎠

−⎛ ⎞
− ⎜ ⎟− +⎝ ⎠

 
N.B. Can show that every Yates effect is difference between means of half the observations 
 
It turns out that there are easy rules for determining the signs of observations to 
compute the Yates effects.  
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Definition VIII.7: The signs for observations in a Yates effect are obtained from 
the columns of pluses and minuses that specify the factor combinations for each 
observation by taking the columns for the factors in the effect and forming their 
elementwise product. The elementwise product is the result of multiplying pairs of 
elements in the same row as if they were ±1 and expressing the result as a ±. ■ 
 
Example VIII.1 23 pilot plant experiment (continued) 
 
The table of coefficients is: 
 

T C K TC TK CK TCK Mean 
− − − + + + − 60 
+ − − − − + + 72 
− + − − + − + 54 
+ + − + − − − 68 
− − + + − − + 52 
+ − + − + − − 83 
− + + − − + − 45 
+ + + + + + + 80 

 
Clearly, these can be used to assist in calculating the responses and effects and 
hence the sums of squares. ■ 
 
A table of Yates effects can be obtained in R using yates.effects. It is usual to 
include this after the call to the summary function. Note use of round function with 
the yates.effects function to obtain nicer output by rounding the effects to 2 
decimal places. 
 
> round(yates.effects(Fac3Pilot.aov, error.term = "Tests", data=Fac3Pilot.dat), 2) 
    Te      C      K   Te:C   Te:K    C:K Te:C:K  
  23.0   -5.0    1.5    1.5   10.0    0.0    0.5  

 
d) Yates algorithm 
 
A particularly nifty method of performing the calculations is an algorithm due to 
Yates. It requires that the observations be in Yates order. They are in Yates order 
when the one column of plus/minuses consists of successive minus and plus signs, a 
second column of successive pairs of plus and minus signs, the third column of 
successive quadruplets of plus and minus signs and so forth. Yates algorithm for the 
example is given in the following table. Beginning with the means, one forms the sum 
of each successive pair of observations and the successive differences. This 
operation is repeated recursively until it has been performed k times. The Yates 
effects described above are then calculated by dividing all except the first by 2k−1; the 
first is divided by 2k. The effect can be identified by the pattern of pluses in its row. 
Thus, the 5th row contains Yates effect K which is equal to 1.5. 
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T C K Mean (1) (2) (3) Estimate 
− − − 60 132 254 514 64.25 
+ − − 72 122 260 92 23.0 
− + − 54 135 26 −20 −5.0 
+ + − 68 125 66 6 1.5 
− − + 52 12 −10 6 1.5 
+ − + 83 14 −10 40 10.0 
− + + 45 31 2 0 0.0 
+ + + 80 35 4 2 0.5 

e) Treatment differences 
 
Mean differences 
 
To examine how the factors affect the response one examines the tables of means 
corresponding to the terms in the fitted model. That is, tables marginal to significant 
effects are not examined. 
 
Example VIII.1 23 pilot plant experiment (continued) 
 
For this example, the fitted model was ψ = E[Y] = C + T∧K  and so we examine the 
T∧K and C tables of means, but not the tables of T or K means. 
 
> Fac3Pilot.means <- model.tables(Fac3Pilot.aov, type="means") 
> Fac3Pilot.means$tables$"Grand mean" 
[1] 64.25 
> Fac3Pilot.means$tables$"Te:K" 
   K 
Te  -    +    
  - 57.0 48.5 
  + 70.0 81.5 
> Fac3Pilot.means$tables$"C" 
C 
    -     +  
66.75 61.75  

 
So the table of means for the T∧K combinations is: 
 

Catal 1 2 
Temp   

1 57.0 48.5 
2 70.0 81.5 

 
Thus, it seems that the temperature difference is less without the catalyst than with it.  
 
The table of Concentration means is 

Conc 1 2 
 66.75 61.75 

 
It is evident that the higher concentration decreases the yield by about 5 units. 
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So which treatments would give the highest yield? To answer this question we need 
to check whether or not other treatments are significantly different to the highest 
yielding combination of temperature and catalyst: both at their higher levels. This is 
done using Tukey’s HSD procedures. The studentized range is 
 
> q <- qtukey(0.95, 4, 8) 
> q 
[1] 4.52881 
 
So Tukey’s HSD is  

( ) 4.52881 8 25% 1.60
42

w ×= × =  

 
It is clear that all means are significantly different and so the combination of factors 
that will give the greatest yield is temperature and catalyst both at the higher levels 
and concentration at the lower level. 
 
Polynomial models and fitted values 
 
Given that there are only two levels of each factor a linear trend would fit perfectly the 
means of each factor. Now could fit linear trend (polynomial) models by putting the 
values of the factor levels for each factor as a column in an X matrix; a linear 
interaction term could be fitted by adding to the X matrix a column obtained by 
pairwise multiplying the values in the columns for the factors involved in the 
interaction. However, suppose that instead of putting the actual values of the factor 
levels into the X matrix, it was decided to code the values as ±1. Interaction terms 
can still be fitted as the pairwise products of the (coded) elements from the columns 
for the factors involved in the interaction. Now whether your fit is based on an X 
matrix with 0,1 or ±1s or the actual factor values, you end up with equivalent fits as 
the fitted values and F test statistics will be the same for all three parametrizations. 
The values of the parameter estimates will differ and you will need to put in the 
values you used in the X matrix to obtain the estimates. The advantage of using ±1 is 
the ease of obtaining the X matrix and the simplicity of the computations.  
 
Definition VIII.8: The fitted values are obtained using the fitted equation that 
consists of the grand mean, the x-term for each significant effect and those for effects 
of lower degree than the significant sources. An x-term consists of the product of x 
variables, one for each factor in the term; the x variables take the values −1 and +1 
according whether the fitted value is required for an observation that received the low 
or high level of that factor. The coefficient of the term is half the Yates main or 
interaction effect. ■ 
 
The columns of an X for a particular model can be obtained from the table of 
coefficients given for working out the sums of squares, with a column added for the 
grand mean term.  
 
Example VIII.1 23 pilot plant experiment (continued) 
 
The full table of coefficients is as follows: 
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I T C K TC TK CK TCK 
+ − − − + + + − 
+ + − − − − + + 
+ − + − − + − + 
+ + + − + − − − 
+ − − + + − − + 
+ + − + − + − − 
+ − + + − − + − 
+ + + + + + + + 

 
For the example, the significant sources are C and T#K so that the X matrix 
corresponding to this model would include columns for I, T, C, K and TK and the row 
for each treatment combination would be repeated r times. Thus, the linear trend 
model that best describes the data from the experiment is: 
 

[ ] T
C
K

TK

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

rE

μ
γ
γ
γ
γ

⎛ ⎞− − −⎡ ⎤
⎜ ⎟− − −⎢ ⎥ ⎡ ⎤⎜ ⎟⎢ ⎥− − ⎢ ⎥⎜ ⎟⎢ ⎥− − ⎢ ⎥= = = ⊗⎜ ⎟⎢ ⎥− − − ⎢ ⎥⎜ ⎟⎢ ⎥− ⎢ ⎥⎜ ⎟⎢ ⎥ ⎣ ⎦− −
⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

ψ Y X 1γ  

 
We can write an element of [ ]E Y  as  
 

T T C C K K TK T Kijk ijkE Y x x x x xψ μ γ γ γ γ⎡ ⎤= = + + + +⎣ ⎦A A  
 
where xT, xC and xK takes values ±1 according to whether the observation took the 
high or low level of the factor. 
 
An estimator of one of coefficients in the model is half a Yates effect, with the 
estimator for the first column being the grand mean. The grand mean is obtained in R 
from the tables of means as shown in the following output: 
 
> Fac3Pilot.means$tables$"Grand mean" 
64.25 

 
For the example, the fitted model is thus 

[ ] T K T K C
23.0 1.5 10.0 5.064.25

2 2 2 2
E Y x x x x xψ = = + + + −  

 
The optimum yield occurs for T and K high and C low so it is estimated to be 

[ ]
( )64.25 11.5 1 0.75 1 5 1 1 2.5 1

84

E Yψ =

= + × + × + × × − × −

=
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Also note that a particular table of means can be obtained by using a linear trend 
model that includes the x-term corresponding to the table of means and any terms of 
lower degree. Hence, the table of T∧K means can be obtained by substituting 
xT = ±1, xK = ±1 into  

[ ] T K T K
23.0 1.5 20.064.25

2 2 2
E Y x x x xψ = = + + +  

 

VIII.B Economy in experimentation 
 (Box, Hunter and Hunter, sec.10.8) 
 
In most situations there are more factors to be investigated than can be conveniently 
accommodated with the time and budget available. Rather than duplicate a 23 
factorial as was done in the pilot plant study, it is usually better to include a fourth 
variable and run an unreplicated 24 design. Or, as we shall see in later sections, run 
a half-replicated 25 and use 16 runs to investigate 5 factors. 
 
The problem that would appear to arise from this suggestion is that if there is no 
replication then it will be impossible to measure the uncontrolled variation that has 
occurred in the experiment. However, when there are 4 or more factors it is unlikely 
that all factors will affect the response. Further it is usual that the magnitudes of 
effects are getting smaller as the order of the effect increases. Thus, it is likely that 
three-factor and higher-order interactions will be small and can be ignored without 
seriously affecting the conclusions drawn from the experiment. 
 
a) Design of unreplicated 2k experiments, including R expressions 
 
As there is only a single replicate, these combinations will be completely randomized 
to the available units, the number of which must be equal to the total number of 
treatment combinations, 2k. To generate a design in R, use fac.gen to generate the 
treatment combinations in Yates order and then fac.layout with the expressions 
for a CRD to randomize it. The following instructions would generate the layout for a 
23 experiment. Note that, in practice, one would need to choose a random number 
between 0 and 1023 to use as the seed— the alternative is to leave the seed out but 
then the layout cannot be reproduced. 
 
> # 
> # Unreplicated two-level factorial 
> # 
> n <- 8 
> mp <- c("-", "+") 
> Fac3.2Level.Unrep.ran <- fac.gen(list(A = mp, B = mp, C = mp), order="yates") 
> Fac3.2Level.Unrep.unit <- list(Runs = n) 
> Fac3.2Level.Unrep.lay <- fac.layout(unrandomized = Fac3.2Level.Unrep.unit, 
+                                    randomized = Fac3.2Level.Unrep.ran, seed=333) 
> remove("Fac3.2Level.Unrep.ran") 
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> Fac3.2Level.Unrep.lay 
  Units Permutation Runs A B C 
1     1           4    1 - - + 
2     2           2    2 + - - 
3     3           8    3 + + + 
4     4           5    4 - - - 
5     5           1    5 + + - 
6     6           7    6 - + + 
7     7           6    7 + - + 
8     8           3    8 - + - 

 
Example VIII.2 A 24 process development study 
 
The data given in the table below are the results, taken from Box, Hunter and Hunter, 
from a 24 design employed in a process development study. 
 

 
K 

 
T 

 
P 

 
C 

Conversion 
(%) 

Order of 
Runs 

− −  − − 71 (8) 
+ − − − 61 (2) 
− + − − 90 (10) 
+ + − − 82 (4) 
− − + − 68 (15) 
+ − + − 61 (9) 
− + + − 87 (1) 
+ + + − 80 (13) 
− − − + 61 (16) 
+ − − + 50 (5) 
− + − + 89 (11) 
+ + − + 83 (14) 
− − + + 59 (3) 
+ − + + 51 (12) 
− + + + 85 (6) 
+ + + + 78 (7) 

 
b) Initial analysis of variance 
 
We could attempt to do an analysis of variance involving all possible interactions 
between the factors. 
 
Example VIII.2 A 24 process development study (continued) 
 
The following R output includes the instructions for performing an initial analysis of 
this data: 
 
> mp <- c("-", "+") 
> fnames <- list(Catal = mp, Temp = mp, Press = mp, Conc = mp) 
> Fac4Proc.Treats <- fac.gen(generate = fnames, order="yates") 
> Fac4Proc.dat <- data.frame(Runs = factor(1:16), Fac4Proc.Treats) 
> remove("Fac4Proc.Treats") 
> Fac4Proc.dat$Conv <- c(71,61,90,82,68,61,87,80,61,50,89,83,59,51,85,78) 
> attach(Fac4Proc.dat) 
> Fac4Proc.dat 
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   Runs Catal Temp Press Conc Conv 
1     1     -    -     -    -   71 
2     2     +    -     -    -   61 
3     3     -    +     -    -   90 
4     4     +    +     -    -   82 
5     5     -    -     +    -   68 
6     6     +    -     +    -   61 
7     7     -    +     +    -   87 
8     8     +    +     +    -   80 
9     9     -    -     -    +   61 
10   10     +    -     -    +   50 
11   11     -    +     -    +   89 
12   12     +    +     -    +   83 
13   13     -    -     +    +   59 
14   14     +    -     +    +   51 
15   15     -    +     +    +   85 
16   16     +    +     +    +   78 
>  
> Fac4Proc.aov <- aov(Conv ~ Catal * Temp * Press * Conc + Error(Runs), 
Fac4Proc.dat) 
> summary(Fac4Proc.aov) 
 
Error: Runs 
                      Df    Sum Sq   Mean Sq 
Catal                  1    256.00    256.00 
Temp                   1   2304.00   2304.00 
Press                  1     20.25     20.25 
Conc                   1    121.00    121.00 
Catal:Temp             1      4.00      4.00 
Catal:Press            1      2.25      2.25 
Temp:Press             1      6.25      6.25 
Catal:Conc             1 6.043e-29 6.043e-29 
Temp:Conc              1     81.00     81.00 
Press:Conc             1      0.25      0.25 
Catal:Temp:Press       1      2.25      2.25 
Catal:Temp:Conc        1      1.00      1.00 
Catal:Press:Conc       1      0.25      0.25 
Temp:Press:Conc        1      2.25      2.25 
Catal:Temp:Press:Conc  1      0.25      0.25 
> round(yates.effects(Fac4Proc.aov, error.term="Runs", data=Fac4Proc.dat), 2) 
                Catal                  Temp                 Press  
                -8.00                 24.00                 -2.25  
                 Conc            Catal:Temp           Catal:Press  
                -5.50                  1.00                  0.75  
           Temp:Press            Catal:Conc             Temp:Conc  
                -1.25                  0.00                  4.50  
           Press:Conc      Catal:Temp:Press       Catal:Temp:Conc  
                -0.25                 -0.75                  0.50  
     Catal:Press:Conc       Temp:Press:Conc Catal:Temp:Press:Conc  
                -0.25                 -0.75                 -0.25  

 
Now, as discussed before, a direct estimate of 2

Rσ , the uncontrolled variation, is not 
available as there were no replicates in the 16 runs.  
 
c) Analysis assuming no 3-factor or 4-factor interactions 
 
However, if we assume that all three-factor and four-factor interactions are negligible, 
then we could use these to estimate the uncontrolled variation as this is the only 
reason for them being nonzero. To do this rerun the analysis with the model 
consisting of a list of factors, separated by pluses, within parentheses and the list 
raised to the power of 2. The output including commands for this analysis is as 
follows: 
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Example VIII.2 A 24 process development study (continued) 
 
> # Perform analysis assuming 3- & 4-factor interactions negligible 
> Fac4Proc.TwoFac.aov <- aov(Conv ~ (Catal + Temp + Press + Conc)^2 + Error(Runs),  
+                                                                    Fac4Proc.dat) 
> summary(Fac4Proc.TwoFac.aov) 
 
Error: Runs 
            Df    Sum Sq   Mean Sq   F value    Pr(>F) 
Catal        1    256.00    256.00  213.3333 2.717e-05 
Temp         1   2304.00   2304.00 1920.0000 1.169e-07 
Press        1     20.25     20.25   16.8750 0.0092827 
Conc         1    121.00    121.00  100.8333 0.0001676 
Catal:Temp   1      4.00      4.00    3.3333 0.1274640 
Catal:Press  1      2.25      2.25    1.8750 0.2292050 
Catal:Conc   1 5.394e-29 5.394e-29 4.495e-29 1.0000000 
Temp:Press   1      6.25      6.25    5.2083 0.0713436 
Temp:Conc    1     81.00     81.00   67.5000 0.0004350 
Press:Conc   1      0.25      0.25    0.2083 0.6672191 
Residuals    5      6.00      1.20                     
> 

The analysis is summarized in the following analysis of variance table: 
 

Source df SSq MSq F Prob 
Runs 15 2801.00    
 Catal 1 256.00 256.00 213.33 <0.001 
 Temp 1 2304.00 2304.00 1920.00 <0.001 
 Press 1 20.25 20.25 16.87 0.009 
 Conc 1 121.00 121.00 100.83 <0.001 
 Catal#Temp 1 4.00 4.00 3.33 0.127 
 Catal#Press 1 2.25 2.25 1.87 0.229 
 Catal#Conc 1 0.00 0.00 0.00 1.000 
 Temp#Press 1 6.25 6.25 5.21 0.071 
 Temp#Conc 1 81.00 81.00 67.50 <0.001 
 Press#Conc 1 0.25 0.25 0.21 0.667 
 Residual 5 6.00 1.20   

 
This analysis indicates that there is an interaction between Temperature and 
Concentration and that Catalyst and Pressure also affect the Conversion percentage, 
although independently of the other factors. 
 
However, there is a problem with this in that the test for main effects has been 
preceded by a test for interaction terms. Thus, testing is not independent and an 
allowance needs to be made for this. A further general problem in the use of higher-
order interactions for error is that occasionally meaningful higher order interactions 
occur. The analysis presented above does not confront either of these problems.  
 
d) Probability plot of Yates effects 
 
A method that does not require the assumption of zero higher-order interactions and 
allows for the dependence of the testing is a Normal probability plot of the Yates 
effects. For these reasons it is the preferred method, particularly for unreplicated and 
fractional experiments. In this plot the Yates effects are plotted against standard 
normal deviates.  This is done on the basis that if there were no effects of the factors, 
the estimated effects would be just normally distributed uncontrolled variation. Under 
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these circumstances a straight-line plot of normal deviates versus Yates effects is 
expected. Significant effects, if any, will appear as outliers in the plot and the 
nonsignificant effects should le along a straight line. 
 
The function qqyeffects with an aov.object as the first argument produces the 
plot. Label those points that you consider significant by clicking on them (on the side 
on which you want the label) and then right-click on the graph and select Stop when 
you have finished labelling effects. A list of selected effects will be produced and a 
regression line plotted through the origin and the unselected points. 
 
Example VIII.2 A 24 process development study (continued) 
 
> # 
> #Yates effects probability plot 
> # 
> qqyeffects(Fac4Proc.aov, error.term="Runs", data=Fac4Proc.dat) 
Effect(s) labelled: Press Temp:Conc Conc Catal Temp  

>  
I have clicked on the five effects with the largest absolute values as these appear to 
deviate substantially from the straight line going through the remainder of the effects. 
The large Yates effects correspond to Pressure, Temperature#Concentration, 
Concentration, Catalyst and Temperature. Hence, Temperature and Concentration 
interact in their effect on the Conversion percentage and Pressure and Catalyst each 
affect the response independently of any other factors. The fitted model is 
 

ψ = E[Y] = Pressure + Catalyst + Temperature∧Concentration 
 
e) Fitted values 
 
Example VIII.2 A 24 process development study (continued) 
 
For the example, the grand mean is obtained from the following output 
 
> Fac4Proc.means <- model.tables(Fac4Proc.aov, type="means") 
> Fac4Proc.means$tables$"Grand mean" 
[1] 72.25 
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The fitted equation incorporating the significant effects is: 
 

[ ] K P T C T C
8.0 2.25 24.0 5.5 4.572.25
2 2 2 2 2

E Y x x x x x xψ = = − − + − +  

 
where xK, xT and xC take the values −1 and +1. 
 
To predict the response for a particular combination of the treatments, substitute in 
the appropriate combination of −1 and +1. For example, the predicted response for 
high catalyst, pressure and temperature but a low concentration is calculated as 
follows: 

[ ]

( ) ( ) ( ) ( ) ( )( )

K P T C T C
8.0 2.25 24.0 5.5 4.572.25
2 2 2 2 2

8.0 2.25 24.0 5.5 4.572.25 1 1 1 1 1 1
2 2 2 2 2
8.0 2.25 24.0 5.5 4.572.25 79.625

2

kE Y x x x x x x= − − + − +

= − + − + + + − − + + −

− − + + −= + =

 

 
f) Diagnostic checking 
 
Having determined the significant terms one can reanalyze with just these terms, and 
those marginal to them, included in the model.formula and obtain the Residuals 
from this model. The Residuals can be used to do the usual diagnostic checking. For 
this to be effective requires that the number of fitted effects is small compared to the 
total number of effects in the experiment and that there is at least 10 degrees of 
freedom for the Residual line in the analysis of variance. 
 
Example VIII.2 A 24 process development study (continued) 
 
For the example the R output file is as follows: 
 
> # 
> # Diagnostic checking 
> # 
> Fac4Proc.Fit.aov <- aov(Conv ~ Temp * Conc + Catal + Press + Error(Runs),  
+                                                                   Fac4Proc.dat) 
> summary(Fac4Proc.Fit.aov) 
 
Error: Runs 
          Df  Sum Sq Mean Sq  F value    Pr(>F) 
Temp       1 2304.00 2304.00 1228.800 8.464e-12 
Conc       1  121.00  121.00   64.533 1.135e-05 
Catal      1  256.00  256.00  136.533 3.751e-07 
Press      1   20.25   20.25   10.800    0.0082 
Temp:Conc  1   81.00   81.00   43.200 6.291e-05 
Residuals 10   18.75    1.88                    
> tukey.1df(Fac4Proc.Fit.aov, Fac4Proc.dat, error.term="Runs") 
$Tukey.SS 
[1] 1.422313 
 
$Tukey.F 
[1] 0.7387496 
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$Tukey.p 
[1] 0.4123697 
 
$Devn.SS 
[1] 17.32769 
 
> res <- resid.errors(Fac4Proc.Fit.aov) 
> fit <- fitted.errors(Fac4Proc.Fit.aov) 
> plot(fit, res, pch=16) 
> qqnorm(res, pch=16) 
> qqline(res) 
> plot(as.numeric(Temp), res, pch=16) 
> plot(as.numeric(Conc), res, pch=16) 
> plot(as.numeric(Catal), res, pch=16) 
> plot(as.numeric(Press), res, pch=16) 
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The residual-versus-fitted-values and residuals-versus-factors plots do not seem to 
be displaying any particular pattern, although there is evidence of two large residuals, 
one negative and the other positive. Tukey's one-degree-of-freedom-for-nonadditivity 
is not significant. The Normal Probability plot shows a straight-line trend. 
Consequently, the only issue requiring attention is that of the two large residuals. 
 
g) Treatment differences 
 
As a result of the analysis we have identified the model that describes the affect of 
the factors on the response variable and hence the tables of means that need to be 
examined to determine the exact nature of the effects. 
 
Example VIII.2 A 24 process development study (continued) 
 
The R output that examines the appropriate tables of means is as follows: 
 
> # 
> # treatment differences 
> # 
> Fac4Proc.means <- model.tables(Fac4Proc.aov, type="means") 
> Fac4Proc.means$tables$"Grand mean" 
[1] 72.25 
> Fac4Proc.means$tables$"Temp:Conc" 
    Conc 
Temp -     +     
   - 65.25 55.25 
   + 84.75 83.75 
> Fac4Proc.means$tables$"Catal" 
Catal 
    -     +  
76.25 68.25  
> Fac4Proc.means$tables$"Press" 
Press 
     -      +  
73.375 71.125  
> interaction.plot(Temp, Conc, Conv) 
> q <- qtukey(0.95, 4, 10) 
> q 
[1] 4.326582 
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From the interaction plot, the two treatments that have temperature set high appear 
to give the greatest conversion rate. However, is there a significant difference 
between concentration low and high, when temperature is high? Tukey’s HSD 
procedure is used to answer this question.  
 

( ) 4.326582 1.875 25% 2.96
42

w ×= × =  

 
From the tables of means, as the difference between the two means is 1.0 and so 
less than Tukey’s HSD, there is no significant difference between them. It is 
concluded that either setting of concentration can be used. Consequently, the 
maximum conversion rate will be achieved with both catalyst and pressure set low, 
temperature set high and either setting of concentration. 
 

VIII.C Confounding in factorial experiments 
 
a) Total confounding of effects 
 
It happens it is not always possible to get a complete set of the treatments into a 
block or row of an experiment. The incomplete block designs and Youden square 
designs are available for experiments that that involve just a single set of treatments. 
However, the need for incomplete sets of treatments in a block is even more of a 
problem with factorial experiments where the number of treatments tends to be 
larger; on occasion, very large since the number of treatments increases 
geometrically with the number of factors and levels employed in the experiment. The 
solution to the problem must take into account the several factors. This turns out to 
be somewhat of an advantage in that it is possible to have incomplete sets of 
treatments and retain the orthogonality of the analysis. 
 
Definition VIII.9: A confounded factorial experiment is one in which incomplete 
sets of treatments occur in each block. 
 
The choice of which treatments to put in each block is done by deciding which effect 
is to be confounded with block differences. 
 
Definition VIII.10: A generator for a confounded experiment is a relationship that 
specifies which effect is equal to a particular block contrast. 
 
Example VIII.3 Complete sets of factorial treatments in 2 blocks 
 
Suppose that a trial is to be conducted using a 23 factorial design and, to make the 
eight runs as homogeneous as possible, it desirable that batches of raw material 
sufficient for a complete set of treatments be blended together. However, suppose 
that the available blender can only blend sufficient for four runs at a time. This means 
that two blends will be required for a complete set of treatments. 
 
It seems intuitively reasonable that we should arrange the treatments into two sets in 
such a way that the effect on the conclusions drawn from the experiment is 
minimized. Thus, the least serious thing to do is to have the three factor interaction 
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mixed up or confounded with blocks and the other effects unconfounded. To arrange 
for this to happen is easily done with the table of pluses and minuses. The following 
is the table for the three factors: 
 

Treatment A B C AB AC BC ABC 
1 − − − + + + − 
2 + − − − − + + 
3 − + − − + − + 
4 + + − + − − − 
5 − − + + − − + 
6 + − + − + − − 
7 − + + − − + − 
8 + + + + + + + 

 
Suppose we arrange to have all the treatments with a minus in the ABC column of 
the table together using one blend and the treatments with a plus in the ABC column 
using a second blend. Then we have divided the 8 treatments into 2 groups based on 
the minuses and pluses in the ABC column. In laying out the experiment the two 
groups are randomly assigned to the two different blends. That is, the allocation to 
blends might be as shown below: 
 

Treatment A B C AB AC BC ABC Group Blend 
1 − − − + + + − 1 2 
2 + − − − − + + 2 1 
3 − + − − + − + 2 1 
4 + + − + − − − 1 2 
5 − − + + − − + 2 1 
6 + − + − + − − 1 2 
7 − + + − − + − 1 2 
8 + + + + + + + 2 1 

 
We see that the Blend difference has been associated, and hence confounded, with 
the ABC effect. The generator for this design is thus Blend = ABC. Examination of 
this table reveals that all other effects have two minus and two plus observations in 
each blend. Hence, they are not affected by blend. 
 
The analysis can still be accomplished using Yates algorithm on the 8 runs with the 
three treatment factors; it just has to be remembered that the A#B#C term is 
associated with Blend differences. 
 
The experimental structure and the analysis of variance table for this experiment are: 
 

Structure Formula 
Unrandomized 2 Blends/4 Runs 
Randomized 2 A*2 B*2 C 
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Source df E[MSq] 
Blends 1  
 A#B#C 1 ( )2 2

BR B ABC4 qσ σ+ + ψ  

   
Runs[Blends] 6  
 A 1 ( )2

BR Aqσ + ψ  

 B 1 ( )2
BR Bqσ + ψ  

 A#B 1 ( )2
BR ABqσ + ψ  

 C 1 ( )2
BR Cqσ + ψ  

 A#C 1 ( )2
BR ACqσ + ψ  

 B#C 1 ( )2
BR BCqσ + ψ  

 
In this experiment, we have gained the advantage of having blocks of size 4 but at 
the price of being unable to estimate the three-factor interaction. As can be seen 
from the expected mean squares, Blend variability and the A#B#C interaction cannot 
be estimated separately. This is not a problem if the interaction can be assumed to 
be negligible. 
 
Example VIII.4 Repeated two block experiment 
 
It may be considered desirable to increase the size of the experiment to increase the 
precision with which the effects are estimated. If there are no extra factors available 
for inclusion, then the basic design could be replicated say r times which requires 2r 
blends. There is a choice as to how the 2 groups of treatments are to be assigned to 
the blends. For example, the groups of treatments could be assigned completely at 
random so that each group occurred with r out of the 2r blends. Another possibility is 
that the blends are formed into blocks of two and the groups of treatments 
randomized to the two blends within each block; to make this worthwhile would need 
to be able to identify relatively similar pairs of blends, otherwise complete 
randomization would be preferable. The experimental structure for the completely 
randomized case is as for the previous experiment, except that there would be 2r 
blends. The analysis would be: 
  



  VIII-27 

 
Source df E[MSq] 
Blends 2r−1  
 A#B#C 1 ( )2 2

BR B ABC4 qσ σ+ + ψ  

 Residual 2(r−1) 2 2
BR B4σ σ+  

   
Runs[Blends] 6r  
 A 1 ( )2

BR Aqσ + ψ  

 B 1 ( )2
BR Bqσ + ψ  

 A#B 1 ( )2
BR ABqσ + ψ  

 C 1 ( )2
BR Cqσ + ψ  

 A#C 1 ( )2
BR ACqσ + ψ  

 B#C 1 ( )2
BR BCqσ + ψ  

 Residual 6(r−1) 2
BRσ  

 
Example VIII.5 Complete sets of factorial treatments in 4 blocks 
 
Suppose that a 23 experiment is to be run but that the blends are only large enough 
for two runs using one blend. How can we design the experiment best? There will be 
four groups of treatments which we can represent using two factors at two levels. 
Let's suppose it is decided to associate the ABC interaction and one of the 
expendable two-factor interactions, say BC, with the blend differences. The table of 
coefficients is as follows: 
 

 A B C B1 B2   
Treatment 1 2 3 4 5 Group Blend 

1 − − − + − 1 3 
2 + − − + + 2 4 
3 − + − − + 3 1 
4 + + − − − 4 2 
5 − − + − + 3 1 
6 + − + − − 4 2 
7 − + + + − 1 3 
8 + + + + + 2 4 

 
The columns labelled B1 and B2 are just the columns of ± for BC and ABC; that is, the 
arrangement is generated by B1 = BC and B2 = ABC. The treatments in a particular 
group are determined by placing those with the same combination of ± for B1 and B2 
in the same group. The 4 groups are then randomized to the 4 blends. 
 
There is a serious weakness with this design!!! There are 3 degrees of freedom 
associated with group differences and we know of only two degrees of freedom 
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confounded with Blends. What has happened to the third degree of freedom? Well, it 
is obtained as the interaction of B1 and B2. It will be found if you multiply these 
columns together you obtain the A column. Disaster! a main effect has been 
confounded with Blends. The experimental structure and analysis of variance table 
for this experiment are: 
 

Structure Formula 
unrandomized 4 Blends/2 Runs 
randomized 2 A*2 B*2 C 

 
Source df E[MSq] 
Blends 3  
 A 1 ( )2 2

BR B A2 qσ σ+ + ψ  

 B#C 1 ( )2 2
BR B BC2 qσ σ+ + ψ  

 A#B#C 1 ( )2 2
BR B ABC2 qσ σ+ + ψ  

   
Runs[Blends] 4  
 B 1 ( )2

BR Bqσ + ψ  

 A#B 1 ( )2
BR ABqσ + ψ  

 C 1 ( )2
BR Cqσ + ψ  

 A#C 1 ( )2
BR ACqσ + ψ  

 
Fortunately, a calculus is available for avoiding such traps.  
 
Theorem VIII.1: Let the columns in a table of ±s whose rows specify the 
combinations of the factors in a two-factor experiment be numbered 1, 2, …, m. Also, 
let I be the column consisting entirely of +s. The elementwise product of two columns 
is commutative, the elementwise product of a column with I is the column itself and 
the elementwise product of a column with itself is I; that is,  
 

ij = ji, Ii = iI = i and ii = I where i,j = 1, 2, …, m 
 
Proof: follows directly from a consideration of the results of multiplying ±1s together ■ 
 
Example VIII.5 Complete sets of factorial treatments in 4 blocks (continued) 
 
Firstly, number the factors as shown in the table. Thus, we can write 
 

I = 11 = 22 = 33 = 44 = 55 
 
Now in the blocking arrangement just considered 4 = 23 and 5 = 123. 
 
The 45 column is thus 45 = 23.123 = 12233 = 1II = 1 which shows that 45 is identical 
to 1 and that the interaction 45 is confounded with 1. 
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A better arrangement is obtained by confounding the two block variables with any 
two of the two-factor interactions. The third degree of freedom is then confounded 
with the third two-factor interaction. Thus, for 4 = 12, 5 = 13, the interaction 45 is 
confounded with 23 since 45 = 1123 = 23. 
 
The experimental arrangement is indicated in the following table: 
 

 A B C B1 B2  
Treatment 1 2 3 4 5 Group 

1 − − − + + 1 
2 + − − − − 2 
3 − + − − + 3 
4 + + − + − 4 
5 − − + + − 4 
6 + − + − + 3 
7 − + + − − 2 
8 + + + + + 1 

 
The groups would be randomized to the blends and the order of the two runs for 
each blend would be randomized for each blend. 
 
The analysis of variance table for the experiment (same structure as before) is: 
 

Source df E[MSq] 
Blends 3  
 A#B 1 ( )2 2

BR B AB2 qσ σ+ + ψ  

 A#C 1 ( )2 2
BR B AC2 qσ σ+ + ψ  

 B#C 1 ( )2 2
BR B BC2 qσ σ+ + ψ  

   
Runs[Blends] 4  
 A 1 ( )2

BR Aqσ + ψ  

 B 1 ( )2
BR Bqσ + ψ  

 C 1 ( )2
BR Cqσ + ψ  

 A#B#C 1 ( )2
BR ABCqσ + ψ  

 
The two runs for each group are complimentary in the sense that the plus minus 
pattern of one run is precisely the opposite to that of the second run. For example, in 
group 2, the plus and minus signs for the pairs of runs are +−− and −++.  
 
Definition VIII.11: Two factor combinations are called a fold-over pair if the signs for 
the factors in one combination are exactly the opposite of those in the other 
combination. ■ 
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Any 2k factorial may be broken into 2k−1 blocks of size 2 by forming blocks such that 
each of them consists of a different fold-over pair. Such blocking arrangements leave 
the main effects of the k factors unconfounded with blocks. However, all two factor 
interactions are confounded with blocks. 
 
Example VIII.6: Repeated four block experiment 
 
As before we could replicate the whole experiment so that there are 4r blends. The 4 
groups of treatments might then be assigned completely at random or in blocks. 
Suppose that the groups have been assigned completely at random to the 4r blends 
so that each group occurs r times. The analysis would then be: 
 

Source df E[MSq] 

Blends 4r−1  

 A#B 1 ( )2 2
BR B AB2 qσ σ+ + ψ  

 A#C 1 ( )2 2
BR B AC2 qσ σ+ + ψ  

 B#C 1 ( )2 2
BR B BC2 qσ σ+ + ψ  

 Residual 4(r−1) 2 2
BR B2σ σ+  

Runs[Blends] 4r  

 A 1 ( )2
BR Aqσ + ψ  

 B 1 ( )2
BR Bqσ + ψ  

 C 1 ( )2
BR Cqσ + ψ  

 A#B#C 1 ( )2
BR ABCqσ + ψ  

 Residual 4(r−1) 2
BRσ  

 
The expected mean squares for this experiment are based on equating the 
unrandomized and randomized factors with random and fixed factors, respectively. 
There are thus two sources of uncontrolled variation: differences between blends 
( )2

BRσ  and between runs within blends ( )2
Bσ . The analysis indicates that the two-

factor interactions are going to be affected by blend differences whereas the other 
effects will not. As blends are likely to be more variable than runs within blends, if 
blocking is effective as planned, the two-factor interactions are determined with less 
precision than the other effects. This will be a problem if it is anticipated that there 
are likely to be two-factor interactions; in such circumstances one needs to consider 
partial confounding. 
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b) Partial confounding of effects 
 
In experiments where the complete set of treatments are replicated it is possible to 
confound different effects in each replicate. This is called partial confounding. 
 
Definition VIII.12: Partial confounding occurs when the effects confounded 
between blocks is different for different groups of blocks 
 
Example VIII.7 Partial confounding in a repeated four block experiment 
 
Suppose that we are wanting to run a four block experiment with repeats such as that 
discussed in example VIII.6.  The total confounding options discussed for that 
example may be unsatisfactory because of the need to confound two-factor 
interactions. The use of partial confounding is investigated for this experiment. 
Consider the following generators for an experiment involving sets of 4 blocks: 
 

Set Group generators 
 I 4 = 12 5 = 13 45 = 23 
 II 4 = 123 5 = 23 45 = 1 
 III 4 = 123 5 = 13 45 = 2 
 IV 4 = 123 5 = 12 45 = 3 

 
Thus the three factor interaction is confounded in three sets, the two factor 
interactions in 2 sets and the main effects in 1 set. The formation of the groups of 
treatments is shown in the following table. 
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  A B C B1 B2  
Set Treatment 1 2 3 4 5 Group 
     12 13  
 1 − − − + + 1 
 2 + − − − − 2 
 3 − + − − + 3 
 4 + + − + − 4 
 I 5 − − + + − 4 
 6 + − + − + 3 
 7 − + + − − 2 
 8 + + + + + 1 
     23 123  
 1 − − − + − 5 
 2 + − − + + 6 
 3 − + − − + 7 
 4 + + − − − 8 
 II 5 − − + − + 7 
 6 + − + − − 8 
 7 − + + + − 5 
 8 + + + + + 6 
     13 123  
 1 − − − + − 9 
 2 + − − − + 10 
 3 − + − + + 11 
 4 + + − − − 12 
 III 5 − − + − + 10 
 6 + − + + − 9 
 7 − + + − − 12 
 8 + + + + + 11 
     12 123  
 1 − − − + − 13 
 2 + − − − + 14 
 3 − + − − + 14 
 4 + + − + − 13 
 IV 5 − − + + + 15 
 6 + − + − − 16 
 7 − + + − − 16 
 8 + + + + + 15 

 
The groups (pairs) of treatments in this table would then be randomized to the blends 
and the two treatment combinations in each group randomized to the two runs made 
for each blend. The layout and data for the experiment are shown in the table below. 
A layout for such a design can be produced in R. For example, one could obtain the 
layout for each Set and then combine these into a single data.frame. 
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Blends Runs Group A B C Yield 
1 1 15 − − + 54.40 
 2  + + + 81.40 

2 1 10 + − − 70.60 
 2  − − + 46.60 

3 1 5 − − − 61.50 
 2  − + + 44.50 

4 1 9 − − − 60.70 
 2  + − + 82.70 

5 1 2 − + + 51.90 
 2  + − − 79.90 

6 1 16 − + + 43.90 
 2  + − + 84.90 

7 1 7 − − + 55.80 
 2  − + − 59.80 

8 1 14 + − − 73.50 
 2  − + − 61.50 

9 1 3 + − + 81.50 
 2  − + − 50.50 

10 1 11 + + + 80.90 
 2  − + − 51.90 

11 1 12 + + − 76.40 
 2  − + + 53.40 

12 1 8 + + − 68.60 
 2  + − + 86.60 

13 1 13 − − − 63.90 
 2  + + − 69.90 

14 1 6 + − − 75.90 
 2  + + + 86.90 

15 1 1 + + + 83.30 
 2  − − − 63.30 

16 1 4 + + − 63.50 
 2  − − + 44.50 

 
The experimental structure for this experiment is: 
 

Structure Formula 
unrandomized 16 Blends/2 Runs 
randomized 2 A*2 B*2 C 
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The analysis of variance table for this experiment is: 
 
Source df MSq E[MSq] F Prob 

Blends 15     

 A 1 1161.62 ( )2 2
BR B A2 qσ σ+ + ψ  34.55 <.001 

 B 1 0.50 ( )2 2
BR B B2 qσ σ+ + ψ  0.01 0.906 

 C 1 2.20 ( )2 2
BR B C2 qσ σ+ + ψ  0.07 0.804 

 A#B 1 0.72 ( )2 2
BR B AB2 qσ σ+ + ψ  0.02 0.887 

 A#C 1 289.00 ( )2 2
BR B AC2 qσ σ+ + ψ  8.60 0.019 

 B#C 1 82.81 ( )2 2
BR B BC2 qσ σ+ + ψ  2.46 0.155 

 A#B#C 1 0.20 ( )2 2
BR B ABC2 qσ σ+ + ψ  0.01 0.940 

 Residual 8 33.62 2 2
BR B2σ σ+    

      

Runs[Blends] 16     

 A 1 3313.50 ( )2
BR Aqσ + ψ  1016.64 <0.001 

 B 1 150.00 ( )2
BR Bqσ + ψ  46.02 <0.001 

 C 1 10.67 ( )2
BR Cqσ + ψ  3.27 0.104 

 A#B 1 9.00 ( )2
BR ABqσ + ψ  2.76 0.131 

 A#C 1 625.00 ( )2
BR ACqσ + ψ  191.76 <0.001 

 B#C 1 0.00 ( )2
BR BCqσ + ψ  0.00 1.000 

 A#B#C 1 0.50 ( )2
BR ABCqσ + ψ  0.15 0.704 

 Residual 9 3.26 2
BRσ    

Total 31     
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Information summary 
   

Model 
term 

e.f. nonorthogonal 
terms 

Blends stratum 
A 0.250  
B 0.250  
C 0.250  
A#B 0.500  
A#C 0.500  
B#C 0.500  
A#B#C 0.750  

   
Runs[Blends] stratum 

A 0.750 Blends 
B 0.750 Blends 
C 0.750 Blends 
A#B 0.500 Blends 
A#C 0.500 Blends 
B#C 0.500 Blends 
A#B#C 0.250 Blends 

 
Clearly, the experiment is balanced; the analysis can be accomplished using Yates 
algorithm, taking into account the efficiency with which various terms are estimated. 
Also, diagnostic checking would be performed on the residuals. 
 

VIII.D Fractional factorial designs at two levels 
 (Box, Hunter & Hunter, ch. 12) 
 
The number of runs required by a full 2k increases geometrically as k increases. 
However, it turns out that when k is not small the desired information can often be 
obtained by performing only a fraction of the full factorial design. 
 
In previous sections it was suggested that there was a great deal of redundancy in a 
factorial experiment in that higher-order interactions are likely to be negligible and 
some variables may not affect the response at all. We utilized this fact to suggest that 
it was not necessary to replicate the various treatments. In this section we go one 
step further by saying that you need take only a fraction of the full factorial design. 
 
Consider a 27 design. A complete factorial arrangement requires 27 = 128 runs. From 
these runs 128 effects can be calculated as follows: 
 

  interactions of order 
average main effects 2 3 4 5 6 7 

1 7 21 35 35 21 7 1 
 
So there tends to be redundancy in 2k designs in that there is likely to be an excess 
number of interactions that can be estimated and sometimes an excess number of 
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variables studied. Fractional factorial designs exploit this redundancy. To illustrate 
the ideas the example given by Box, Hunter and Hunter will be presented. It involves 
a half-fraction of a 25.  
 
Example VIII.8 A complete 25 factorial experiment 
 
The data from a complete 25 is given in the table below. Note that the results are not 
in the randomized order that would be order in which the runs were actually 
conducted. To make it easier to see how the design was constructed, the order of the 
runs is such that the treatments are in Yates order. 
 

Results from a 25 factorial design 
— chemical experiment 

 
Factor - + 
1 feed rate (l/min) 10 15 
2 catalyst (%) 1 2 
3 agitation rate (rpm) 100 120 
4 temperature (°C) 140 180 
5 concentration (%) 3 6 

 
 Factor  

Run 1 2 3 4 5 % reacted 
1 − − − − − 61 

*2 + − − − − 53 
*3 − + − − − 63 
4 + + − − − 61 

*5 − − + − − 53 
6 + − + − − 56 
7 − + + − − 54 

*8 + + + − − 61 
*9 − − − + − 69 
10 + − − + − 61 
11 − + − + − 94 

*12 + + − + − 93 
13 − − + + − 66 

*14 + − + + − 60 
*15 − + + + − 95 
16 + + + + − 98 

*17 − − − − + 56 
18 + − − − + 63 
19 − + − − + 70 

*20 + + − − + 65 
21 − − + − + 59 

*22 + − + − + 55 
*23 − + + − + 67 
24 + + + − + 65 
25 − − − + + 44 
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*26 + − − + + 45 
*27 − + − + + 78 
28 + + − + + 77 

*29 − − + + + 49 
30 + − + + + 42 
31 − + + + + 81 

*32 + + + + + 82 
 
The experimental structure for this experiment is the standard structure for a 25 CRD; 
it is: 

Structure Formula 
unrandomized 32 Runs 
randomized 2 Feed*2 Catal*2 Agitation*2 Temp*2 Conc 

 
The R output for the analysis of this example is as follows: 
 
> # 
> # set up data.frame and analyse 
> # 
> mp <- c("-", "+") 
> fnames <- list(Feed = mp, Catal = mp, Agitation = mp, Temp = mp, Conc = mp) 
> Fac5Reac.Treats <- fac.gen(generate = fnames, order="yates") 
> Fac5Reac.dat <- data.frame(Runs = factor(1:32), Fac5Reac.Treats) 
> remove("Fac5Reac.Treats") 
> Fac5Reac.dat$Reacted <- c(61,53,63,61,53,56,54,61,69,61,94,93,66,60,95,98, 
+                           56,63,70,65,59,55,67,65,44,45,78,77,49,42,81,82) 
> Fac5Reac.dat 
   Runs Feed Catal Agitation Temp Conc Reacted 
1     1    -     -         -    -    -      61 
2     2    +     -         -    -    -      53 
3     3    -     +         -    -    -      63 
4     4    +     +         -    -    -      61 
5     5    -     -         +    -    -      53 
6     6    +     -         +    -    -      56 
7     7    -     +         +    -    -      54 
8     8    +     +         +    -    -      61 
9     9    -     -         -    +    -      69 
10   10    +     -         -    +    -      61 
11   11    -     +         -    +    -      94 
12   12    +     +         -    +    -      93 
13   13    -     -         +    +    -      66 
14   14    +     -         +    +    -      60 
15   15    -     +         +    +    -      95 
16   16    +     +         +    +    -      98 
17   17    -     -         -    -    +      56 
18   18    +     -         -    -    +      63 
19   19    -     +         -    -    +      70 
20   20    +     +         -    -    +      65 
21   21    -     -         +    -    +      59 
22   22    +     -         +    -    +      55 
23   23    -     +         +    -    +      67 
24   24    +     +         +    -    +      65 
25   25    -     -         -    +    +      44 
26   26    +     -         -    +    +      45 
27   27    -     +         -    +    +      78 
28   28    +     +         -    +    +      77 
29   29    -     -         +    +    +      49 
30   30    +     -         +    +    +      42 
31   31    -     +         +    +    +      81 
32   32    +     +         +    +    +      82 
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> Fac5Reac.aov <- aov(Reacted ~ Feed * Catal * Agitation * Temp * Conc + 
Error(Runs), Fac5Reac.dat) 
> summary(Fac5Reac.aov) 
 
Error: Runs 
                               Df    Sum Sq   Mean Sq 
Feed                            1     15.12     15.12 
Catal                           1   3042.00   3042.00 
Agitation                       1      3.12      3.12 
Temp                            1    924.50    924.50 
Conc                            1    312.50    312.50 
Feed:Catal                      1     15.12     15.12 
Feed:Agitation                  1      4.50      4.50 
Catal:Agitation                 1      6.12      6.12 
Feed:Temp                       1      6.13      6.13 
Catal:Temp                      1   1404.50   1404.50 
Agitation:Temp                  1     36.12     36.12 
Feed:Conc                       1      0.12      0.12 
Catal:Conc                      1     32.00     32.00 
Agitation:Conc                  1      6.12      6.12 
Temp:Conc                       1    968.00    968.00 
Feed:Catal:Agitation            1     18.00     18.00 
Feed:Catal:Temp                 1     15.13     15.13 
Feed:Agitation:Temp             1      4.50      4.50 
Catal:Agitation:Temp            1     10.13     10.13 
Feed:Catal:Conc                 1     28.12     28.12 
Feed:Agitation:Conc             1     50.00     50.00 
Catal:Agitation:Conc            1      0.13      0.13 
Feed:Temp:Conc                  1      3.13      3.13 
Catal:Temp:Conc                 1      0.50      0.50 
Agitation:Temp:Conc             1      0.13      0.13 
Feed:Catal:Agitation:Temp       1 4.565e-28 4.565e-28 
Feed:Catal:Agitation:Conc       1     18.00     18.00 
Feed:Catal:Temp:Conc            1      3.12      3.12 
Feed:Agitation:Temp:Conc        1      8.00      8.00 
Catal:Agitation:Temp:Conc       1      3.13      3.13 
Feed:Catal:Agitation:Temp:Conc  1      2.00      2.00 
> qqyeffects(Fac5Reac.aov, error.term="Runs", data=Fac5Reac.dat) 
Effect(s) labelled: Conc Temp Temp:Conc Catal:Temp Catal 
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> round(yates.effects(Fac5Reac.aov, error.term="Runs", data=Fac5Reac.dat), 2) 
                          Feed                          Catal  
                         -1.37                          19.50  
                     Agitation                           Temp  
                         -0.62                          10.75  
                          Conc                     Feed:Catal  
                         -6.25                           1.37  
                Feed:Agitation                Catal:Agitation  
                          0.75                           0.87  
                     Feed:Temp                     Catal:Temp  
                         -0.88                          13.25  
                Agitation:Temp                      Feed:Conc  
                          2.12                           0.12  
                    Catal:Conc                 Agitation:Conc  
                          2.00                           0.87  
                     Temp:Conc           Feed:Catal:Agitation  
                        -11.00                           1.50  
               Feed:Catal:Temp            Feed:Agitation:Temp  
                          1.38                          -0.75  
          Catal:Agitation:Temp                Feed:Catal:Conc  
                          1.13                          -1.87  
           Feed:Agitation:Conc           Catal:Agitation:Conc  
                         -2.50                           0.13  
                Feed:Temp:Conc                Catal:Temp:Conc  
                          0.63                          -0.25  
           Agitation:Temp:Conc      Feed:Catal:Agitation:Temp  
                          0.13                           0.00  
     Feed:Catal:Agitation:Conc           Feed:Catal:Temp:Conc  
                          1.50                           0.62  
      Feed:Agitation:Temp:Conc      Catal:Agitation:Temp:Conc  
                          1.00                          -0.63  
Feed:Catal:Agitation:Temp:Conc  
                         -0.50  
> Fac5Reac.Fit.aov <- aov(Reacted ~ Temp * (Catal + Conc) + Error(Runs),  
+                                                         Fac5Reac.dat) 
> summary(Fac5Reac.Fit.aov) 
 
Error: Runs 
           Df Sum Sq Mean Sq F value    Pr(>F) 
Temp        1  924.5   924.5  83.317 1.368e-09 
Catal       1 3042.0  3042.0 274.149 2.499e-15 
Conc        1  312.5   312.5  28.163 1.498e-05 
Temp:Catal  1 1404.5  1404.5 126.575 1.726e-11 
Temp:Conc   1  968.0   968.0  87.237 8.614e-10 
Residuals  26  288.5    11.1                   
> # 
> # Diagnostic checking 
> # 
> tukey.1df(Fac5Reac.Fit.aov, Fac5Reac.dat, error.term="Runs") 
$Tukey.SS 
[1] 10.62126 
 
$Tukey.F 
[1] 0.9555664 
 
$Tukey.p 
[1] 0.3376716 
 
$Devn.SS 
[1] 277.8787 
 
> res <- resid.errors(Fac5Reac.Fit.aov) 
> fit <- fitted.errors(Fac5Reac.Fit.aov) 
> plot(fit, res, pch=16) 
> qqnorm(res, pch=16) 
> qqline(res) 
> plot(as.numeric(Feed), res, pch=16) 
> plot(as.numeric(Catal), res, pch=16) 



  VIII-40 

> plot(as.numeric(Agitation), res, pch=16) 
> plot(as.numeric(Temp), res, pch=16) 
> plot(as.numeric(Conc), res, pch=16) 

 

   

   

   

50 60 70 80 90

-6
-4

-2
0

2
4

6

fit

re
s

-2 -1 0 1 2

-6
-4

-2
0

2
4

6

Normal Q-Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

1.0 1.2 1.4 1.6 1.8 2.0

-6
-4

-2
0

2
4

6

as.numeric(Feed)

re
s

1.0 1.2 1.4 1.6 1.8 2.0

-6
-4

-2
0

2
4

6

as.numeric(Catal)

re
s

1.0 1.2 1.4 1.6 1.8 2.0

-6
-4

-2
0

2
4

6

as.numeric(Agitation)

re
s

1.0 1.2 1.4 1.6 1.8 2.0

-6
-4

-2
0

2
4

6

as.numeric(Temp)

re
s



  VIII-41 

 
 
From this we conclude that the main effects Catal, Temp and Conc and the two-
factor interactions Catal#Temp and Temp#Conc are the only effects distinguishable 
from noise. Consequently we conclude that Catalyst and Temperature interact in 
their effect on the % Reacted as do Concentration and Temperature. The fitted 
model is 

ψ = E[Y] = Catalyst∧Temperature + Concentration∧Temperature 
 
The residuals plots are fine and so also is the normal probability plot. Tukey's one-
degree-of-freedom-for-nonadditivity is not significant. So there is no evidence that the 
assumptions are unmet. 
 
> # 
> # treatment differences 
> # 
> interaction.plot(Temp, Catal, Reacted, lwd=4) 
> interaction.plot(Temp, Conc, Reacted, lwd=4) 
> Fac5Reac.means <- model.tables(Fac5Reac.Fit.aov, type="means") 
> Fac5Reac.means$tables$"Temp:Catal" 
    Catal 
Temp -     +     
   - 57.00 63.25 
   + 54.50 87.25 
> Fac5Reac.means$tables$"Temp:Conc" 
    Conc 
Temp -     +     
   - 57.75 62.50 
   + 79.50 62.25 
> q <- qtukey(0.95, 4, 26) 
> q 
[1] 3.87964 

 
Tukey’s HSD is  

( ) 3.87964 11.1 25% 4.57
82

w ×= × =  
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a) Half-fractions of full factorial experiments 
 
Definition VIII.13: A 1

p th fraction of a 2k experiment is designated a 2k-p experiment. 
The number of runs in the experiment is equal to the value of 2k-p. ■ 
 
Construction of half-fractions 
 
Rule VIII.1: A 2k-1 experiment is constructed as follows: 
 
1. Write down a complete design in k−1 factors. 
2. Compute the column of signs for factor k by forming the elementwise product of 

the columns of the complete design. That is, ( )= −k 123 k 1… . ■ 
 
Example VIII.9 A half-fraction of a 25 factorial experiment 
 
Now, the full factorial experiment analysed in example VIII.8 required 32 runs. 
Suppose that the experimenter had chosen to make only the 16 runs marked with 
asterisks in the above table — that is, the 24 = 16 runs specified by rule VIII.1 for a 25-

1 design: 
 
1. A full 24 design was chosen for the four factors 1, 2, 3 and 4. 
2. The column of signs for the four-factor interaction was computed and these were 

used to define the levels of factor 5. Thus, 5 = 1234. 
 
Consequently, the only data available would be that given in the table below; this 
data has been arranged in Yates order for factors 1–4, not in randomized order. Also, 
given are the coefficients of the contrasts for all the two-factor interactions. 
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Results from a half-fraction of a 25 factorial design 
— chemical experiment 

   
Factor − + 
1 feed rate (l/min) 10 15 
2 catalyst (%) 1 2 
3 agitation rate (rpm) 100 120 
4 temperature (°C) 140 180 
5 concentration (%) 3 6 

 
 Factor Interactions % 

Run 1 2 3 4 5 12 13 14 15 23 24 25 34 35 45 reacted
17 − − − − + + + + − + + − + − − 56 
2 + − − − − − − − − + + + + + + 53 
3 − + − − − − + + + − − − + + + 63 

20 + + − − + + − − + − − + + − − 65 
5 − − + − − + − + + − + + − − + 53 

22 + − + − + − + − + − + − − + − 55 
23 − + + − + − − + − + − + − + − 67 
8 + + + − − + + − − + − − − − + 61 
9 − − − + − + + − + + − + − + − 69 

26 + − − + + + − + + + − − − − + 45 
27 − + − + + − + − − − + + − − + 78 
12 + + − + − + − + − − + − − + − 93 
29 − − + + + + − − − − − − + + + 49 
14 + − + + − − + + − − − + + − − 60 
15 − + + + − − − − + + + − + − − 95 
32 + + + + + + + + + + + + + + + 82 

 
Aliasing in half-fractions 
 
As one would expect there is no such thing as a free lunch. We have gained by only 
having to run half the combinations, but what has been lost? The short answer is that 
various effects have been aliased. 
 
Definition VIII.14: Two effects are said to be aliased when they are mixed up 
because of the deliberate use of only a fraction of the treatments. ■ 
 
Compare this to confounding, where certain treatment effects are mixed up with 
block effects. That is, the inability to separate the effects arises from different actions. 
In one case, it is because of the treatment combinations that the investigator chooses 
to observe; in the other case, it arises from the assigning of treatments to physical 
units. 
 
In the table above, only the columns for the main effects and two-factor interactions 
are presented. What about the 10 three-factor interactions, the 5 four-factor 
interactions and the 1 five-factor interaction? Consider the three factor interaction 
123; its coefficients are: 
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123 = −++−+−−+−++−+−−+ 

 
but we notice this is identical to the column 45 in the above table. That is, 123 = 45 
and these two interactions are aliased.  
 
Now suppose we use A45 to denote the linear function of the observations which we 
used to estimate the 45 interaction: 
 

A45 = (−56+53+63−65+53−55−67+61−69+45+78−93+49−60−95+82)/8 = −9.5 
 
Now, A45 estimates the sum of the effects 45 and 123 from the complete design. It is 

said that A45  45 + 123. That is, it is the sum of the parameters for 45 and 123 that 

is estimated by A45. The complete aliasing pattern for this design is as follows: 
 

Aliasing pattern for a 25−1 design 
 

Relationship  
between column pairs 

 
Aliasing pattern 

 1 = 2345  A1  1 + 2345 
 2 = 1345  A2  2 + 1345 
 3 = 1245  A3  3 + 1245 
 4 = 1235  A4  4 + 1235 
 5 = 1234  A5  5 + 1234 
 12 = 345  A12  12 + 345 
 13 = 245  A13  13 + 245 
 14 = 235  A14  14 + 235 
 15 = 234  A15  15 + 234 
 23 = 145  A23  23 + 145 
 24 = 135  A24  24 + 135 
 25 = 134  A25  25 + 134 
 34 = 125  A34  34 + 125 
 35 = 124  A35  35 + 124 
 45 = 123  A45  45 + 123 
 (I = 12345)  [AI  average  

    + ½(12345)] 
 
Evidently our analysis would be justified if it could be assumed that the three-factor 
and four-factor interactions could be ignored. 
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Analysis of half-fractions 
 
The analysis of this set of 16 runs can still be accomplished using Yates algorithm 
since there are 4 factors for which it represents a full factorial. However, R will 
perform the analysis producing lines for a set of unaliased terms. The experimental 
structure is the same as for the full factorial. The R output for the analysis is as 
follows: 
 
> mp <- c("-", "+") 
> fnames <- list(Feed = mp, Catal = mp, Agitation = mp, Temp = mp) 
> Frf5Reac.Treats <- fac.gen(generate = fnames, order="yates") 
> attach(Frf5Reac.Treats) 
> Frf5Reac.Treats$Conc <-  
+       factor(mpone(Feed)*mpone(Catal)*mpone(Agitation)*mpone(Temp), labels = mp) 
> detach(Frf5Reac.Treats) 
> Frf5Reac.dat <- data.frame(Runs = factor(1:16), Frf5Reac.Treats) 
> remove("Frf5Reac.Treats") 
> Frf5Reac.dat$Reacted <- c(56,53,63,65,53,55,67,61,69,45,78,93,49,60,95,82) 
> Frf5Reac.dat 
   Runs Feed Catal Agitation Temp Conc Reacted 
1     1    -     -         -    -    +      56 
2     2    +     -         -    -    -      53 
3     3    -     +         -    -    -      63 
4     4    +     +         -    -    +      65 
5     5    -     -         +    -    -      53 
6     6    +     -         +    -    +      55 
7     7    -     +         +    -    +      67 
8     8    +     +         +    -    -      61 
9     9    -     -         -    +    -      69 
10   10    +     -         -    +    +      45 
11   11    -     +         -    +    +      78 
12   12    +     +         -    +    -      93 
13   13    -     -         +    +    +      49 
14   14    +     -         +    +    -      60 
15   15    -     +         +    +    -      95 
16   16    +     +         +    +    +      82 
> Frf5Reac.aov <- aov(Reacted ~ Feed * Catal * Agitation * Temp * Conc +  
+                                                   Error(Runs), Frf5Reac.dat) 
> summary(Frf5Reac.aov) 
 
Error: Runs 
                Df    Sum Sq   Mean Sq 
Feed             1     16.00     16.00 
Catal            1   1681.00   1681.00 
Agitation        1 5.966e-30 5.966e-30 
Temp             1    600.25    600.25 
Conc             1    156.25    156.25 
Feed:Catal       1      9.00      9.00 
Feed:Agitation   1      1.00      1.00 
Catal:Agitation  1      9.00      9.00 
Feed:Temp        1      2.25      2.25 
Catal:Temp       1    462.25    462.25 
Agitation:Temp   1      0.25      0.25 
Feed:Conc        1      6.25      6.25 
Catal:Conc       1      6.25      6.25 
Agitation:Conc   1     20.25     20.25 
Temp:Conc        1    361.00    361.00 
> qqyeffects(Frf5Reac.aov, error.term = "Runs", data=Frf5Reac.dat) 
Effect(s) labelled: Conc Temp:Conc Catal:Temp Temp Catal  
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> round(yates.effects(Frf5Reac.aov, error.term="Runs", data=Frf5Reac.dat), 2) 
           Feed           Catal       Agitation            Temp            Conc  
          -2.00           20.50            0.00           12.25           -6.25  
     Feed:Catal  Feed:Agitation Catal:Agitation  
           1.50            0.50            1.50  
      Feed:Temp      Catal:Temp  Agitation:Temp       Feed:Conc      Catal:Conc  
          -0.75           10.75            0.25            1.25            1.25  
Agitation:Conc       Temp:Conc  
           2.25           -9.50  

 
Note that fac.gen is used to generate the first four of the five factors as this design 
is complete in these four factors — the fifth factor is then generated as the product of 
the first four factors. 
 
The values of the Yates effects for the fractional set are similar to those obtained in 
the analysis of the complete set. The normal plot for the fraction draws attention to 
precisely the same set of effects as that for the full factorial: Conc, Temp, Catal, 
Temp#Conc and Temp#Catal. Again, the fitted model is 
 

ψ = E[Y] = Catalyst∧Temperature + Concentration∧Temperature 
 
and essentially the same information has been obtained with only half the effort. 
 
The following R output gives the analysis for the significant effects (and effects 
marginal to them), along with the diagnostic checking: 
 
> Frf5Reac.Fit.aov <- aov(Reacted ~ Temp * (Catal + Conc) + Error(Runs),  
+                                                                  Frf5Reac.dat) 
> summary(Frf5Reac.Fit.aov) 
 
Error: Runs 
           Df  Sum Sq Mean Sq F value    Pr(>F) 
Temp        1  600.25  600.25  85.445 3.253e-06 
Catal       1 1681.00 1681.00 239.288 2.600e-08 
Conc        1  156.25  156.25  22.242 0.0008212 
Temp:Catal  1  462.25  462.25  65.801 1.043e-05 
Temp:Conc   1  361.00  361.00  51.388 3.037e-05 
Residuals  10   70.25    7.03                   
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> # 
> # Diagnostic checking 
> # 
> tukey.1df(Frf5Reac.Fit.aov, Frf5Reac.dat, error.term="Runs") 
$Tukey.SS 
[1] 5.767756 
 
$Tukey.F 
[1] 0.8050248 
 
$Tukey.p 
[1] 0.3929634 
 
$Devn.SS 
[1] 64.48224 
 
> res <- resid.errors(Frf5Reac.Fit.aov) 
> fit <- fitted.errors(Frf5Reac.Fit.aov) 
> plot(fit, res, pch=16) 
> qqnorm(res, pch=16) 
> qqline(res) 
> attach(Frf5Reac.dat) 
> plot(as.numeric(Feed), res, pch=16) 
> plot(as.numeric(Catal), res, pch=16) 
> plot(as.numeric(Agitation), res, pch=16) 
> plot(as.numeric(Temp), res, pch=16) 
> plot(as.numeric(Conc), res, pch=16) 
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The diagnostic checking indicates there is a problem with a large residual and 
perhaps a problem with different variances between the two temperatures. 
 
Finding the aliasing patterns 
 
Fortunately, we can use the calculus, described in section VIII.C, for multiplying 
columns together to obtain the aliasing pattern. 
 
Definition VIII.15: A set of columns designating an elementwise product of a set of 
columns is called a word. ■ 
 
Definition VIII.16: The generator(s) of a fractional 2k experiment are the 
relationship(s) between factors that are used to obtain the design. The generating 
relations express these as words equal to I. ■ 
 
Definition VIII.17: The defining relations of a fractional 2k experiment is the set of 
all words equal to the identity column I. It includes the generating relations and all 
possible products of these relations. ■ 
 
The defining relation(s) are the key to the design since multiplying them on both 
sides of the equals sign by particular column combinations yields the relationships 
between the columns.  
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Example VIII.9 A half-fraction of a 25 factorial experiment (continued) 
 
The 25−1 design was constructed by setting 5 = 1234. That is, this relation is the 
generator of the design. Multiplying both sides by 5 we obtain 55 = 12345 or I = 
12345. This identity can be confirmed by multiplying together the columns in the table 
of coefficients for the design. The half fraction is defined by a single generating 
relation I = 12345 so that the relation I = 12345 also provides the defining relation of 
the design. (For more highly fractionated designs more than one defining relation is 
needed.) 
 
To find out which column combination is aliased with 45, multiply the defining relation 
on both sides by 45: 45I = 4512345 = 123 which is precisely the relation given in the 
above table. The other aliasing relations can be found similarly. 
 
b) More on construction and use of half-factions 
 
The complimentary half-fraction 
 
Definition VIII.18: The complimentary half-fraction is obtained by reversing the 
sign of the generating relation. ■ 
 
In practice, either half-fraction may be used. 
 
Example VIII.9 A half-fraction of a 25 factorial experiment (continued) 
 
As already mentioned the design we have been discussing was constructed using 
the generator 5 = 1234; that is, we formed the fifth column by multiplying together the 
other 4 columns. The complimentary half fraction is generated by putting 5 = −1234; 
that is, taking minus the product of the first 4 columns. The half fraction 
corresponding to the runs not marked with an asterisk in the complete experiment is 
obtained. The defining relation for this design may be written as I = −12345. 
 
The complimentary half fraction would give: 
 
 A1  1 − 2345 

 A2  2 − 1345 etc. 
 
Sequential experimentation 
 
An experimenter contemplating the investigation of 5 factors, may be willing to run all 
32 runs required for a 25. It is almost always better to run a half-fraction first and 
analyze them. If necessary, the other half-fraction can always be run later to 
complete the full design. Frequently, however, the first half-fraction will allow 
progress to the next stage of experimental investigation. 
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c) The concept of design resolution 
 
Definition VIII.19: The resolution R of a fractional design is the number of columns 
in the smallest word in the defining relations. ■ 
 
Thus a 25−1 half fraction with defining relation I = ±12345 has resolution V and is 
referred to as a 5 1

V2 −  design. A 23−1 with defining relation I = ±123 has resolution III 
and is referred to as a 5 1

III2 −  design. 
 
 
Theorem VIII.2: The half-fraction of a 2k experiment with highest resolution is the one 
for which the generator is ( )= −k 123 k 1…  and so the generating and defining 
relation is =I 123 k… . 
 
Proof: it is clear that the largest word possible has been used for the generating 
relationship. ■ 
 
The half-fraction is the one that it was suggested as best in rule VIII.1. 
 
Rule VIII.2: A design of resolution R is one in which i-factor effects ( )2i R≤  may be 
aliased with effects containing R − i factors or more. ■ 
 
Example VIII.9 A half-fraction of a 25 factorial experiment (continued) 
 
The 25−1 design we have been discussing is a resolution V design and so all i-factor 
interactions are aliased with V−i interactions. Hence, all one-factor interactions are 
aliased with four-factor interactions and all two-factor interactions are aliased with 
three-factor interactions. ■ 
 
For the various sized fractions of a 2k: 
 
1. a design of resolution III does not alias main effects with one another, but does 

alias main effects with two factor interactions; 
 
2. a design of resolution IV does not alias main effects and two-factor interactions, 

but does alias two factor interactions with one another; 
 
3. a design of resolution V does not alias main effects and two-factor with one 

another, but does alias two factor interactions with three-factor interactions. 
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Embedded factorials 
 
One of the very important aspects of resolution is that a fractional factorial design of 
resolution R contains complete factorials (possibly replicated) in every set of R−1 
factors. Suppose then that an experimenter has a number of candidate factors but 
believes that all but R−1 of them (specific identity unknown) may have no detectable 
effects. If she employs a fractional factorial design of resolution R she will have a 
complete factorial design in the effective factors. 
 
Example VIII.9 A half-fraction of a 25 factorial experiment (continued) 
 
The 5 1

V2 −  design is a complete factorial in any four of the five factors. Thus, if we can 
identify a factor that is having no effect, the experiment can be interpreted as a 
complete factorial. In the analysis discussed above factors 1 (Feed) and 3 (Agitation) 
are without effect, so that the experiment can be viewed as a replicated 23 factorial 
experiment. 
 

Results from a 5 1
V2 −  factorial design 

viewed as a 23 
— chemical experiment 

   
Factor − + 
1 feed rate (l/min) 10 15 
2 catalyst (%) 1 2 
3 agitation rate (rpm) 100 120 
4 temperature (°C) 140 180 
5 concentration (%) 3 6 
     
 Factor  

Run 2 4 5 % reacted
2 − − − 53 
5 − − − 53 

17 − − + 56 
22 − − + 55 
9 − + − 69 

14 − + − 60 
26 − + + 45 
29 − + + 49 
3 + − − 63 
8 + − − 61 

20 + − + 65 
23 + − + 67 
12 + + − 93 
15 + + − 95 
27 + + + 78 
32 + + + 82 
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d) Resolution III designs (also called main effect plans) 
 
In a resolution III design, the main effects are aliased with two-factor interactions. It is 
possible to construct resolution III designs for investigating up to k = n−1 factors, 
where n is a multiple of 4. A particularly important subset of these designs are those 
for which n is a power of 2. In particular, designs for investigating up to 3 factors in 4 
runs, up to 7 factors in 8 runs and up to 15 factors in 16 runs. 
 
Definition VIII.20: A fractional design is said to be a saturated design if the number 
of factors k = n−1; that is, all contrasts are associated with main effects. ■ 
 
Saturated designs are at the heart of the Taguchi quality control methods which have 
been attributed as being the basis of Japanese industrial supremacy. They have 
used these designs in developing products to determine which factors in an industrial 
manufacturing process affect product quality. In using these designs they are 
assuming that all two-factor interactions are negligible. Because of this they are not 
so useful in agriculture. 
 
Resolution III designs for which n is a power of 2. 
 
Rule VIII.3: k-p

III2  designs in which 2k pn −=  are constructed as follows: 
 
1. Write down a complete design in k−p factors. 
2. Compute the column of signs for additional factors by associating the factors with 

the interaction columns of the factors in the complete design. ■ 
 
We will now investigate the use of resolution III designs. In particular, their use in 
sequential experimentation will be illustrated. 
 
Example VIII.10 A bike experiment 
 
Consider the following 7-4

III2  experiment designed to investigate the effects of 7 factors 
on the time it takes a particular person to cycle up a hill. That is, it is a one sixteenth 
fraction of a 27 experiment involving 23 = 8 runs. The design is constructed by writing 
down a full factorial design for the three variables 1, 2 and 3; the additional variables 
4, 5, 6 and 7 are associated with all the interaction columns 12, 13, 23 and 123, 
respectively. Hence, the generating relations of the design are I = 124, I = 135, I = 
236, I = 1237. The design is shown in the following table: 
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A 7-4
III2  Experiment for Studying Bicycle Times 

 
 Factor − + 
1 Seat up down 
2 Dynamo off  on 
3 Handlebars up down 
4 Gear low medium 
5 Raincoat on off 
6 Breakfast yes no 
7 Tyres hard soft 
         

Run 1 2 3 4 5 6 7 Time  
1 − − − + + + − 69 
2 + − − − − + + 52 
3 − + − − + − + 60 
4 + + − + − − − 83 
5 − − + + − − + 71 
6 + − + − + − − 50 
7 − + + − − + − 59 
8 + + + + + + + 88 

 
 
Notice that all contrasts are associated with a main effect and so this design is 
saturated. 
 
The experimental structure for this experiment is: 
 

Structure Formula 
unrandomized 8 Runs 
randomized 2 Seat+2 Dynamo+2 Handbars+2 Gear 

 +2 Raincoat+2 Brekkie+2 Tyres 
 
The pluses indicate that the factors have to be assumed to be independent. 
 
The R output for the analysis is: 
 
> # 
> # set up data.frame 
> # 
> mp <- c("-", "+") 
> fnames <- list(Seat = mp, Dynamo = mp, Handbars = mp) 
> Frf7Bike.Treats <- fac.gen(generate = fnames, order="yates") 
> attach(Frf7Bike.Treats) 
> Frf7Bike.Treats$Gear <- factor(mpone(Seat)*mpone(Dynamo), labels = mp) 
> Frf7Bike.Treats$Raincoat <- factor(mpone(Seat)*mpone(Handbars), labels = mp) 
> Frf7Bike.Treats$Brekkie <- factor(mpone(Dynamo)*mpone(Handbars), labels = mp) 
> Frf7Bike.Treats$Tyres <- factor(mpone(Seat)*mpone(Dynamo)*mpone(Handbars),  
+                                                                    labels = mp) 
> detach(Frf7Bike.Treats) 
> Frf7Bike.dat <- data.frame(Runs = factor(1:8), Frf7Bike.Treats) 
> Frf7Bike.dat$Time <- as.vector(c(69, 52, 60, 83, 71, 50, 59, 88)) 
> Frf7Bike.dat 
  Runs Seat Dynamo Handbars Gear Raincoat Brekkie Tyres Time 
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1    1    -      -        -    +        +       +     -   69 
2    2    +      -        -    -        -       +     +   52 
3    3    -      +        -    -        +       -     +   60 
4    4    +      +        -    +        -       -     -   83 
5    5    -      -        +    +        -       -     +   71 
6    6    +      -        +    -        +       -     -   50 
7    7    -      +        +    -        -       +     -   59 
8    8    +      +        +    +        +       +     +   88 
> # 
> # analyse 
> # 
> Frf7Bike.aov <- aov(Time ~ (Seat + Dynamo + Handbars + Gear + Raincoat + Brekkie 
+                                          Tyres)^2 + Error(Runs), Frf7Bike.dat) 
> summary(Frf7Bike.aov) 
 
Error: Runs 
         Df Sum Sq Mean Sq 
Seat      1   24.5    24.5 
Dynamo    1  288.0   288.0 
Handbars  1    2.0     2.0 
Gear      1 1012.5  1012.5 
Raincoat  1    0.5     0.5 
Brekkie   1    2.0     2.0 
Tyres     1   12.5    12.5 
> qqyeffects(Frf7Bike.aov, error.term = "Runs", data=Frf7Bike.dat) 
Effect(s) labelled: Dynamo Gear  
> round(yates.effects(Frf7Bike.aov, error.term="Runs", data=Frf7Bike.dat), 2) 
    Seat   Dynamo Handbars     Gear Raincoat  Brekkie    Tyres  
     3.5     12.0      1.0     22.5      0.5      1.0      2.5  

 

 
 
The estimated effects and the abbreviated aliasing pattern (ignoring interactions with 
three or more factors) for this experiment are as follows: 
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Estimated Effects and Abbreviated Aliasing Pattern 
 

Seat A1 = 3.5  1 + 24 + 35 + 67 

Dynamo A2 = 12.0  2 + 14 + 36 + 57 

Handlebars A3 = 1.0  3 + 15 + 26 + 47 

Gear A4 = 22.5  4 + 12 + 56 + 37 

Raincoat A5 = 0.5  5 + 13 + 46 + 27 

Breakfast A6 = 1.0  6 + 23 + 45 + 17 

Tyres A7 = 2.5  7 + 34 + 25 + 16 

 (AI = 66.5  average) 

 
Suppose that previous experience suggests the standard deviation for repeated runs 
up the hill is about 3 seconds. Then, as each effect is the difference of two averages 
based on 4 observations, the standard error of the effects is about 1 1

4 43 2.1+ = . 

Evidently, only two contrasts are distinguishable from uncontrolled variation: A2 and 

A4. 
 
The interpretation of the experiment would appear to be that only factors 2 (dynamo) 
and 4 (gear) affect the time and they do this independently. Having the dynamo on 
adds about 12 seconds and using medium gear rather than low adds about 22 
seconds. 
 
However, there is some ambiguity in these conclusions. It may be, for example, that 
A4 is large, not because of a large main effect 4, but because one or more of the 
interactions 12, 56 and 37 are large. A further experiment would concentrate on 
factor 4 to confirm that there is a large main effect for this factor. 
 
Also, note that, being a resolution III design, it will contain complete 22 factorial 
experiments replicated twice in every pair of factors. Thus, it contains a complete 
factorial in factors 2 and 4. 
 
Other 7-4

III2  fractions 
 
The design we have used is only one particular 1/16 fraction of a full 27 design. How 
can the other one-sixteenth fractions be generated? The first design was generated 
by setting 

4 = 12, 5 = 13, 6 = 23, 7 = 123 
 
but, for example, we could equally have used  
 

4 = −12, 5 = 13, 6 = 23, 7 = 123. 
 
The fraction that would be generated in this case is: 
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A second 7-4

III2  experiment for studying bicycle times 
 
 Factor − + 
1 Seat up down 
2 Dynamo off  on 
3 Handlebars up down 
4 Gear low medium 
5 Raincoat on off 
6 Breakfast yes no 
7 Tyres hard soft 
         

Run 1 2 3 4 5 6 7 Time  
    −12 13 23 123  
1 − − − − + + − 47 
2 + − − + − + + 74 
3 − + − + + − + 84 
4 + + − − − − − 62 
5 − − + − − − + 53 
6 + − + + + − − 78 
7 − + + + − + − 87 
8 + + + − + + + 60 

 
This fraction has been obtained by reversing the signs of column 4 and this produces 
a completely new set of factor combinations, none having been included in the first 
experiment. Of course, the experimental structure remains the same. 
 
However, the aliasing pattern has also been altered. It can be obtained from the 
original by reversing the sign of any interaction term involving 4 and the terms aliased 
with 4. Thus, it is now: 
 

Estimated Effects and Abbreviated Aliasing Pattern 
 

Seat ′1A  = 0.8  1 − 24 + 35 + 67  
Dynamo ′2A  = 10.2  2 − 14 + 36 + 57  
Handlebars ′3A  = 2.7  3 + 15 + 26 − 47  
Gear ′4A  = 25.2  4 − 12 − 56 − 37  
Raincoat ′5A  = −1.7  5 + 13 − 46 + 27  
Breakfast ′6A  = 2.2  6 + 23 − 45 + 17  
Tyres ′7A  = −0.7  7 − 34 + 25 + 16  

 
There are 16 different ways of allocating signs to the four generators: 
 

4 = ±12, 5 = ±13, 6 = ±23, 7 = ±123 
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Thus, switching the signs of columns 4, 5, 6, and 7 will produce the 16 fractions that 
make up the complete factorial and the corresponding sign switching for the aliasing 
pattern produces the appropriate aliasing pattern. 
 
Combining two fractions 
 
Suppose that the results of the two 7-4

III2  fractional experiments were combined. As it 
will now be possible to estimate interactions, the relationship between the factors 
must be altered to be crossed. The experimental structure is: 
 

Structure Formula 
unrandomized 16 Runs 
randomized 2 Seat*2 Dynamo*2 Handbars*2 Gear 

 *2 Raincoat*2 Brekkie*2 Tyres 
 
The R output for the analysis is: 
 
> # 
> # second fraction 
> # 
> Frf7Bike2.dat <- Frf7Bike.dat 
> attach(Frf7Bike2.dat) 
> Frf7Bike2.dat$Gear <- factor(-mpone(Seat)*mpone(Dynamo), labels = mp) 
> detach(Frf7Bike2.dat) 
> Frf7Bike2.dat$Time <- as.vector(c(47, 74, 84, 62, 53, 78, 87,60)) 
> # 
> # combine fractions 
> # 
> Frf7Bike.Both.dat <- rbind(Frf7Bike.dat,Frf7Bike2.dat) 
> Frf7Bike.Both.dat <- data.frame(Block = factor(rep(1:2, each=8)),  
+                                 Frf7Bike.Both.dat) 
> Frf7Bike.Both.dat 
   Block Runs Seat Dynamo Handbars Gear Raincoat Brekkie Tyres Time 
1      1    1    -      -        -    +        +       +     -   69 
2      1    2    +      -        -    -        -       +     +   52 
3      1    3    -      +        -    -        +       -     +   60 
4      1    4    +      +        -    +        -       -     -   83 
5      1    5    -      -        +    +        -       -     +   71 
6      1    6    +      -        +    -        +       -     -   50 
7      1    7    -      +        +    -        -       +     -   59 
8      1    8    +      +        +    +        +       +     +   88 
9      2    1    -      -        -    -        +       +     -   47 
10     2    2    +      -        -    +        -       +     +   74 
11     2    3    -      +        -    +        +       -     +   84 
12     2    4    +      +        -    -        -       -     -   62 
13     2    5    -      -        +    -        -       -     +   53 
14     2    6    +      -        +    +        +       -     -   78 
15     2    7    -      +        +    +        -       +     -   87 
16     2    8    +      +        +    -        +       +     +   60 
> #  
> # analyse 
> # 
> Frf7Bike.Both.aov <- aov(Time ~ Block + (Seat + Dynamo + Handbars + Gear +  
+            Raincoat + Brekkie + Tyres)^2 + Error(Block/Runs), Frf7Bike.Both.dat) 
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> summary(Frf7Bike.Both.aov) 
 
Error: Block 
      Df Sum Sq Mean Sq 
Block  1 10.562  10.562 
 
Error: Block:Runs 
              Df  Sum Sq Mean Sq 
Seat           1   18.06   18.06 
Dynamo         1  495.06  495.06 
Handbars       1   14.06   14.06 
Gear           1 2280.06 2280.06 
Raincoat       1    1.56    1.56 
Brekkie        1    1.56    1.56 
Tyres          1    3.06    3.06 
Seat:Dynamo    1    7.56    7.56 
Seat:Gear      1    3.06    3.06 
Dynamo:Gear    1    7.56    7.56 
Handbars:Gear  1   10.56   10.56 
Gear:Raincoat  1   10.56   10.56 
Gear:Brekkie   1    5.06    5.06 
Gear:Tyres     1    3.06    3.06 
> qqyeffects(Frf7Bike.Both.aov, error.term = "Block:Runs",  
+                 data=Frf7Bike.Both.dat) 
Effect(s) labelled: Dynamo Gear  
> round(yates.effects(Frf7Bike.Both.aov, error.term="Block:Runs",  
+                     data=Frf7Bike.Both.dat), 2) 
         Seat        Dynamo      Handbars          Gear      Raincoat  
         2.12         11.12          1.87         23.88         -0.62  
      Brekkie         Tyres   Seat:Dynamo     Seat:Gear   Dynamo:Gear  
        -0.62          0.87         -1.38          0.87          1.37  
Handbars:Gear Gear:Raincoat  Gear:Brekkie    Gear:Tyres  
         1.62          1.63          1.13         -0.88  

 
Notice the use of ^2 in the model formula to restrict the analysis to main effects and 
two-factor interactions. 

 
The combined analysis can be obtained by taking half sums and differences of all 
effects: 
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Estimated Effects and Abbreviated Aliasing Pattern 
 

Seat ( ) ( )1 1
2 2 3.5 0.8′+ = +1 1A A  =  2.2  1 + 35 + 67 

Dynamo ( ) ( )1 1
2 2 12.0 10.2′+ = +2 2A A  = 11.1  2 + 36 + 57 

Handlebars ( ) ( )1 1
2 2 1.0 2.7′+ = +3 3A A  =  1.9  3 + 15 + 26 

Gear ( ) ( )1 1
2 2 22.5 25.2′+ = +4 4A A  = 23.9  4 

Raincoat ( ) ( )( )1 1
2 2 0.5 1.7′+ = + −5 5A A  = −0.6  5 + 13 + 27 

Breakfast ( ) ( )1 1
2 2 1.0 2.2′+ = +6 6A A  =  1.8  6 + 23 + 17 

Tyres ( ) ( )( )1 1
2 2 2.5 0.7′+ = + −7 7A A  =  0.9  7 + 25 + 16 

 ( ) ( )1 1
2 2 3.5 0.8′− = −1 1A A  =  1.3  24 

 ( ) ( )1 1
2 2 12.0 10.2′− = −2 2A A  =  0.9  14 

 ( ) ( )1 1
2 2 1.0 2.7′− = −3 3A A  = −0.9  47 

 ( ) ( )1 1
2 2 22.5 25.2′− = −4 4A A  = −1.4  12 + 56 + 37 

 ( ) ( )( )1 1
2 2 0.5 1.7′− = − −5 5A A  =  1.1  46 

 ( ) ( )1 1
2 2 1.0 2.2′− = −6 6A A  = −0.6  45 

 ( ) ( )( )1 1
2 2 2.5 0.7′− = − −7 7A A  =  1.6  34 

 
Note that the aliasing pattern of the combined design has been obtained by taking 
sums and differences of the patterns from the individual experiments. 
 
It is evident from the table that what has been achieved in the combined design is to 
de-alias main effect 4 and all its two-factor interactions with the other factors. If one 
were contemplating doing extra runs it would seem, in view of the large effect of 4 in 
the first experiment, that the best strategy would be to perform the runs 
corresponding to this second fraction. Thus, the use of fractional factorials 
sequentially is a very useful application of them. 
 
It is also possible to add a fraction to the original that would de-alias all main effects, 
leaving two-factor interactions aliased in groups of three. 
Plackett and Burman Designs 
 
Definition VIII.21: Plackett and Burman designs are two-level fractional factorial 
designs for studying k = n−1 factors in n runs where n is a multiple of 4. ■ 
 
If n is a power of 2, these are identical to those previously presented. However, the 
Plackett and Burman designs for n = 12, 20, 24, 28 and 30 are sometimes of interest. 
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Example VIII.11: Plackett and Burman design for 11 factors in 12 runs 
 

 Factor 
Run 1 2 3 4 5 6 7 8 9 A B 

1 + − + − − − + + + − + 
2 + + − + − − − + + + − 
3 − + + − + − − − + + + 
4 + − + + − + − − − + + 
5 + + − + + − + − − − + 
6 + + + − + + − + − − − 
7 − + + + − + + − + − − 
8 − − + + + − + + − + − 
9 − − − + + + − + + − + 

10 + − − − + + + − + + − 
11 − + − − − + + + − + + 
12 − − − − − − − − − − − 

 
The manner in which two-factor interactions alias main effects for most Plackett and 
Burman designs is complicated. 
 
e) Table of fractional factorial designs 
 
The following table is an extract from Table 12.15 on p. 410 of Box, Hunter and 
Hunter. In each cell, the type of factorial is given in the top lefthand corner. In the 
bottom righthand corner, either the number of times the full factorial design must be 
repeated or the generators for the fractional design are provided. 
 
To use this table, examine the appropriate column if the number of factors to be 
investigated is fixed; examine the appropriate row if the number of runs is fixed. Note 
also that designs along the same leftright diagonal have the same degree of 
replication or fractionation. 
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  Number of factors 
  3 4 5 6 7 8 

 4 3 1
III2 −  

 
 
 

±3=12 

     

 8 32  4 1
IV2 −  

 
 
 

±4=123

5 2
III2 −  

 
 

±4=12
±5=13

6 3
III2 −  

 
±4=12
±5=13
±6=23

7 4
III2 −  

±4=12 
±5=13 
±6=23 

±7=123 

 

 16 32  
 
 
 

2 times 

42  5 1
V2 −  

 
 
 

±5=1234

6 2
IV2 −  

 

±5=123
±6=234

7 3
IV2 −  

 
±5=123 
±6=234 
±7=134 

8 42IV
−  

±5=234 
±6=134 
±7=123 
±8=124 

Number of runs 32 32  
 
 
 

4 times 

42  
 
 
 

2 times

52  6 1
VI2 −  

 

±6=12345

7 2
IV2 −  

 
 

±6=1234 
±7=1245 

8 3
IV2 −  

 
±6=123 
±7=124 

±8=2345 
 64 32  

 
 
 

8 times 

42  
 
 
 

4 times

52  
 
 
 

2 times

62  7 1
VII2 −  

 
 
 

±7=123456 

8 2
V2 −  

 
 

±7=1234 
±8=1256 

 128 32  
 
 
 

16 times 

42  
 
 
 

8 times

52  
 
 
 

4 times

62  
 
 
 

2 times

72  8 1
VIII2 −  

 
 
 

±8=123456
7 

 

 VIII.E Summary 
 
In this chapter we have: 
 
• described how to design 2k replicated, unreplicated, confounded and fractional 

factorial experiments; 
• shown how the analysis is considerably simplified for 2k factorial experiments; it 

is recommended that replicated experiments be analysed using the analysis if 
variance and that unreplicated experiments be analysed using normal probability 
plots of Yates effects; 

• explained how replicating the treatment combinations is not necessary when 
there are many factors in an experiment because not all factors are likely to affect 
the response and many interactions are likely to be zero; 

• outlined a calculus that can be used to identify which contrasts are aliased or 
confounded; 

• for fractional factorial experiments:  
• discussed the concepts of generators, generating relations, defining relations 

and resolution; 
• considered the utility of Resolution III or main effects plains for screening 

experiments; 
• shown how to use fractions in sequential experimentation; 
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• shown how to obtain a randomized layout and the analysis of variance in R; 
• discussed procedures for checking the adequacy of the proposed models; 
• described how to obtain the fitted equation and use it to obtain predicted values 

for recommended treatment combinations. 
 

VIII.F Exercises 
 
VIII.1 A factorial experiment was carried out on a pilot plant scale.  A product was 

being purified by a form of steam distillation process.  The five factors, each at 2 
levels, were Concentration of material (A), Rate of distillation (B), Volume of 
solution (C), Stirring rate (D), and Solvent-to-water ratio (E).  The residual 
acidity of material from one run on each of the 32 experimental treatment 
combinations was determined.  The results (in coded form which does not affect 
the analysis) are given in the following table: 

 
  A0  A1 
  D0 D1  D0 D1 
  E0 E1 E0 E1  E0 E1 E0 E1 

 C0 9 3 11 8 10 9 13 7 
B0 C1 3 5 7 7 5 6 10 7 
 C0 8 4 9 8  6 6 16 6 

B1 C1 6 4 7 5 10 10 13 6 
 
 What are the features of this experiment? 
 

1. Observational unit   

2. Response variable   

3. Unrandomized factors   

4. Randomized factors   

5. Type of study   

 
 What is the experimental structure for this experiment? 
 

Structure Formula 
unrandomized  
randomized  

 
 Analyze the data using R, including diagnostic checking. What levels of the 

factors would you recommend be used to minimize the residual acidity?  What 
residual acidity would be achieved with this (these) combination(s) of the 
factors? 
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VIII.2 A new rifle was being tested for performance to decide some characteristics of 
the weapon.  The testing programme involved a four-factor factorial experiment 
consisting of 8 tests run over two days as only 8 tests could be run on a single 
day.  It was decided to confound the four-factor interaction with the day 
difference. 

 
 The four factors to be investigated were the propellant charge, the weight of the 

projectile, the propellant web and two different weapons of the type being 
evaluated.  The velocity of the projectiles was measured and the results were 
as follows: 

 
 

Day 
 

Test 
Charge 
Weight 

Projectile 
Weight 

Propellant 
Web 

 
Weapon 

 
Velocity 

 1 1 1 1 1 197 
 2 2 2 1 1 250 
 3 1 2 2 1 115 
 4 2 1 2 1 200 
1 5 1 2 1 2 153 
 6 2 1 1 2 245 
 7 1 1 2 2 126 
 8 2 2 2 2 154 
       
 1 1 2 1 1 168 
 2 2 1 1 1 251 
 3 1 1 2 1 139 
 4 2 2 2 1 166 
2 5 1 1 1 2 175 
 6 2 2 1 2 241 
 7 1 2 2 2 84 
 8 2 1 2 2 197 

 
 What are the features of this experiment? 
 

1. Observational unit   

2. Response variable   

3. Unrandomized factors   

4. Randomized factors   

5. Type of study   

 
 What is the experimental structure for this experiment? 
 

Structure Formula 
unrandomized  
randomized  
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 What are the expected mean squares for the lines in the analysis of variance 
table based on all unrandomized factors being random and all randomized 
factors being fixed? 

 

Source df E[MSQ] 

    

    

    

    

    

    

    

Total    
 
 Analyze the data using R, including diagnostic checking. What levels of the 

factors would you recommend be used to maximize the velocity? What velocity 
would be achieved with this (these) combination(s) of the factors? 

 
VIII.3 A processing experiment is to be run to investigate the effects of 6 factors, each 

at two levels, on the total yield of peanut oil from batches of peanuts.  To save 
on resources the experimenter decides to use a quarter of the complete set of 
treatment combinations.  Use the table given in subsection e) of section X.D, 
Fractional factorial design at two levels, to identify a suitable design.   

 
a) What is the resolution of this design? 
b) What are the implications of the design’s resolution? 
c) What are the generators and defining relations for the design? 
d) What is its aliasing pattern? 
e) What treatment combinations should the experimenter include in the 

experiment? 
 
VIII.4 An experimenter wants to investigate 5 factors at 2 levels but has only enough 

resources for 8 runs.  Use R to obtain a randomized layout for the experimenter 
using a seed of 124. 
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VIII.5 The Light Helicopter Corporation wishes to investigate ways in which the flight 
time of their helicopters can be increased.  The standard design for the 
helicopters they produce in shown below. 

 
 The standard design 

 3.75cm 3.75cm3cm

12cm

12cm

5.64cm

fold along
this line

cut along
this line

 
 
 Improving the design 
 
 Engineers from their company have got together and had a brainstorming 

session to identify modifications to the design that might increase the flight time.  
They suggested that the following factors be investigated. 

 
Factors  - + 
Paper type (P) light heavy 
Wing length (W) 7.5cm 12cm 
Body length (L) 7.5cm 12cm 
Body width (B) 3cm 5cm 
Paper clip (C) no yes 
Fold (F) no yes 
Taped body (T) no yes 
Taped wing (M) no yes 
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 Now there are 8 factors to be investigated.  If all combinations of the factors 
were to be investigated, as in a complete factorial, how many helicopters would 
have to be produced? 

 
 It is decided that the full set cannot be run and that a fractional factorial must be 

employed.  There are sufficient resources to make 16 helicopters at this stage.  
To study the 8 factors in 16 runs a 8 4

IV2 −  fractional factorial design is chosen.  
The design has generators 5 = 234, 6 = 134, 7 = 123 and 8 = 124.  The runs, 
given in standard order, are given in the following table: 

 
 Factor 

Standard 1 2 3 4 5 6 7 8 
Order P W L B C F T M 

1 - - - - - - - - 
2 + - - - - + + + 
3 - + - - + - + + 
4 + + - - + + - - 
5 - - + - + + + - 
6 + - + - + - - + 
7 - + + - - + - + 
8 + + + - - - + - 
9 - - - + + + - + 

10 + - - + + - + - 
11 - + - + - + + - 
12 + + - + - - - + 
13 - - + + - - + + 
14 + - + + - + - - 
15 - + + + + - - - 
16 + + + + + + + + 
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 The aliasing pattern (ignoring three- and more-factor interactions) for this 
experiment is as follows: 
 

A1   average A0  average 

A2   1 AP  P 

A3   2 AW  W 

A4   12 + 37 + 48 + 56 APW  PW + LT + BM + CF 

A5   3 AL  L 

A6   13 + 27 + 46 + 58 APL  PL + WT + BF + CM 

A7   23 + 17 + 45 + 68 AWL  WL + PT + BC + FM 

A8   7 AT  T 

A9   4 AB  B 

A10  14 + 28 + 36 + 57 APB  PB + WM + LF + CT 

A11  24 + 18 + 35 + 67 AWB  WB + PM + LC + FT 

A12  8 AM  M 

A13  34 + 16 + 25 + 78 ALB  LB + PF + WC + TM 

A14  6 AF  F 

A15  5 AC  C 

A16  15 + 26 + 38 + 47 APF  PC + WF + LM + BT 

 
 The experiment will be run in the class. 
 
 Analysis of results 
 
 What is the experimental structure for this experiment? 
 

Structure Formula 
unrandomized  
randomized  

 
 Use R to analyse the results of the experiment and to perform appropriate 

diagnostic checking.  What treatment combinations would give the longest flight 
time and what would you predict would be the flight time for these treatment 
combinations?  The treatment combinations are available from the Computing 
files page of the web site in the file Frf8Heli.Desgn.sdd. 
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VIII.6 In a study to investigate several factors in the system of aircraft control a 

computer simulation model had to be used because of the legal and ethical 
problems with experimenting with an actual aircraft control system.  This 
simulation model had been evolved over many years and had been verified 
using actual data.  It is quite a complicated model in which many factors 
affected the final response, the time a pilot had to wait to speak to the controller; 
random variation was incorporated into the model. 

 
 It was desired to use the model to determine which factors affect the response 

and it was decided 8 factors would be investigated.  The factors included the 
number of lengths of tracks within the sector, the number of adjacent high-
altitude sectors, the mix of jumbo versus standard jets, and so on. 

 
 A full 28 design was impossible given the computer time required for each 

individual simulation.  Instead it was decided to utilize a 28-4 fraction with 
generators I = 1235, I = 1246, I = 1347 and I = 2348.  The results are given in 
the following table: 

 
 Factor  
          

Simulation 1 2 3 4 5 6 7 8 Time 
1 - - - - - - - - 65.81 
2 + - - - + + + - 58.49 
3 - + - - + + - + 62.51 
4 + + - - - - + + 60.19 
5 - - + - + - + + 60.22 
6 + - + - - + - + 59.20 
7 - + + - - + + - 66.58 
8 + + + - + - - - 61.68 
9 - - - + - + + + 59.01 

10 + - - + + - - + 53.71 
11 - + - + + - + - 62.43 
12 + + - + - + - - 60.77 
13 - - + + + + - - 60.44 
14 + - + + - - + - 57.48 
15 - + + + - - - + 63.08 
16 + + + + + + + + 58.32 
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 Note that the aliasing pattern (ignoring three- and more-factor interactions) is as 
follows: 

l1  -> average 
l2  -> 1 
l3  -> 2 
l4  -> 12 + 35 + 46 + 78 
l5  -> 3 
l6  -> 13 + 25 + 47 + 68 
l7  -> 23 + 15 + 48 + 67 
l8  -> 5 
l9  -> 4 
l10 -> 14 + 26 + 37 + 58 
l11 -> 24 + 16 + 38 + 57 
l12 -> 6 
l13 -> 34 + 17 + 28 + 56 
l14 -> 7 
l15 -> 8 
l16 -> 45 + 36 + 27 + 18 

 
 What is the experimental structure for this experiment? 
 

Structure Formula 
unrandomized 16 Simulations 
randomized 2 A*2 B*2 C*2 D*2 E*2 F*2 G*2 H 

 
 On the basis of previous simulation studies it could be assumed that the 

standard deviation of an estimated effect was 0.35. 
 
 Analyze this data using R.  Perform appropriate diagnostic checking. 
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