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a b s t r a c t

The β-Birnbaum–Saunders (Cordeiro and Lemonte, 2011) and Birnbaum–Saunders
(Birnbaum and Saunders, 1969a) distributions have been used quite effectively to
model failure times for materials subject to fatigue and lifetime data. We define the
log-β-Birnbaum–Saunders distribution by the logarithm of the β-Birnbaum–Saunders
distribution. Explicit expressions for its generating function and moments are derived. We
propose a new log-β-Birnbaum–Saunders regressionmodel that can be applied to censored
data and be used more effectively in survival analysis. We obtain the maximum likelihood
estimates of themodel parameters for censored data and investigate influence diagnostics.
The new location-scale regression model is modified for the possibility that long-term
survivors may be presented in the data. Its usefulness is illustrated by means of two real
data sets.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The fatigue is a structural damage that occurs when a material is exposed to stress and tension fluctuations. Statistical
models allow to study the random variation of the failure time associated to materials exposed to fatigue as a result
of different cyclical patterns and strengths. The most popular model for describing the lifetime process under fatigue is
the Birnbaum–Saunders (BS) distribution (Birnbaum and Saunders, 1969a,b). The crack growth caused by vibrations in
commercial aircrafts motivated these authors to develop this new family of two-parameter distributions for modeling
the failure time due to fatigue under cyclic loading. Relaxing some assumptions made by Birnbaum and Saunders (1969a),
Desmond (1985) presented a more general derivation of the BS distribution under a biological framework. The relationship
between the BS and inverse Gaussian distributions was explored by Desmond (1986) who demonstrated that the BS
distribution is an equal-weight mixture of an inverse Gaussian distribution and its complementary reciprocal. The two-
parameter BS model is also known as the fatigue life distribution. It is an attractive alternative distribution to the Weibull,
gamma and log-normalmodels, since its derivation considers the basic characteristics of the fatigue process. Furthermore, it
has the appealing feature of providing satisfactory tail fitting due to the physical justification that originated it, whereas the
Weibull, gamma and log-normal models typically provide a satisfactory fit in the middle portion of the data, but oftentimes
fail to deliver a good fit at the tails, where only a few observations are generally available.

In many medical problems, for example, the lifetimes are affected by explanatory variables such as the cholesterol
level, blood pressure, weight and many others. Parametric models to estimate univariate survival functions for censored
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data regression problems are widely used. Different forms of regression models have been proposed in survival analysis.
Among them, the location-scale regressionmodel (Lawless, 2003) is distinguished since it is frequently used in clinical trials.
Recently, the location-scale regressionmodel has been applied in several research areas such as engineering, hydrology and
survival analysis. Lawless (2003) also discussed the generalized log-gamma regression model for censored data. Xie and
Wei (2007) developed the censored generalized Poisson regression models, Barros et al. (2008) proposed a new class of
lifetime regressionmodelswhen the errors have the generalized BS distribution, Carrasco et al. (2008) introduced amodified
Weibull regression model, Silva et al. (2008) studied a location-scale regression model using the Burr XII distribution and
Silva et al. (2009) worked with a location-scale regression model suitable for fitting censored survival times with bathtub-
shaped hazard rates. Ortega et al. (2009a,b) proposed a modified generalized log-gamma regression model to allow the
possibility that long-term survivors may be presented in the data, Hashimoto et al. (2010) developed the log-exponentiated
Weibull regression model for interval-censored data and Silva et al. (2010) discussed a regression model considering the
Weibull extended distribution.

For the first time, we define a location-scale regression model for censored observations, based on the β-
Birnbaum–Saunders (βBS for short) introducedbyCordeiro and Lemonte (2011), referred to as the log-βBS (LβBS) regression
model. The proposed regression model is much more flexible than the log-BS regression model proposed by Rieck and
Nedelman (1991). Further, some useful properties of the proposedmodel to study asymptotic inference are investigated. For
some recent references about the log-BS linear regressionmodel the reader is refereed to Lemonte et al. (2010), Lemonte and
Ferrari (2011a,b,c), Lemonte (2011) and references therein. A log-BS nonlinear regression model was proposed by Lemonte
and Cordeiro (2009); see also Lemonte and Cordeiro (2010) and Lemonte and Patriota (2011).

Another issue tackled iswhen in a sample of censored survival times, the presence of an immuneproportion of individuals
who are not subject to death, failure or relapse may be indicated by a relatively high number of individuals with large
censored survival times. In this note, the log-βBS model is modified for the possible presence of long-term survivors in the
data. Themodels attempt to estimate the effects of covariates on the acceleration/deceleration of the timing of a given event
and the surviving fraction, that is, the proportion of the population for which the event never occurs. The logistic function
is used to define the regression model for the surviving fraction.

The article is organized as follows. In Section 2, we define the LβBS distribution. In Section 3, we provide expansions
for its moment generating function (mgf) and moments. In Section 4, we propose a LβBS regression model and estimate
the model parameters by maximum likelihood. We derive the observed information matrix. Local influence is discussed in
Section 5. In Section 6, we propose a LβBS mixture model for survival data with long-term survivors. In Section 7, we show
the flexibility, practical relevance and applicability of our regression model by means of two real data sets. Section 8 ends
with some concluding remarks.

2. The LβBS distribution

The BS distribution is a very popular model that has been extensively used over the past decades for modeling failure
times of fatiguing materials and lifetime data in reliability, engineering and biological studies. Birnbaum and Saunders
(1969a,b) define a random variable T having a BS distribution with shape parameter α > 0 and scale parameter β > 0,
T ∼ BS(α, β) say, by T = β[αZ/2 + {(αZ/2)2 + 1}1/2]2, where Z is a standard normal random variable. Its cumulative
distribution function (cdf) is defined by G(t) = Φ(v), for t > 0, where v = α−1ρ(t/β), ρ(z) = z1/2 − z−1/2 andΦ(·) is the
standard normal distribution function. Since G(β) = Φ(0) = 1/2, the parameter β is themedian of the distribution. For any
k > 0, k T ∼ BS(α, kβ). The probability density function (pdf) of T is then g(t) = κ(α, β)t−3/2(t+β) exp{−τ(t/β)/(2α2)},
for t > 0, where κ(α, β) = exp(α−2)/(2α

√
2πβ) and τ(z) = z + z−1. The fractional moments of T are E(T p) = βpI(p, α),

where

I(p, α) =
Kp+1/2(α

−2)+ Kp−1/2(α
−2)

2K1/2(α−2)
(1)

and the function Kν(z) denotes the modified Bessel function of the third kind with ν representing its order and z the
argument (see Watson, 1995). Kundu et al. (2008) studied the shape of its hazard function. Results on improved statistical
inference for thismodel are discussed byWu andWong (2004) and Lemonte et al. (2007, 2008). Díaz-García and Leiva (2005)
proposed a new family of generalized BS distributions based on contoured elliptical distributions, whereas Guiraud et al.
(2009) introduced a non-central version of the BS distribution.

The βBS distribution (Cordeiro and Lemonte, 2011), with four parameters α > 0, β > 0, a > 0 and b > 0, extends the
BS distribution and provides more flexibility to fit various types of lifetime data. Its cdf is given by F(t) = IΦ(v)(a, b), where
B(a, b) = 0(a)0(b)/0(a + b) is the beta function, 0(·) is the gamma function, Iy(a, b) = By(a, b)/B(a, b) is the incomplete
beta function ratio and By(a, b) =

 y
0 ω

a−1 (1 − ω)b−1dω is the incomplete beta function. The density function of T has the
form (for t > 0)

fT (t) =
κ(α, β)

B(a, b)
t−3/2(t + β) exp


−τ(t/β)/(2α2)


Φ(v)a−1

{1 − Φ(v)}b−1. (2)

The βBS distribution contains, as special sub-models, the exponentiated BS (EBS), Lehmann type-II BS (LeBS) and BS
distributions when b = 1, a = 1 and a = b = 1, respectively. If T is a random variable with density function (2), we
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write T ∼ βBS(α, β, a, b). The βBS distribution is easily simulated as follows: if V has a beta distribution with parameters
a and b, then β{αΦ−1(V )/2+[1+α2Φ(−1)(V )2/4]1/2}2 has the βBS(α, β, a, b) distribution. For some structural properties
of this distribution, the reader is referred to Cordeiro and Lemonte (2011).

Let T be a random variable having the βBS density function (2). The random variable W = log(T ) has a LβBS
distribution. After some algebra, the density function of W , parameterized in terms of µ = log(β), can be expressed as
fW (w) = ξ01 exp(−ξ 202/2)Φ(ξ02)

a−1
[1 − Φ(ξ02)]

b−1/{2
√
2πB(a, b)}, w ∈ R, where ξ01 = 2α−1 cosh((w − µ)/2) and

ξ02 = 2α−1 sinh((w − µ)/2). The parameter µ ∈ R is a location parameter and a, b and α are positive shape parameters.
The standardized random variable Z = (W − µ)/2 has density function πZ (z) = 2fW (2z + µ) given by

πZ (z) =
2 cosh(z)

√
2πB(a, b)α

exp


−

2
α2

sinh2(z)


Φ


2
α

sinh(z)

a−1
1 − Φ


2
α

sinh(z)

b−1

, (3)

where −∞ < z < ∞. Let Y = µ+ σZ , whose density function takes the form

fY (y) =
ξ1 exp(−ξ 22 /2)Φ(ξ2)

a−1
[1 − Φ(ξ2)]

b−1

√
2πσB(a, b)

, y ∈ R, (4)

where

ξ1 =
2
α

cosh


y − µ

σ


and ξ2 =

2
α

sinh


y − µ

σ


.

Here, σ > 0 acts as a scale parameter. The cdf, survival function and hazard rate function corresponding to (4) (for y ∈ R)
are F(y) = IΦ(ξ2)(a, b),

S(y) = 1 − IΦ(ξ2)(a, b) (5)

and r(y) = ξ1 exp(−ξ 22 /2)Φ(ξ2)
a−1

[1 −Φ(ξ2)]
b−1/{

√
2πσB(a, b)[1 − IΦ(ξ2)(a, b)]}, respectively. If Y is a random variable

having density function (4), wewrite Y ∼ LβBS(a, b, α, µ, σ ). Thus, if T ∼ βBS(a, b, α, β), then Y = µ+σ [log(T )−µ]/2 ∼

LβBS(a, b, α, µ, σ ). The special case b = 1 corresponds to the log-EBS (LEBS) distribution, whereas a = 1 gives the log-
LeBS (LLeBS) distribution. The basic exemplar is the log-BS (LBS) distribution (Rieck and Nedelman, 1991) when σ = 2 and
a = b = 1.

Plots of the density function (4) for selected parameter values are given in Fig. 1. These plots show great flexibility of
the new distribution for different values of the shape parameters a, b and α. So, the density function (4) allows for great
flexibility and hence it can be very useful in many more practical situations. In fact, it can be symmetric, asymmetric and it
can also exhibit bi-modality. The new model is easily simulated as follows: if V is a beta random variable with parameters
a and b, then Y = µ + σ arcsinh(αΦ−1(V )/2) has the LβBS(a, b, α, µ, σ ) distribution. This expression can be rewritten
in the form Y = µ + σ log


αΦ−1(V )/2 + [1 + α2Φ−1(V )2/4]1/2


. This scheme is useful because of the existence of fast

generators for beta random variables and the standard normal quantile function is available in most statistical packages.

3. Generating function and moments

We shall obtain the mgf of the standardized LβBS random variable Z = (W − µ)/2,MZ (s) say, having density function
(3). We have the theorem.

Theorem. If Z ∼ LβBS(a, b, α), then the mgf of Z is given by

MZ (s) =

∞−
i,r=0

pi,rNr(s, α),

whose coefficients are

pi,r = pi,r(a, b, α) =

(−1)i2


b−1
i


sr(i + a − 1)

√
2παB(a, b)

and

Nr(s, α) = exp(α−2)

∞−
m=0

em,r
2m+2

2m+1−
j=0

(−1)j

2m + 1

j

 
K−(m+1−j+s/2)(1/α2)+ K−(m−j+s/2)(1/α2)


.

Proof. See Appendix A. �
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Fig. 1. Plots of the density function (4) for some parameter values: µ = 0 and σ = 1.

We now derive an expansion for the rth moment of Y . First, the ith moments of T for a real is (Cordeiro and Lemonte,
2011)

µ′

i = E(T i) =
1

B(a, b)

∞−
r=0

(r + 1)tr+1τi,r . (6)

Here, tr =
∑

∞

m=0(−1)m


b−1
m


(a + m)−1sr(a + m) and

τi,r =
β i

2r

r−
j=0


r
j

 ∞−
k1,...,kj=0

A(k1, . . . , kj)
2sj+j−
m=0

(−1)m

2sj + j

m


I

i + (2sj + j − 2m)/2, α


,

where sj = k1+· · ·+kj, A(k1, . . . , kj) = α−2sj−jak1 · · · akj , ak = (−1)k2(1−2k)/2
{
√
π(2k+1)k!}−1 and I(i+(2sj+j−2m)/2, α)

can be computed from (1) in terms of the modified Bessel function of the third kind.
From a Taylor series expansion of H(T ) = [log(T )]r around µ′

1, we can write

E(W r) = [log(µ′

1)]
r
+

∞−
i=2

H(i)(µ′

1)µi

i!
,
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Fig. 2. Skewness and kurtosis of Y in (4) as a function of a for some values of b.

Fig. 3. Skewness and kurtosis of Y in (4) as a function of b for some values of a.

where H(µ′

1) = [log(µ′

1)]
r , H(i)(µ′

1) = ∂ iH(µ′

1)/∂µ
′i
1 and µi =

∑i
k=0(−1)k


i
k


µ′k

i µ
′k
i−k is the ith central moment

of T determined from (6). The ordinary moments of Y are easily obtained from the moments of W by E(Y r) =∑r
i,j=0(−1)r−i2−jµ2r−i−jσ j

 r
i

  r
j


E(W i).

The skewness and kurtosis measures can be calculated from the ordinary moments using well-known relationships.
Plots of the skewness and kurtosis of Y for selected values of b as function of a, and for selected values of a as function of
b, holding µ = −1.1, σ = 1.5 and α = 5 fixed, are shown in Figs. 2 and 3, respectively. These plots immediately reveal
that the skewness and kurtosis curves, respectively, as functions of a (b fixed) first decrease and then increase, whereas as
functions of b (a fixed), the skewness curve decreases and the kurtosis curve first decreases and then increases, holding the
other parameters fixed. Note that both skewness and kurtosis can be quite pronounced.

4. The LβBS regression model

In many practical applications, the lifetimes are affected by explanatory variables such as the cholesterol level, blood
pressure and many others. Parametric models to estimate univariate survival functions and for censored data regression
problems are widely used. A parametric model that provides a good fit to lifetime data tends to yieldmore precise estimates
for the quantities of interest. Based on the LβBS distribution, we propose a linear location-scale regression model or log-
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linear regression model in the form

yi = µi + σ zi, i = 1, . . . , n, (7)

where yi follows the density function (4),µi = x⊤

i β is the location of yi, xi = (xi1, . . . , xip)⊤ is a vector of known explanatory
variables associated with yi and β = (β1, . . . , βp)

⊤ is a p-vector (p < n) of unknown regression parameters. The location
parameter vectorµ = (µ1, . . . , µn)

⊤ of the LβBSmodel has a linear structureµ = Xβ, whereX = (x1, . . . , xn)⊤ is a known
model matrix of full rank, i.e. rank(X) = p. The regression model (7) opens new possibilities for fitting many different types
of data. It is referred to as the LβBS regression model for censored data, which is an extension of an accelerated failure time
model based on the BS distribution for censored data. If σ = 2 and a = 1 in addition to b = 1, it coincides with the log-BS
regression model for censored data (Leiva et al., 2007).

Let (y1, x1), . . . , (yn, xn) be a sample of n independent observations, where the response variable yi corresponds to the
observed log-lifetime or log-censoring time for the ith individual. We consider non-informative censoring and that the
observed lifetimes and censoring times are independent. LetD and C be the sets of individuals for which yi is the log-lifetime
or log-censoring, respectively. The log-likelihood function for the vector of parameters θ = (a, b, α, σ ,β⊤)⊤ frommodel (7)
takes the form ℓ(θ) =

∑
i∈D ℓi(θ)+

∑
i∈C ℓ

(c)
i (θ), where ℓi(θ) = log[f (yi)], ℓ

(c)
i (θ) = log[S(yi)], f (yi) is the density function

(4) and S(yi) is the survival function (5). The total log-likelihood function for the model parameters θ = (a, b, α, σ ,β⊤)⊤

can be expressed as

ℓ(θ) = q log


(2π)−1/2

B(a, b)σ


+

−
i∈D

log(ξi1)−
1
2

−
i∈D

ξ 2i2 + (a − 1)
−
i∈D

log

Φ(ξi2)


+ (b − 1)

−
i∈D

log

1 − Φ(ξi2)


+

−
i∈C

log

1 − IΦ(ξi2)(a, b)


,

where q is the observed number of failures and

ξi1 = ξi1(θ) =
2
α

cosh


yi − µi

σ


, ξi2 = ξi2(θ) =

2
α

sinh


yi − µi

σ


,

for i = 1, . . . , n. The score functions for the parameters a, b, α, σ and β are given by

Ua(θ) = q[ψ(a + b)− ψ(a)] +

−
i∈D

log[Φ(ξi2)] −

−
i∈C

[İΦ(ξi2)(a, b)]a
1 − IΦ(ξi2)(a, b)

,

Ub(θ) = q[ψ(a + b)− ψ(b)] +

−
i∈D

log[1 − Φ(ξi2)] −

−
i∈C

[İΦ(ξi2)(a, b)]b
1 − IΦ(ξi2)(a, b)

,

Uα(θ) = −
q
α

+
1
α

−
i∈D

ξ 2i2 −
(a − 1)
α

−
i∈D

ξi2φ(ξi2)

Φ(ξi2)
+
(b − 1)
α

−
i∈D

ξi2φ(ξi2)

1 − Φ(ξi2)
−

−
i∈C

[İΦ(ξi2)(a, b)]α
1 − IΦ(ξi2)(a, b)

,

Uσ (θ) = −
q
σ

−
1
σ

−
i∈D

ziξi2
ξi1

+
1
σ

−
i∈D

ziξi1ξi2 −
(a − 1)
σ

−
i∈D

ziξi1φ(ξi2)
Φ(ξi2)

+
(b − 1)
σ

−
i∈D

ziξi1φ(ξi2)
1 − Φ(ξi2)

−

−
i∈C

[İΦ(ξi2)(a, b)]σ
1 − IΦ(ξi2)(a, b)

and Uβ(θ) = X⊤s, respectively, where s = (s1, . . . , sn)⊤ and

si =


−
ξi2

σξi1
+
ξi1ξi2

σ
−
(a − 1)
σ

ξi1φ(ξi2)

Φ(ξi2)
+
(b − 1)
σ

ξi1φ(ξi2)

[1 − Φ(ξi2)]
, i ∈ D,

ξi1φ(ξi2)Φ(ξi2)
a−1

[1 − Φ(ξi2)]
b−1

σB(a, b)[1 − IΦ(ξi2)(a, b)]
, i ∈ C,

ψ(·) is the digamma function, zi = (yi − µi)/σ ,

[İΦ(ξi2)(a, b)]a = Ī(0)Φ(ξi2)(a, b)− [ψ(a)− ψ(a + b)]IΦ(ξi2)(a, b),

[İΦ(ξi2)(a, b)]b = Ī(1)Φ(ξi2)(a, b)− [ψ(b)− ψ(a + b)]IΦ(ξi2)(a, b),

[İΦ(ξi2)(a, b)]α = −
ξi2φ(ξi2)Φ(ξi2)

a−1
[1 − Φ(ξi2)]

b−1

αB(a, b)
,

[İΦ(ξi2)(a, b)]σ = −
ziξi1φ(ξi2)Φ(ξi2)a−1

[1 − Φ(ξi2)]
b−1

σB(a, b)
,
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and

Ī(k)Φ(ξi2)(a, b) =
1

B(a, b)

∫ Φ(ξi2)

0
[log(w)]1−k

[log(1 − w)]kwa−1(1 − w)b−1dw, k = 0, 1.

The maximum likelihood estimate (MLE) θ = (a,b,α,σ ,β⊤

)⊤ of θ = (a, b, α, σ ,β⊤)⊤ can be obtained by solving
simultaneously the nonlinear equations Ua(θ) = 0,Ub(θ) = 0, Uα(θ) = 0,Uσ (θ) = 0 and Uβ(θ) = 0. These equations
cannot be solved analytically and require iterative techniques such as the Newton–Raphson algorithm. After fitting the
model (7), the survival function for yi can be readily estimated byS(yi) = 1−IΦ(ξ2i)(a,b), whereξ2i = ξi2(θ), for i = 1, . . . , n.

The normal approximation for theMLE of θ can be used for constructing approximate confidence intervals and for testing
hypotheses on the parameters a, b, α, σ and β. Under conditions that are fulfilled for the parameters in the interior of the

parameter space, we obtain
√
n(θ − θ)

A
∼ Np+4(0,K−1

θ ), where
A
∼ means approximately distributed and Kθ is the unit

expected information matrix. The asymptotic result Kθ = limn→∞ n−1
[−L̈(θ)] holds, where −L̈(θ) is the (p + 4)× (p + 4)

observed information matrix. The average matrix evaluated atθ, say −n−1L̈(θ), can estimate Kθ . The elements of the matrix
L̈(θ) = ∂2ℓ(θ)/∂θ∂θ⊤ are given in the Appendix B.

The likelihood ratio (LR) statistic can be used to discriminate between the LβBS and LEBS regression models, since they
are nested models, by testing the null hypothesis H0 : b = 1 against the alternative hypothesis H1 : b ≠ 1. In this case, the
LR statistic is equal to w = 2{ℓ(θ)− ℓ(θ)}, whereθ = (a, 1,α,σ ,β⊤

)⊤ is the MLE of θ = (a, b, α, σ ,β⊤)⊤ under H0. The
null hypothesis is rejected if w > χ2

1−η(1), where χ2
1−η(1) is the quantile of the chi-square distribution with one degree of

freedom and η is the significance level.

5. Local influence

Since regression models are sensitive to the underlying model assumptions, generally performing a sensitivity analysis
is strongly advisable. Cook (1986) used this idea to motivate his assessment of influence analysis. He suggested that more
confidence can be put in amodelwhich is relatively stable under smallmodifications. The first technique developed to assess
the individual impact of cases on the estimation process is based on case-deletion (see, for example, Cook and Weisberg,
1982) inwhich the effects are studied after removing some observations from the analysis. This is a global influence analysis,
since the effect of the case is evaluated by dropping it from the data. The local influence method is recommended when the
concern is related to investigate the model sensibility under some minor perturbations in the model. In survival analysis,
several authors have investigated the assessment of local influence as, for instance, Pettit and Bin Daud (1989), Escobar and
Meeker (1992) and Ortega et al. (2003), among others. Considering the likelihood function for assessing the curvature for
influence analysis, other techniques have been proposed to deal with non-standard situations and for various models; see,
for example, Fung and Kwan (1997), Kwan and Fung (1998) and Tanaka et al. (2003), among others.

The local influencemethod is recommendedwhen the concern is related to investigate themodel sensitivity under some
minor perturbations in the model (or data). Let ω be a k-dimensional vector of perturbations restricted to some open subset
� ofRk. The perturbed log-likelihood function is denoted by ℓ(θ|ω).We consider that exists a no perturbation vectorω0 ∈ �

such that ℓ(θ|ω0) = ℓ(θ), for all θ. The influence ofminor perturbations on theMLEθ can be assessed by using the likelihood
displacement LDω = 2{ℓ(θ)− ℓ(θω)}, whereθω denotes the maximizer of ℓ(θ|ω).

The idea for assessing local influence as advocated by Cook (1986) is essentially the analysis of the local behavior of LDω

around ω0 by evaluating the curvature of the plot of LDω0+ad against a, where a ∈ R and d is a unit direction. One of the
measures of particular interest is the direction dmax corresponding to the largest curvature Cdmax . The index plot of dmax
may evidence those observations that have considerable influence on LDω under minor perturbations. Also, plots of dmax
against covariate values may be helpful for identifying atypical patterns. Cook (1986) showed that the normal curvature at
the direction d is given by Cd(θ) = 2|d⊤1⊤L̈(θ)−11d|, where 1 = ∂2ℓ(θ|ω)/∂θ∂ω⊤, both 1 and L̈(θ) are evaluated at
θ = θ and ω = ω0. Moreover, Cdmax is twice the largest eigenvalue of B = −1⊤L̈(θ)−11 and dmax is the corresponding
eigenvector. The index plot of dmax may reveal how to perturb the model (or data) to obtain large changes in the estimate
of θ.

Assume that the parameter vector θ is partitioned as θ = (θ⊤

1 , θ
⊤

2 )
⊤. The dimensions of θ1 and θ2 are p1 and p − p1,

respectively. Let

L̈(θ) =


L̈θ1θ1 L̈θ1θ2

L̈⊤

θ1θ2
L̈θ2θ2


,

where L̈θ1θ1 = ∂2ℓ(θ)/∂θ1∂θ
⊤

1 , L̈θ1θ2 = ∂2ℓ(θ)/∂θ1∂θ
⊤

2 and L̈θ2θ2 = ∂2ℓ(θ)/∂θ2∂θ
⊤

2 . If the interest lies on θ1, the normal
curvature in the direction of the vector d is Cd;θ1(θ) = 2|d⊤1⊤(L̈(θ)−1

− L̈22)1d|, where

L̈22 =

[
0 0
0 L̈−1

θ2θ2

]
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and dmax;θ1 here is the eigenvector corresponding to the largest eigenvalue of B1 = −1⊤(L̈(θ)−1
− L̈22)1. The index plot of

the dmax;θ1 may reveal those influential elements onθ1.
In what follows, we derive for three perturbation schemes, the matrix

1 =
∂2ℓ(θ|ω)

∂θ∂ω⊤


θ=θ,ω=ω0

=

1⊤

a 1⊤

b 1⊤

α 1⊤

σ 1⊤

β

⊤
.

The quantities evaluated atθ are written with a circumflex.

Case weight perturbation

A perturbed log-likelihood function, allowing different weights for different observations, can be defined in the form
ℓ(θ|ω) =

∑
i∈D ωiℓi(θ) +

∑
i∈C ωiℓ

(c)
i (θ), where ω = (ω1, . . . , ωn)

⊤ is a n-dimensional vector of weights from the
contributions of the components of the log-likelihood function. Also, let ω0 = (1, . . . , 1)⊤ be the vector of no perturbation
such that ℓ(θ|ω0) = ℓ(θ). After some algebra, we have

1a = (k11, . . . ,k1n), 1b = (k21, . . . ,k2n), 1α = (k31, . . . ,k3n),
1σ = (k41, . . . ,k4n), 1β = X⊤S,

where S = diag{s1, . . . , sn},

k1i =


ψ(a + b)− ψ(a)+ log[Φ(ξi2)], i ∈ D,

−Ī(0)Φ(ξi2)(a, b)+ [ψ(a)− ψ(a + b)]IΦ(ξi2)(a, b)

1 − IΦ(ξi2)(a, b)
, i ∈ C,

k2i =


ψ(a + b)− ψ(b)+ log[1 − Φ(ξi2)], i ∈ D,

−Ī(1)Φ(ξi2)(a, b)+ [ψ(b)− ψ(a + b)]IΦ(ξi2)(a, b)

1 − IΦ(ξi2)(a, b)
, i ∈ C,

k3i =


−

1
α

+
ξ 2i2

α
−
(a − 1)
α

ξi2φ(ξi2)

Φ(ξi2)
+
(b − 1)
α

ξi2φ(ξi2)

[1 − Φ(ξi2)]
, i ∈ D,

ξi2φ(ξi2)Φ(ξi2)
a−1

[1 − Φ(ξi2)]
b−1

αB(a, b)[1 − IΦ(ξi2)(a, b)]
, i ∈ C,

k4i =


−

1
σ

−
ziξi2
σξi1

+
ziξi1ξi2
σ

−
(a − 1)
σ

ziξi1φ(ξi2)
Φ(ξi2)

+
(b − 1)
σ

ziξi1φ(ξi2)
[1 − Φ(ξi2)]

, i ∈ D,

ziξi1φ(ξi2)Φ(ξi2)a−1
[1 − Φ(ξi2)]

b−1

σB(a, b)[1 − IΦ(ξi2)(a, b)]
, i ∈ C .

Response perturbation

We shall consider here that each yi is perturbed as yiω = yi + ωisy, where sy is a scale factor that may be estimated by
the standard deviation of y. Let ξi1ω1 = ξi1ω1(θ) = 2α−1 cosh([yiω − µi]/σ), ξi2ω1 = ξi2ω1(θ) = 2α−1 sinh([yiω − µi]/σ)

and ziω1 = (yiw − µi)/σ . Also, let ω0 = (0, . . . , 0)⊤ be the vector of no perturbations. In this case, we have

1a = (m11, . . . ,m1n), 1b = (m21, . . . ,m2n), 1α = (m31, . . . ,m3n),

1σ = (m41, . . . ,m4n), 1β = X⊤N,
where N = diag{N1, . . . ,Nn},

m1i =


syξi1φ(ξi2)
σΦ(ξi2)

, i ∈ D,

−
∂

∂ωi


Ī(0)Φ(ξi2ω1 )

(a, b)− [ψ(a)− ψ(a + b)]IΦ(ξi2ω1 )(a, b)

1 − IΦ(ξi2ω1 )


ωi=0

, i ∈ C,

m2i =


−

syξi1φ(ξi2)
σ [1 − Φ(ξi2)]

, i ∈ D,

−
∂

∂ωi


Ī(1)Φ(ξi2ω1 )

(a, b)− [ψ(b)− ψ(a + b)]IΦ(ξi2ω1 )(a, b)

1 − IΦ(ξi2ω1 )


ωi=0

, i ∈ C,
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m3i =



2syξi1ξi2
ασ

+
sy(a − 1)ξi1φ(ξi2)

ασΦ(ξi2)


ξ 2i2 − 1 +

ξi2φ(ξi2)

Φ(ξi2)



+
sy(b − 1)ξi1φ(ξi2)
ασ [1 − Φ(ξi2)]


1 − ξ 2i2 +

ξi2φ(ξi2)

[1 − Φ(ξi2)]


, i ∈ D,

∂

∂ωi


ξi2ω1φ(ξi2ω1)Φ(ξi2ω1)

a−1
[1 − Φ(ξi2ω1)]

b−1

αB(a, b)[1 − IΦ(ξi2ω1 )]


ωi=0

, i ∈ C,

m4i =



−
syzi
σ 2

−
syξi2
σ 2ξi1

+
syziξ 2i2
σ 2ξ 2i1

+
syziξ 2i1
σ 2

+
syziξ 2i2
σ 2

+
syziξi1ξi2
σ 2

+
sy(a − 1)φ(ξi2)
σ 2Φ(ξi2)


ziξ 2i1ξi2 − ziξi2 − ξi1 +

ziξ 2i1φ(ξi2)
Φ(ξi2)



+
sy(b − 1)φ(ξi2)
σ 2[1 − Φ(ξi2)]


ziξi2 + ξi1 − ziξ 2i1ξi2 +

ziξ 2i1φ(ξi2)
[1 − Φ(ξi2)]


, i ∈ D,

∂

∂ωi


ziω1ξi1ω1φ(ξi2ω1)Φ(ξi2ω1)

a−1
[1 − Φ(ξi2ω1)]

b−1

σB(a, b)[1 − IΦ(ξi2ω1 )]


ωi=0

, i ∈ C,

Ni =



−
sy
σ 2

+
syξ 2i2
σ 2ξ 2i1

+
syξ 2i1
σ 2

+
syξ 2i2
σ 2

+
sy(a − 1)φ(ξi2)
σ 2Φ(ξi2)


−ξi2 + ξ 2i1ξi2 +

ξ 2i1φ(ξi2)

Φ(ξi2)



+
sy(b − 1)φ(ξi2)
σ 2[1 − Φ(ξi2)]


ξi2 − ξ 2i1ξi2 +

ξ 2i1φ(ξi2)

[1 − Φ(ξi2)]


, i ∈ D,

∂

∂ωi


ξi1ω1φ(ξi2ω1)Φ(ξi2ω1)

a−1
[1 − Φ(ξi2ω1)]

b−1

σB(a, b)[1 − IΦ(ξi2ω1 )(a, b)]


ωi=0

, i ∈ C .

Explanatory variable perturbation

Now, consider an additive perturbation on a particular continuous explanatory variable, say xt , by setting xitω = xit+ωisx,
where sx is a scale factor that may be estimated by the standard deviation of xt . Let ξi1ω2 = ξi1ω2(θ) = 2α−1 cosh([yi −µi −

βtωisx]/σ), ξi2ω2 = ξi2ω2(θ) = 2α−1 sinh([yi −µi − βtωisx]/σ) and ziω2 = (yi −µi − βtωisx)/σ . Here, ω0 = (0, . . . , 0)⊤ is
the vector of no perturbations. Under this perturbation scheme, we have

1a = (e11, . . . ,e1n), 1b = (e21, . . . ,e2n), 1α = (e31, . . . ,e3n), 1σ = (e41, . . . ,e4n),
where

e1i =


−

sxβtξi1φ(ξi2)

σΦ(ξi2)
, i ∈ D,

−
∂

∂ωi


Ī(0)Φ(ξi2ω2 )

(a, b)− [ψ(a)− ψ(a + b)]IΦ(ξi2ω2 )(a, b)

1 − IΦ(ξi2ω2 )


ωi=0

, i ∈ C,

e2i =


sxβtξi1φ(ξi2)

σ [1 − Φ(ξi2)]
, i ∈ D,

−
∂

∂ωi


Ī(1)Φ(ξi2ω2 )

(a, b)− [ψ(b)− ψ(a + b)]IΦ(ξi2ω2 )(a, b)

1 − IΦ(ξi2ω2 )


ωi=0

, i ∈ C,

e3i =



−
2sxβtξi1ξi2

ασ
+

sx(a − 1)βtξi1φ(ξi2)

ασΦ(ξi2)


1 − ξ 2i2 −

ξi2φ(ξi2)

Φ(ξi2)



+
sx(b − 1)βtξi1φ(ξi2)

ασ [1 − Φ(ξi2)]


ξ 2i2 − 1 −

ξi2φ(ξi2)

[1 − Φ(ξi2)]


, i ∈ D,

∂

∂ωi


ξi2ω2φ(ξi2ω2)Φ(ξi2ω2)

a−1
[1 − Φ(ξi2ω2)]

b−1

αB(a, b)[1 − IΦ(ξi2ω2 )]


ωi=0

, i ∈ C,
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e4i =



sxziβt

σ 2
+

sxβtξi2

σ 2ξi1
−

sxziβtξ
2
i2

σ 2ξ 2i1
−

sxziβtξ
2
i1

σ 2
−

sxziβtξ
2
i2

σ 2
−

sxziβtξi1ξi2

σ 2

+
sx(a − 1)βtφ(ξi2)

σ 2Φ(ξi2)


ziξi2 + ξi1 − ziξ 2i1ξi2 −

ziξ 2i1φ(ξi2)
Φ(ξi2)



+
sx(b − 1)βtφ(ξi2)

σ 2[1 − Φ(ξi2)]


ziξ 2i1ξi2 − ziξi2 − ξi1 −

ziξ 2i1φ(ξi2)
[1 − Φ(ξi2)]


, i ∈ D,

∂

∂ωi


ziω2ξi1ω2φ(ξi2ω2)Φ(ξi2ω2)

a−1
[1 − Φ(ξi2ω2)]

b−1

σB(a, b)[1 − IΦ(ξi2ω2 )]


ωi=0

, i ∈ C .

The matrix 1β = {δji} of dimension p × n (j = 1, . . . , p and i = 1, . . . , n) has elements when j ≠ t in the form

δji =



sxβtxij
σ 2

−
sxβtxijξ 2i2
σ 2ξ 2i1

−
sxβtxijξ 2i1
σ 2

−
sxβtxijξ 2i2
σ 2

+
sx(a − 1)βtxijφ(ξi2)

σ 2Φ(ξi2)


ξi2 − ξ 2i1ξi2 −

ξ 2i1φ(ξi2)

Φ(ξi2)



+
sx(b − 1)βtxijφ(ξi2)
σ 2[1 − Φ(ξi2)]


ξ 2i1ξi2 − ξi2 −

ξ 2i1φ(ξi2)

[1 − Φ(ξi2)]


, i ∈ D,

∂

∂ωi


ξi1ω1φ(ξi2ω1)Φ(ξi2ω1)

a−1
[1 − Φ(ξi2ω1)]

b−1

σB(a, b)[1 − IΦ(ξi2ω1 )(a, b)]


ωi=0

, i ∈ C .

For j = t , we have

δti =



sxβtxit
σ 2

−
sxβtxitξ 2i2
σ 2ξ 2i1

−
sxβtxitξ 2i1
σ 2

−
sxβtxitξ 2i2
σ 2

−
sxξi2
σξi1

+
sxξi1ξi2
σ

−
sx(a − 1)ξi1φ(ξi2)

σΦ(ξi2)

+
sx(b − 1)ξi1φ(ξi2)
σ [1 − Φ(ξi2)]

+
sx(a − 1)φ(ξi2)
σ 2Φ(ξi2)


ξi2 − ξ 2i1ξi2 −

ξ 2i1φ(ξi2)

Φ(ξi2)



+
sx(b − 1)βtxitφ(ξi2)
σ 2[1 − Φ(ξi2)]


ξ 2i1ξi2 − ξi2 −

ξ 2i1φ(ξi2)

[1 − Φ(ξi2)]


, i ∈ D,

∂

∂ωi


ξi1ω1φ(ξi2ω1)Φ(ξi2ω1)

a−1
[1 − Φ(ξi2ω1)]

b−1

σB(a, b)[1 − IΦ(ξi2ω1 )(a, b)]


ωi=0

+
sxξi1φ(ξi2)Φ(ξi2)a−1

[1 − Φ(ξi2)]
b−1

σB(a, b)
, i ∈ C .

6. The LβBS mixture model for cure fraction

In population-based cancer studies, cure is said to occur when mortality in the group of cancer patients returns to the
same level as that expected in the general population. The cure fraction is of interest to patients as well as a useful measure
when analyzing trends in cancer patients survival. Models for survival analysis typically assume that every subject in the
study population is susceptible to the event under study andwill eventually experience such event if follow-up is sufficiently
long. However, there are situationswhen a fraction of individuals are not expected to experience the event of interest, that is,
those individuals are cured or not susceptible. Cure rate models have been used for modeling time-to-event data for various
types of cancers, including breast cancer, non-Hodgkins lymphoma, leukemia, prostate cancer and melanoma. Perhaps,
the most popular cure rate models are the mixture models (MMs) introduced by Boag (1949), Berkson and Gage (1952)
and Farewell (1982). Additionally, MMs allow both the cure fraction and the survival function of uncured patients (latency
distribution) to depend on covariates. Further, Longini andHalloran (1996) and Price andManatunga (2001) have introduced
frailty to MMs for individual survival data. Recently, Peng and Dear (2000) investigated a nonparametric mixture model
for cure estimation, Sy and Taylor (2000) considered estimation in a proportional hazard cure model, Yu and Peng (2008)
have extended MMs to bivariate survival data by modeling marginal distributions and Ortega et al. (2009c) proposed the
generalized log-gammamixture model with covariates. Benerjee and Carlin (2004) extended multivariate cure rate models
to allow for spatial correlation as well as interval censoring and used a Bayesian approach, where posterior summaries are
obtained via the hybrid Markov Chain Monte Carlo algorithm. Li et al. (2005) considered MMs in the presence of dependent
censoring, from the perspective of competing risks andmodel the dependence between the censoring time and the survival
time using a class of Archimedean copula models and Zeng et al. (2006) proposed a class of transformation models for
survival data with a cure fraction. This class of transformation models was motivated by biological considerations, and it
includes both the proportional hazards and proportional odds cure models as two special cases.
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To formulate the LβBS mixture (LβBSM) model, we consider that the studied population is a mixture of susceptible
(uncured) individuals, who may experience the event of interest, and non-susceptible (cured) individuals, who will
experience it (Maller and Zhou, 1996). This approach allows to estimate simultaneously whether the event of interest will
occur, which is called incidence, and when it will occur, given that it can occur, which is called latency. Let Ni (i = 1, . . . , n)
be the indicator denoting that the ith individual is susceptible (Ni = 1) or non-susceptible (Ni = 0). The mixture model is
given by

Spop(yi|xi) = π(xi)+

1 − π(xi)


S(yi|Ni = 1), (8)

where Spop(yi|xi) is the unconditional survival function of yi for the entire population, S(yi|Ni = 1) is the survival function
for susceptible individuals and π(xi) = P(Ni = 0|xi) is the probability of cure variation from individual to individual given
a covariates vector x⊤

i = (xi1, . . . , xip). We shall use a logistic link to the covariates, so that the probability that individual i
is cured is modeled by

π(xi) =
exp


x⊤

i γ


1 + exp

x⊤

i γ
 , (9)

where γ = (γ1, . . . , γp)
⊤ indicates the long-term effects. The LβBSM model is defined assuming that the survival function

for susceptible individuals in (8) is given by S(yi|Ni = 1) = 1 − IΦ(ξ2)(a, b), where ξ2 is defined in Section 2. For this
model, the parameters of interest are θ = (a, b, α, µ, σ , γ⊤)⊤. The LβBSM model, when π(xi) = 0 for all xi, a = b = 1
and σ = 2 reduces to the log-BS regression model. The identifiability between the parameters in the cure fraction and
those in the latency distribution for the mixture model has been discussed by Li et al. (2005). The mixture model is not
identifiable when the cure fraction π(x) is a constant π , but is identifiable when π(x) is modeled by a logistic regression
with non-constant covariates (Li et al., 2005). So, it is necessary to include some covariates in the cure fraction to ensure
identifiability. The LβBSM model contains, as special sub-models, the log-exponentiated BS mixture (LEBSM) model and
log-BS mixture (LBSM) model when b = 1 and a = b = 1, respectively.

Consider data in the form (yi, xi), where the response variable yi corresponds to the observed log-lifetimeor log-censoring
time for the ith individual and xi is a covariate vector, for i = 1, . . . , n. Under this assumption, the contribution of an
individual that failed at yi to the likelihood function is


1−π(xi)


ξ ∗

i1 exp(−ξ
∗2
i2 /2)Φ(ξ

∗

i2)
a−1

[1−Φ(ξ ∗

i2)]
b−1/{

√
2πσB(a, b)}

and the contribution of an individual that is at risk at yi is π(xi)+ [1 − π(xi)][1 − IΦ(ξ∗
i2)
(a, b)], where

ξ ∗

i1 = ξ ∗

i1(θ) =
2
α

cosh


yi − µ

σ


and ξ ∗

i2 = ξ ∗

i2(θ) =
2
α

sinh


yi − µ

σ


.

The total log-likelihood function for the parameter vector θ = (a, b, α, σ , µ, γ⊤)⊤ is given by

ℓ(θ) = q log


(2π)−1/2

σB(a, b)


+

−
i∈D

log(ξ ∗

i1)−
1
2

−
i∈D

ξ ∗2
i2 + (a − 1)

−
i∈D

log

Φ(ξ ∗

i2)


+ (b − 1)
−
i∈D

log

1 − Φ(ξ ∗

i2)

+

−
i∈D

log[1 − π(xi)] +

−
i∈C

log

π(xi)+


1 − π(xi)


1 − IΦ(ξ∗

i2)
(a, b)


,

where q is the observed number of failures and D and C denote the sets of individuals corresponding to the log-lifetime and
log-censoring time, respectively. The score functions for the parameters a, b, α, σ , µ and γ are given by

Ua(θ) = q[ψ(a + b)− ψ(a)] +

−
i∈D

log[Φ(ξ ∗

i2)] −

−
i∈C

[İΦ(ξ∗
i2)
(a, b)]∗a,

Ub(θ) = q[ψ(a + b)− ψ(b)] +

−
i∈D

log[1 − Φ(ξ ∗

i2)] −

−
i∈C

[İΦ(ξ∗
i2)
(a, b)]∗b,

Uα(θ) = −
q
α

+
1
α

−
i∈D

ξ ∗2
i2 −

(a − 1)
α

−
i∈D

ξ ∗

i2φ(ξ
∗

i2)

Φ(ξ ∗

i2)
+
(b − 1)
α

−
i∈D

ξ ∗

i2φ(ξ
∗

i2)

1 − Φ(ξ ∗

i2)
+

−
i∈C

[İΦ(ξ∗
i2)
(a, b)]∗α,

Uσ (θ) = −
q
σ

−
1
σ

−
i∈D

z∗

i ξ
∗

i2

ξ ∗

i1
+

1
σ

−
i∈D

z∗

i ξ
∗

i1ξ
∗

i2 −
(a − 1)
σ

−
i∈D

z∗

i ξ
∗

i1φ(ξ
∗

i2)

Φ(ξ ∗

i2)

+
(b − 1)
σ

−
i∈D

z∗

i ξ
∗

i1φ(ξ
∗

i2)

1 − Φ(ξ ∗

i2)
+

−
i∈C

[İΦ(ξ∗
i2)
(a, b)]∗σ ,

Uµ(θ) = −
1
σ

−
i∈D

ξ ∗

i2

ξ ∗

i1
+

1
σ

−
i∈D

ξ ∗

i1ξ
∗

i2 −
(a − 1)
σ

−
i∈D

ξ ∗

i1φ(ξ
∗

i2)

Φ(ξ ∗

i2)
+
(b − 1)
σ

−
i∈D

ξ ∗

i1φ(ξ
∗

i2)

1 − Φ(ξ ∗

i2)
+

−
i∈C

[İΦ(ξ∗
i2)
(a, b)]∗µ
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and Uγ(θ) = X⊤s∗, respectively. Here, z∗

i = (yi − µ)/σ , s∗ = (s∗1, . . . , s
∗
n)

⊤ with

s∗i =


−π(xi) i ∈ D,

π(xi)[1 − π(xi)]IΦ(ξ∗
i2)
(a, b)

π(xi)+ [1 − π(xi)][1 − IΦ(ξ∗
i2)
(a, b)]

, i ∈ C,

[İΦ(ξ∗
i2)
(a, b)]∗a =

[1 − π(xi)]Ī
(0)
Φ(ξ∗

i2)
(a, b)− [ψ(a)− ψ(a + b)]IΦ(ξ∗

i2)
(a, b)

π(xi)+ [1 − π(xi)][1 − IΦ(ξ∗
i2)
(a, b)]

,

[İΦ(ξ∗
i2)
(a, b)]b =

[1 − π(xi)]Ī
(1)
Φ(ξ∗

i2)
(a, b)− [ψ(b)− ψ(a + b)]IΦ(ξ∗

i2)
(a, b)

π(xi)+ [1 − π(xi)][1 − IΦ(ξ∗
i2)
(a, b)]

,

[İΦ(ξ∗
i2)
(a, b)]∗α =

[1 − π(xi)]ξ ∗

i2φ(ξ
∗

i2)Φ(ξ
∗

i2)
a−1

[1 − Φ(ξ ∗

i2)]
b−1

αB(a, b){π(xi)+ [1 − π(xi)][1 − IΦ(ξ∗
i2)
(a, b)]}

,

[İΦ(ξ∗
i2)
(a, b)]∗σ =

[1 − π(xi)]z∗

i ξ
∗

i1φ(ξ
∗

i2)Φ(ξ
∗

i2)
a−1

[1 − Φ(ξ ∗

i2)]
b−1

σB(a, b){π(xi)+ [1 − π(xi)][1 − IΦ(ξ∗
i2)
(a, b)]}

,

[İΦ(ξ∗
i2)
(a, b)]∗µ =

[1 − π(xi)]ξ ∗

i1φ(ξ
∗

i2)Φ(ξ
∗

i2)
a−1

[1 − Φ(ξ ∗

i2)]
b−1

σB(a, b){π(xi)+ [1 − π(xi)][1 − IΦ(ξ∗
i2)
(a, b)]}

,

and

Ī(k)
Φ(ξ∗

i2)
(a, b) =

1
B(a, b)

∫ Φ(ξ∗
i2)

0
[log(w)]1−k

[log(1 − w)]kwa−1(1 − w)b−1dw, k = 0, 1.

The MLEs of the parameters in θ can be obtained by solving simultaneously the nonlinear equations Ua(θ) = 0,Ub(θ) = 0,
Uα(θ) = 0, Uσ (θ) = 0,Uµ(θ) = 0 and Uγ(θ) = 0. The covariances of the MLEs inθ can also be obtained using the Hessian
matrix. Under standard regularity conditions, confidence intervals and hypothesis tests can be conducted based on the large
sample distribution of the MLE, which is multivariate normal with covariance matrix given by the inverse of the expected
information matrix, i.e.θ ∼ Np+5(θ,6(θ)

−1), where the asymptotic covariance matrix is given by 6(θ)−1, 6(θ) = −E(L̈θθ )
and L̈θθ = ∂2ℓ(θ)/∂θ∂θ⊤. Since it is not possible to compute the expected information matrix 6(θ) due to the censored
observations (censoring is random and noninformative), we can use the matrix of second derivatives −L̈θθ evaluated at
θ =θ to estimate 6(θ).

More recently, several authors have adopted only a regression structure for the cure probability in long-term survivor
models. See, for example, de Castro et al. (2009, 2010) and Rodrigues et al. (2011), among others. Here, we consider the
same approach for the LβBS regression model with cure fractions. However, as suggested by a referee, a future research
can be conducted to include covariates for the cure probability, i.e. π(xi) = exp(x⊤

i γ)/{1 + exp(x⊤

i γ)}, and possibly other
covariates and a vector of new parameters, say ζ, for the logarithm of the survival time such as

ξ ∗

i1 = ξ ∗

i1(θ) =
2
α

cosh


yi − z⊤

i ζ

σ


and ξ ∗

i2 = ξ ∗

i2(θ) =
2
α

sinh


yi − z⊤

i ζ

σ


.

7. Applications

7.1. First application: the LβBS regression model

In this section, we use a real data set to show the flexibility and applicability of the LβBS regression model. We compare
the results from the fits of the LβBS, LEBS, LLeBS and LBS regression models. All the computations were done using the Ox
matrix programming language (Doornik, 2006). The Ox program is freely distributed for academic purposes and available
at http://www.doornik.com.

We shall consider the real data set given by Hirose (1993) as the results of an accelerated life-test on polyethylene
terephthalate (PET) film (used in electrical insulation) in SF6 gas insulated transformers. The accelerated life test was
performed at four levels of voltage: v = 5, 7, 10 and 15, with 10, 15, 10 and 9 observations for each level, respectively.
Three censored values were observed at v = 5. The data are listed in Table 1. They have also been considered by Wang and
Kececioglu (2000) as an illustration of the log-linear Weibull model to accelerated life-test.

The aim of the study is to relate the resistance times of insulating films (t) with the levels of voltage (v). We consider the
following regression model:

yi = β0 + β1vi + σ zi,

http://www.doornik.com
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Table 1
Resistance times of insulating films.

Voltage (kV) Failure or censoring time (h)

5 7131 8482 8559 8762 9026 9034
9104 9104.25a 9104.25a 9104.25a

7 50.25 87.75 87.76 87.77 92.90 92.91
95.96 108.3 108.3 117.9 123.9 124.3
129.7 135.6 135.6

10 15.17 19.87 20.18 21.50 21.88 22.23
23.02 23.90 28.17 29.70

15 2.40 2.42 3.17 3.75 4.65 4.95
6.23 6.68 7.30

a Indicates censored data.

Table 2
MLEs of the parameters (standard errors in parentheses and p-values in [·]) and the AIC, BIC and HQIC measures.

Model a b α σ β0 β1 AIC BIC HQIC

LβBS 0.6614 1.4563 135.9833 0.4147 9.3643 −0.4077 91.68 102.38 95.65
(0.842) (1.414) (131.946) (0.055) (0.166) (0.017)

[<0.01] [<0.01]

LEBS 0.4143 102.9348 0.4165 9.3605 −0.4071 89.83 98.76 93.14
(0.131) (72.866) (0.053) (0.165) (0.016)

[<0.01] [<0.01]

LLeBS 1.9841 167.5896 0.4148 9.3623 −0.4080 89.77 98.69 93.08
(0.383) (115.231) (0.056) (0.158) (0.016)

[<0.01] [<0.01]

LBS 246.1849 0.3695 9.1815 −0.4051 98.72 105.86 101.37
(180.666) (0.046) (0.138) (0.016)

[<0.01] [<0.01]

Table 3
LR statistics.

Model Hypotheses w p-value

LβBS vs. LEBS H0 : b = 1 vs. H1 : b ≠ 1 0.155 0.694
LβBS vs. LLeBS H0 : a = 1 vs. H1 : a ≠ 1 0.094 0.760
LβBS vs. LBS H0 : a = b = 1 vs. H1 : H0 is false 11.039 0.004
LEBS vs. LBS H0 : a = 1 vs. H1 : a ≠ 1 10.884 0.001
LLeBS vs. LBS H0 : b = 1 vs. H1 : b ≠ 1 10.946 0.001

where yi has the LβBS distribution (4), for i = 1, . . . , 44. Table 2 lists theMLEs (standard errors in parentheses) of themodel
parameters of the LβBS, LEBS, LLeBS and LBS regression models fitted to the data and the statistics: AIC (Akaike Information
Criterion), BIC (Bayesian Information Criterion) and HQIC (Hannan–Quinn Information Criterion). Notice that the MLEs of
σ , β0 and β1 (and their respective standard errors) are approximately the same for all the models. Also, note that the MLEs
of α (and the standard errors) are very different for these models. Although the MLEs of a and b are approximately equal
to these models, their corresponding standard errors are different. The MLEs of the parameters a, b and α are different for
each model because they are shape parameters.

The figures in Table 2 indicate that the LLeBS (new) regression model has the lowest AIC, BIC and HQIC values among
those of the fittedmodels, and so it could be chosen as the bestmodel. The LβBS and LEBS regressionmodels also outperform
the LBS model according to these statistics. In summary, the LβBS, LEBS and LLeBS regression models outperform the LBS
model irrespective of the criteria and they can be effectively used in the analysis of these data. For the fitted regression
models, note that β1 is marginally significant at the level of 1% and then there is a significant difference among the levels of
the voltage for the resistance times of insulating films.

A comparison of the LβBS regression model with some of its sub-models using LR statistics is performed in Table 3. The
figures in this table, specially the p-values, indicate that the LβBS regression model gives the same fit to the current data
than those of the LEBS and LLeBS regression models. Additionally, these models yield better fits to the data than the LBS
regression model. A graphical comparison among the LβBS, LEBS, LLeBS and LBS models is explored in Fig. 4. These plots
provide the Kaplan–Meier (KM) estimate and the estimated survival functions of the LβBS, LEBS, LLeBS and LBS regression
models. Based on these plots, it is evident that these models fit the current data better than the LBS model. As expected, the
curves for the LβBS model is very similar to the curves of the LEBS and LLeBS models.

In what follows, we shall apply the local influence method for the purpose of identifying influential observations in the
LβBS, LEBS, LLeBS and LBS regression models fitted to the data. Fig. 5 gives the influence index plot for these models based
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a b
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Fig. 4. Estimated survival functions and the empirical survival: (a) LβBS regression model versus KM; (b) LEBS regression model versus KM; (c) LLeBS
regression model versus KM; (d) LBS regression model versus KM.

Table 4
Relative changes (%) dropping the labeled cases.

Model Dropping
#11 #26a b α σ β1 β2 a b α σ β1 β2

LβBS 24.6 17.7 65.5 12.1 2.4 7.6 8.3 4.6 33.9 5.7 0.1 0.2
LEBS 0.6 44.4 11.8 2.5 7.7 2.3 29.4 5.7 0.1 0.2
LLeBS 0.0 48.1 12.1 2.4 7.5 1.2 28.7 5.7 0.1 0.2
LBS 36.2 10.2 2.7 7.6 28.3 5.1 0.1 0.2

on the case weight perturbation. An inspection of these plots reveal that the cases #11 and #26 have more pronounced
influence on the MLEs than the other observations. They correspond to the smallest observations for the levels of voltage 7
and 10, respectively. Based on Fig. 5, we eliminated those most influential observations and refitted the LβBS, LEBS, LLeBS
and LBS regressionmodels. The relative change (RC), in percentage, of each parameter estimate is used to evaluate the effect
of the potentially influential case. The RC is defined by RCθ (i) = |θ −θ(i)/θ | × 100%, whereθ(i) denotes the MLE of θ after
removing the ith observation. The results are listed in Table 4. This table indicates that the relative changes for the MLE of
the parameter α for the four models are very pronounced, mainly for the observation #11. However, the inferences do not
change at the significance level of 1%, i.e., the significance of the covariable is not influenced by these observations.

As pointed out by an anonymous referee, it would be interesting to investigate the effect of influential cases on the LR
statistics. In Table 5, we present the LR statistics when the influential cases are excluded. Note that we arrive at the same
conclusion when all observations are considered; compare the figures of this table with the figures in Table 3.



712 E.M.M. Ortega et al. / Computational Statistics and Data Analysis 56 (2012) 698–718
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Fig. 5. Influence index plots (case weight perturbation) for the LβBS (a), LEBS (b), LLeBS (c) and LBS (d) models.

Table 5
LR statistics dropping the influential cases.

Model Hypotheses w p-value

Dropping #11

LβBS vs. LEBS H0 : b = 1 vs. H1 : b ≠ 1 0.184 0.668
LβBS vs. LLeBS H0 : a = 1 vs. H1 : a ≠ 1 0.016 0.898
LβBS vs. LBS H0 : a = b = 1 vs. H1 : H0 is false 10.850 0.004
LEBS vs. LBS H0 : a = 1 vs. H1 : a ≠ 1 10.666 0.001
LLeBS vs. LBS H0 : b = 1 vs. H1 : b ≠ 1 10.833 0.001

Dropping #26

LβBS vs. LEBS H0 : b = 1 vs. H1 : b ≠ 1 0.160 0.690
LβBS vs. LLeBS H0 : a = 1 vs. H1 : a ≠ 1 0.053 0.818
LβBS vs. LBS H0 : a = b = 1 vs. H1 : H0 is false 10.381 0.006
LEBS vs. LBS H0 : a = 1 vs. H1 : a ≠ 1 10.221 0.001
LLeBS vs. LBS H0 : b = 1 vs. H1 : b ≠ 1 10.328 0.001

In summary, the proposed LβBS, LEBS and LLeBS regression models produce better fit for the current data than the
LBS regression model (Rieck and Nedelman, 1991). In this case, the LLeBS regression model could be chosen since it has
less parameters to be estimated and according to the LR statistic (see Table 3), it presents a similar fit to that of the LβBS
regression model. Also, this regression model gives the lowest AIC, BIC and HQIC values (see Table 2). For example, we may
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Fig. 6. Kaplan–Meier curves of high-dose interferon and observation groups in cutaneous melanoma data.

interpret the estimated coefficient of the LLeBS model as follows. The expected resistance time of insulating films should
decrease approximately 34%[(1 − e−0.4080)× 100%] as the level of voltage increases one unity.

7.2. Second application: the LβBSmixture model

The data are part of a study on cutaneous melanoma (a type of malignant cancer) for the evaluation of postoperative
treatment performance with a high dose of a certain drug (interferon alfa-2b) in order to prevent recurrence. Patients were
included in the study from 1991 to 1995, and follow-up was conducted until 1998. The data are collected by Ibrahim et al.
(2001) and represent the survival times, T , as the time until the patient’s death. The original sample size was n = 427
patients, 10 of whom did not present a value for explanatory variable tumor thickness. When such cases were removed, a
sample of size n = 417 patients was retained. The percentage of censored observations was 56%. The following variables are
associatedwith each participant (i = 1, . . . , 417): yi: observed time (in years); xi1: treatment (0: observation, 1: interferon);
xi2: age (in years); xi3: nodule (nodule category: 1–4); xi4: sex (0: male, 1: female); xi5: p.s. (performance status-patient’s
functional capacity scale as regards his daily activities—0: fully active, 1: other) and xi6: tumor (tumor thickness in mm).

Fig. 6 shows the estimated survival curves for interferon and the observation groups. An obvious plateau can be observed
after about a 5 years’ follow-up, which offers empirical evidence for a cure possibility in cutaneous melanoma data.

Firstly, we consider the following LβBSMmodel described in Section 6

yi = µ+ σ zi, i = 1, . . . , 417,

where yi has the LβBS distribution (4) and

π(xi) =
exp(x⊤

i γ)

1 + exp(x⊤

i γ)
,

where x⊤

i γ = γ0 + γ1xi1 + γ2xi2 + γ3xi3 + γ4xi4 + γ5xi5 + γ6xi6.
To obtain the MLEs of the parameters in the LβBSM model, we used the procedure NLMixed in SAS, whose results are

listed in Table 6. We note that the covariate nodule is significant (at 5%) for the cure fraction. Further, the predictors age and
tumor are significant for the cure fraction (at 10%).

A summary of the values of the AIC, CAIC and BIC statistics to compare the LβBSMmodel with some of its sub-models is
given in Table 7. The LβBSMmodel yields the best fit according to these criteria.

A comparison of the LβBS regression model with some of its sub-models using LR statistics is performed in Table 8. The
figures in this table, specially the p-values, indicate that the LβBSMmodel provides a better representation of the data than
the LEBSM and LBSMmodels.

Next, we turn to a simplified model retaining only nodule category as an explanatory variable. The estimates for the
LβBSM regression model with long-term survivors fitted to the cutaneous melanoma data are listed in Table 9.

Finally, we estimate the proportion of cured individuals, using Eq. (9), by

πi =
exp(1.1171 − 0.4878xi3)

1 + exp(1.1171 − 0.4878xi3)
and π =

1
417

417−
i=1

πi.
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Table 6
MLEs for the parameters of the LβBSM model with long-term survivors
fitted to the cutaneous melanoma data set.

Parameter Estimate S.E. p-value

a 1.3587 0.3010 –
b 12.4847 0.1287 –
α 8.7935 3.9743 –
µ 9.5969 3.0135 <0.001
σ 3.4191 0.3403 –
γ0 4.3551 1.7167 0.0115
γ1 −0.2245 0.3948 0.5700
γ2 −0.0281 0.0162 0.0831
γ3 −1.3671 0.5859 0.0201
γ4 0.2726 0.3919 0.4871
γ5 −0.0665 0.6053 0.9126
γ6 −0.2542 0.1371 0.0645

Table 7
Some statistics for comparing the LβBSMmodel with some
of its sub-models.

Model AIC CAIC BIC

LβBSM 905.9 906.6 954.3
LEBSM 941.3 942.0 985.7
LBSM 943.5 944.0 983.8

Table 8
LR statistics.

Model Hypotheses w p-value

LβBSM vs. LEBSM H0 : b = 1 vs. H1 : b ≠ 1 37.4 <0.001
LβBSM vs. LBSM H0 : a = b = 1 vs. H1 : H0 is false 41.6 <0.001

Table 9
MLEs for the LβBSMmodel fitted to the cutaneous melanoma data.

Parameter Estimate S.E. p-value

a 1.6727 0.0402 –
b 191.78 0.3336 –
α 0.8169 0.0892 –
µ 8.2832 3.0057 0.006
σ 8.7371 4.3878 –
γ0 1.1171 0.2791 <0.001
γ3 −0.4878 0.1105 <0.001

The mean cure fraction estimated wasπ = 0.4955. Estimates of the cure rate patients stratified by nodule category areπj,
for j = 1, . . . , 4. The estimates of the surviving fraction of patients stratified by nodule category from 1 to 4 are 0.6523,
0.5353, 0.4143 and 0.3028, respectively.

8. Concluding remarks

For the first time, we study the called log-β-Birnbaum–Saunders (LβBS) distribution. We derive explicit expressions for
themoment generating function andmoments. Based on this distribution,we propose a LβBS regressionmodel very suitable
for modeling censored and uncensored lifetime data. The new regression model serves as a good alternative for lifetime
data analysis and it is much more flexible than the log-Birnbaum–Saunders regression model (Rieck and Nedelman, 1991)
inmany practical situations. The parameter estimation is approached bymaximum likelihood and the observed information
matrix is derived. We also discuss influence diagnostics in the LβBS regression model fitted to censored data. We also
propose a LβBS mixture model for survival data with long-term survivors. The usefulness of the new regression model
is illustrated bymeans of two real data sets. Our formulas related with the LβBS regressionmodel are manageable, and with
the use of modern computer resources with analytic and numerical capabilities, may turn into adequate tools comprising
the arsenal of applied statisticians. In other words, the proposed methodology can be implemented straightforwardly and
runs immediately in some statistical packages. We hope that the proposed regression model may attract wider applications
in survival analysis and fatigue life modeling.
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Appendix A

The proof of the theorem is as follows. First, if a is a positive real non-integer, we can expandΦ(v)a as

Φ(v)a =

∞−
r=0

sr(a)Φ(v)r , (10)

where sr(x) =
∑

∞

j=r(−1)r+j


x
j

 
j
r


. We can write from the binomial expansion

Φ


2
α

sinh(z)

a−1
1 − Φ


2
α

sinh(z)

b−1

=

∞−
i=0

(−1)i

b − 1

i


Φ


2
α

sinh(z)

i+a−1

and then using (10)

Φ


2
α

sinh(z)

a−1
1 − Φ


2
α

sinh(z)

b−1

=

∞−
i,r=0

(−1)i

b − 1

i


sr(i + a − 1)Φ


2
α

sinh(z)

r

.

Hence,

MZ (s) =

∞−
i,r=0

pi,r

∫
∞

−∞

exp(sz) cosh(z) exp{−2 sinh2(z)/α2
}Φ


2
α

sinh(z)

r

dz,

where pi,r = pi,r(a, b, α) is defined above.
We require the following results for the error function erf(·) to calculate the last integral, say Nr(s, α): Φ(x) = [1 +

erf(x/
√
2)]/2 and erf(x) = (2/

√
π)
 x
0 exp(−y2)dy. If bm = (−1)m[(2m + 1)2m/2m!

√
π ]

−1, we can write the power series

erf(x/
√
2) =

∑
∞

m=0 bmx
2m+1. We use the equation

∑
∞

i=0 aix
i
j

=
∑

∞

i=0 cj,ix
i for a power series raised to a positive integer j

(Gradshteyn and Ryzhik, 2007, Section 0.314), whose coefficients cj,i (for i = 1, 2, . . .) are determined from the recurrence
equation

cj,i = (ia0)−1
i−

m=1

(jm − i + m)amcj,i−m (11)

and cj,0 = aj0. Hence, the coefficients cj,i can be calculated directly from cj,0, . . . , cj,i−1 and, therefore, from a0, . . . , ai. We
have

Φ


2
α

sinh(z)
r

=
1
2r


1 +

∞−
m=0

dm sinh(z)2m+1

r

,

where dm = 22m+1α−(2m+1)bm. Thus, using (11), we can obtain

Φ


2
α

sinh(z)
r

=
1
2r

r−
k=0

 r
k

 ∞−
m=0

dm sinh(z)2m+1

k

=

∞−
m=0

em,r sinh(z)2m+1,

where em,r = 2−r ∑r
k=0

 r
k


gk,m, gk,0 = dj0 and gk,m = (i d0)−1∑m

ℓ=1(kℓ− m + ℓ)dℓgk,m−ℓ. Further,

Nr(s, α) =

∞−
m=0

em,r

∫
∞

−∞

exp(sz) cosh(z) sinh(z)2m+1 exp{−2 sinh2(z)/α2
} dz.

From the identity cosh(2z) = 2 sinh2(z)+ 1 and the definition of sinh(z) and cosh(z), by expanding the binomial term, we
obtain after some algebra

Nr(s, α) = exp(1/α2)

∞−
m=0

em,r
2m+3

2m+1−
j=0

(−1)j

2m + 1

j


×

∫
∞

−∞

{exp[(m + 1 − j + s/2)x] + exp[(m − j + s/2)x]} exp{− cosh(x)/α2
}dx.
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From the integral representation Kν(z) = 0.5


∞

−∞
exp{−z cosh(x)− νx}dx, it follows that

Nr(s, α) = eα
−2

∞−
m=0

em,r
2m+2

2m+1−
j=0

(−1)j

2m + 1

j

 
K−(m+1−j+s/2)(1/α2)+ K−(m−j+s/2)(1/α2)


. (12)

Hence, the LβBS generating function takes the formMZ (s) =
∑

∞

i,r=0 pi,rNr(s, α), where Nr(s, α) is calculated from (12).

Appendix B

The elements of the Hessian matrix

L̈(θ) =
∂2ℓ(θ)

∂θ∂θ⊤
=


L̈aa L̈ab L̈aα L̈aσ L̈aβj
· L̈bb L̈bα L̈bσ L̈bβj
· · L̈αα L̈ασ L̈αβj
· · · L̈σσ L̈σβj
· · · · L̈βjβs

 ,
are determined. After extensive algebraic manipulations, we obtain

L̈aa = q[ψ ′(a + b)− ψ ′(a)] +

−
i∈C


ÏΦ(ξi2)(a, b)


aa,

L̈ab = qψ ′(a + b)+

−
i∈C


ÏΦ(ξi2)(a, b)


ab,

L̈aα = −
1
α

−
i∈D

ξi2φ(ξi2)

Φ(ξi2)
+

−
i∈C


ÏΦ(ξi2)(a, b)


aα,

L̈aσ = −
1
σ

−
i∈D

ziξi1φ(ξi2)
Φ(ξi2)

+

−
i∈C


ÏΦ(ξi2)(a, b)


aσ ,

L̈aβj = −
1
σ

−
i∈D

xijξi1φ(ξi2)
Φ(ξi2)

+

−
i∈C


ÏΦ(ξi2)(a, b)


aβj
,

L̈bb = q[ψ ′(a + b)− ψ ′(b)] +

−
i∈C


ÏΦ(ξi2)(a, b)


bb,

L̈bα =
1
α

−
i∈D

ξi2φ(ξi2)

1 − Φ(ξi2)
+

−
i∈C


ÏΦ(ξi2)(a, b)


bα,

L̈bσ =
1
σ

−
i∈D

ziξi1φ(ξi2)
1 − Φ(ξi2)

+

−
i∈C


ÏΦ(ξi2)(a, b)


bσ ,

L̈bβj =
1
σ

−
i∈D

xijξi1φ(ξi2)
1 − Φ(ξi2)

+

−
i∈C


ÏΦ(ξi2)(a, b)


bβj
,

L̈αα =
q
α2

−
3
α2

−
i∈D

ξ 2i2 +
2(a − 1)
α2

−
i∈D

ξi2φ(ξi2)

Φ(ξi2)
−
(a − 1)
α2

−
i∈D

ξ 3i2φ(ξi2)

Φ(ξi2)
−
(a − 1)
α2

−
i∈D

ξ 2i2φ(ξi2)
2

Φ(ξi2)2

−
2(b − 1)
α2

−
i∈D

ξi2φ(ξi2)

1 − Φ(ξi2)
+
(b − 1)
α2

−
i∈D

ξ 3i2φ(ξi2)

1 − Φ(ξi2)

−
(b − 1)
α2

−
i∈D

ξ 2i2φ(ξi2)
2

[1 − Φ(ξi2)]2
+

−
i∈C


ÏΦ(ξi2)(a, b)


αα
,

L̈ασ = −
2
σα

−
i∈D

ziξi1ξi2 +
(a − 1)
σα

−
i∈D

ziξi1φ(ξi2)
Φ(ξi2)

−
(a − 1)
σα

−
i∈D

ziξi1ξ 2i2φ(ξi2)
Φ(ξi2)

−
(a − 1)
σα

−
i∈D

ziξi1ξi2φ(ξi2)2

Φ(ξi2)2
−
(b − 1)
σα

−
i∈D

ziξi1φ(ξi2)
1 − Φ(ξi2)

+
(b − 1)
σα

−
i∈D

ziξi1ξ 2i2φ(ξi2)
1 − Φ(ξi2)

−
(b − 1)
σα

−
i∈D

ziξi1ξ 2i2φ(ξi2)
2

[1 − Φ(ξi2)]2
+

−
i∈C


ÏΦ(ξi2)(a, b)


ασ
,
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L̈αβj = −
2
σα

−
i∈D

xijξi1ξi2 +
(a − 1)
σα

−
i∈D

xijξi1φ(ξi2)
Φ(ξi2)

−
(a − 1)
σα

−
i∈D

xijξi1ξ 2i2φ(ξi2)
Φ(ξi2)

−
(a − 1)
σα

−
i∈D

xijξi1ξi2φ(ξi2)2

Φ(ξi2)2
−
(b − 1)
σα

−
i∈D

xijξi1φ(ξi2)
1 − Φ(ξi2)

+
(b − 1)
σα

−
i∈D

xijξi1ξ 2i2φ(ξi2)
1 − Φ(ξi2)

−
(b − 1)
σα

−
i∈D

xijξi1ξi2φ(ξi2)2

[1 − Φ(ξi2)]2
+

−
i∈C


ÏΦ(ξi2)(a, b)


αβj
,

L̈σσ =
q
σ 2

+
1
σ 2

−
i∈D

z2i +
2
σ 2

−
i∈D

ziξi2
ξi1

−
1
σ 2

−
i∈D

z2i ξ
2
i2

ξ 2i1
−

1
σ 2

−
i∈D

z2i ξ
2
i1 −

1
σ 2

−
i∈D

z2i ξ
2
i2

−
2
σ 2

−
i∈D

ziξi1ξi2 +
(a − 1)
σ 2

−
i∈D

z2i ξi2φ(ξi2)
Φ(ξi2)

+
2(a − 1)
σ 2

−
i∈D

ziξi1φ(ξi2)
Φ(ξi2)

−
(a − 1)
σ 2

−
i∈D

z2i ξ
2
i1ξi2φ(ξi2)

Φ(ξi2)
−
(a − 1)
σ 2

−
i∈D

z2i ξ
2
i1φ(ξi2)

2

Φ(ξi2)2

−
(b − 1)
σ 2

−
i∈D

z2i ξi2φ(ξi2)
1 − Φ(ξi2)

−
2(b − 1)
σ 2

−
i∈D

ziξi1φ(ξi2)
1 − Φ(ξi2)

+
(b − 1)
σ 2

−
i∈D

z2i ξ
2
i1ξi2φ(ξi2)

1 − Φ(ξi2)
−
(b − 1)
σ 2

−
i∈D

z2i ξ
2
i1φ(ξi2)

2

[1 − Φ(ξi2)]2
+

−
i∈C


ÏΦ(ξi2)(a, b)


σσ
,

L̈σβj =
1
σ 2

−
i∈D

zixij +
1
σ 2

−
i∈D

xijξi2
ξi1

−
1
σ 2

−
i∈D

zixijξ 2i2
ξ 2i1

−
1
σ 2

−
i∈D

zixijξ 2i1 −
1
σ 2

−
i∈D

zixijξ 2i2

−
1
σ 2

−
i∈D

xijξi1ξi2 +
(a − 1)
σ 2

−
i∈D

zixijξi2φ(ξi2)
Φ(ξi2)

+
(a − 1)
σ 2

−
i∈D

xijξi1φ(ξi2)
Φ(ξi2)

−
(a − 1)
σ 2

−
i∈D

zixijξ 2i1ξi2φ(ξi2)
Φ(ξi2)

−
(a − 1)
σ 2

−
i∈D

zixijξ 2i1φ(ξi2)
2

Φ(ξi2)2

−
(b − 1)
σ 2

−
i∈D

zixijξi2φ(ξi2)
1 − Φ(ξi2)

−
(b − 1)
σ 2

−
i∈D

xijξi1φ(ξi2)
1 − Φ(ξi2)

+
(b − 1)
σ 2

−
i∈D

zixijξ 2i1ξi2φ(ξi2)
1 − Φ(ξi2)

−
(b − 1)
σ 2

−
i∈D

zixijξ 2i1φ(ξi2)
2

[1 − Φ(ξi2)]2
+

−
i∈C


ÏΦ(ξi2)(a, b)


σβj
,

L̈βjβs =
1
σ 2

−
i∈D

xijxis −
1
σ 2

−
i∈D

xijxisξ 2i2
ξ 2i1

−
1
σ 2

−
i∈D

xijxis(ξ 2i1 + ξ 2i2)+
(a − 1)
σ 2

−
i∈D

xijxisξi2φ(ξi2)
Φ(ξi2)

−
(a − 1)
σ 2

−
i∈D

xijxisξ 2i1ξi2φ(ξi2)
Φ(ξi2)

+
(a − 1)
σ 2

−
i∈D

xijxisξ 2i1φ(ξi2)
2

Φ(ξi2)2
−
(b − 1)
σ 2

−
i∈D

xijxisξi2φ(ξi2)
1 − Φ(ξi2)

+
(b − 1)
σ 2

−
i∈D

xijxisξ 2i1ξi2φ(ξi2)
1 − Φ(ξi2)

−
(b − 1)
σ 2

−
i∈D

xijxisξ 2i1φ(ξi2)
2

[1 − Φ(ξi2)]2
+

−
i∈C


ÏΦ(ξi2)(a, b)


βjβs
,

where j, s = 1, . . . , p,

ÏΦ(ξi2)(a, b)


km = ∂


İΦ(ξi2)(a, b)


k/[1 − IΦ(ξi2)(a, b)]


/∂m and ψ ′(·) is the trigamma function. Here,

[İΦ(ξi2)(a, b)]βj = −xijξi1φ(ξi2)Φ(ξi2)a−1
[1 − Φ(ξi2)]

b−1/[σB(a, b)] and all the others quantities were defined before.
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