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Abstract

We study the properties of the called log-beta Weibull distribution defined by the logarithm
of the beta Weibull random variable (Famoye et al., 2005; Lee et al., 2007). An advantage of
the new distribution is that it includes as special sub-models classical distributions reported
in the lifetime literature. We obtain formal expressions for the moments, moment generating
function, quantile function and mean deviations. We construct a regression model based on the
new distribution to predict recurrence of prostate cancer for patients with clinically localized
prostate cancer treated by open radical prostatectomy. It can be applied to censored data since
it represents a parametric family of models that includes as special sub-models several widely-
known regression models. The regression model was fitted to a data set of 1324 eligible prostate
cancer patients. We can predict recurrence free probability after the radical prostatectomy in
terms of highly significant clinical and pathological explanatory variables associated with the
recurrence of the disease. The predicted probabilities of remaining free of cancer progression
are calculated under two nested models.

Keywords: Beta Weibull distribution; Censored data; Log-beta Weibull distribution; Log-
Weibull regression model; Survival function.

1 Introduction

Standard lifetime distributions usually present very strong restrictions to produce bathtub
curves, and thus appear to be inappropriate for interpreting data with this characteristic. Some
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distributions were introduced to model this kind of data, as the generalized gamma distribution
(Stacy, 1962), the exponential power family (Smith and Bain, 1975), the beta integrated model
(Hjorth, 1980), and the generalized log-gamma distribution (Lawless, 2003), among others. A
good review of these models is described, for instance, in Rajarshi and Rajarshi (1988). In the last
decade, new classes of distributions for modeling this type of data based on extensions of the Weibull
distribution were developed. See, for example, the exponentiated Weibull (EW) (Mudholkar et al.,
1995), the additive Weibull (Xie and Lai, 1995), the modified Weibull (Lai et al., 2003), the beta
Weibull (BW) (Famoye et al., 2005 and Lee et al., 2007) and the generalized modified Weibull
(Carrasco et al., 2008) distributions. Further, Cordeiro et al. (2011) investigated several mathe-
matical properties of the BW geometric distribution, which is a highly flexible lifetime model to
cope with different degrees of kurtosis and asymmetry. The BW distribution, due to its flexibility
in accommodating the four types of the risk function (i.e. increasing, decreasing, unimodal and
bathtub) depending on its parameters, can be used in a variety of problems in modeling survival
data. The main motivation for the use of the BW model is that it contains as special sub-models
several distributions such as the EW, exponentiated exponential (EE) (Gupta and Kundu, 1999)
and generalized Rayleigh (GR) (Kundu and Raqab, 2005) distributions, among others.

Prostate cancer is the second most common cancer in American men and also the second leading
cause of cancer death. The American Cancer Society estimates (in 2010) 217,730 new cases, 32,050
deaths per year and a ten year relative survival rate of 91% for all stages combined. A man with
a localized prostate cancer may have a high probability of full recovery if he receives a radical
prostatectomy (surgical removal of the prostate gland). Radical prostatectomy provides excellent
control of prostate cancer confined to the prostate gland. However, when the cancer breaches the
capsule, the cancer recurrence after this surgery is quite higher.

Accurate models to predict cancer recurrence after radical prostatectomy for clinically loca-
lized prostate patients are important for the rational application of adjuvant therapy and patient
counseling. Previous studies by Kattan et al. (1999) and Stephenson et al. (2005) indicate that
some individual patient characteristics such as the PSA value before surgery, biopsy Gleason sum,
extracapsular extension, surgical margins, seminal vesicle invasion, lymph node involvement, neo-
adjuvant hormone, experience of the surgeon, year of the surgery, among others variables, are very
important to predict the risk of prostate cancer recurrence after open radical prostatectomy. Patient
follow-up was conducted according to accepted clinical practice, and prostate cancer recurrence is
defined as a PSA level > 0.4ng/mL.

For the first time, we propose a log-beta Weibull (LBW) regression model to predict the t
months biochemical recurrence free probability after radical prostatectomy in terms of highly sig-
nificant clinical and pathologic variables associated with disease recurrence after surgery. The
study cohort comprises 1324 patients with clinically localized prostate cancer treated by open ra-
dical prostatectomy between 1987 and 2003. Patient data were obtained from the Cleveland Clinic
from a single surgeon. Patients with clinical stage T1a or T1b disease, who received neoadjuvant
therapy, adjuvant therapy or who had missing data for prostate specific antigen were excluded. All
information was obtained with appropriate Institutional Review Board waivers.
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In this article, we propose a location-scale regression model based on the LBW distribution,
referred to as the LBW regression model, which is a feasible alternative for modeling the four
existing types of failure rate functions. Some inferential issues were carried out using the asymptotic
distribution of the maximum likelihood estimators (MLEs). The sections are organized as follows.
In Section 2, we define the LBW distribution. Mathematical properties of this distribution are
investigate in Section 3. In Section 4, we obtain the order statistics. We propose a LBW regression
model for censored data and discuss inferential issues in Section 5. In Section 6, a prostate cancer
data set is analyzed to show the flexibility, practical relevance and applicability of our regression
model. Section 7 ends with some concluding remarks.

2 The log-beta Weibull distribution

Most generalized Weibull distributions have been proposed in reliability literature to provide
better fitting of certain data sets than the traditional two and three parameter Weibull models.
The BW density function (Famoye et al., 2005) with four parameters a > 0, b > 0, c > 0 and λ > 0
is given by (for t > 0)

f(t) =
c

λc B(a, b)
tc−1 exp

{
− b

( t

λ

)c}[
1− exp

{
−

( t

λ

)c}]a−1
, (1)

where B(a, b) = [Γ(a)Γ(b)]/Γ(a + b) is the beta function and Γ(·) is the gamma function. Here, a
and b are two additional shape parameters to the Weibull distribution to model the skewness and
kurtosis of the data.

The important characteristic of the BW distribution is that it contains, as special sub-models,
the EE (Gupta and Kundu, 1999), EW (Mudholkar et al., 1995) and GR (Kundu and Raqab, 2005)
distributions, and some other distributions (see, for example, Cordeiro et al., 2011). The survival
and hazard rate functions corresponding to (1) are

S(t) = 1− 1
B(a, b)

∫ 1−exp{−(t/λ)c}

0
wa−1(1− w)b−1dw = 1− I1−exp{−(t/λ)c}(a, b)

and

h(t) =
c(1/λ)ctc−1exp{−b(t/λ)c}[1− exp{−(t/λ)c}]a−1

B(a, b)[1− I1−exp{−(t/λ)c}(a, b)]
,

respectively, where Iy(a, b) = B(a, b)−1
∫ y
0 wa−1 (1−w)b−1dw is the incomplete beta function ratio.

Let T be a random variable having the BW density function (1). We study the mathematical
properties of the LBW distribution defined by the random variable Y = log(T ). The density
function of Y , parameterized in terms of σ = c−1 and µ = log(λ), can be expressed as

f(y; a, b, σ, µ) =
1

σB(a, b)
exp

{(y − µ

σ

)
− b exp

(y − µ

σ

)}{
1− exp

[
− exp

(y − µ

σ

)]}a−1
, (2)
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where −∞ < y < ∞, σ > 0 and −∞ < µ < ∞. We refer to the new model (2) as the LBW
distribution, say Y ∼ LBW(µ, σ, a, b), where µ is a location parameter, σ is a dispersion parameter
and a and b are shape parameters. The following results holds

if T ∼ BW(λ, a, b, c) then Y = log(T ) ∼ LBW(µ, σ, a, b).

We emphasize that the LBW distribution could also be called the beta extreme value (BEV)
distribution, since they are identical. The survival function corresponding to (2) is

S(y) = 1− 1
B(a, b)

∫ 1−exp[− exp( y−µ
σ

)]

0
wa−1(1− w)b−1dw = 1− I1−exp[− exp( y−µ

σ
)](a, b). (3)

3 Properties of the LBW distribution

Here, we study some properties of the standardized LBW random variable defined by Z =
(Y − µ)/σ. The density function of Z reduces to

π(z; a, b) =
1

B(a, b)
exp[z − b exp(z)]

{
1− exp[− exp(z)]

}a−1
, −∞ < z < ∞. (4)

The associated cumulative distribution function (cdf) is FZ(z) = I1−exp[− exp(z)](a, b). The basic
exemplar a = b = 1 corresponds to the standard extreme-value distribution.

• Linear Combination

By expanding the binomial term in (4), we can write

π(z; a, b) =
1

B(a, b)

∞∑

j=0

(−1)j

(
a− 1

j

)
exp[z − (b + j) exp(z)]. (5)

The density function hb = b exp[z − b exp(z)] (for b > 0) gives the Kumaraswamy extreme
value (KumEV) distribution (Cordeiro and Castro, 2011) with parameters one and b. Its
associated cumulative function is Ha(x) = 1− [1− exp(−ez)]a. Thus,

π(z; a, b) =
∞∑

j=0

wj hb+j(z),

where the coefficients are

wj =
(−1)j

(
a−1

j

)

(b + j)B(a, b)
.

So, the LBW density function can be expressed as a linear combination of KumEV densities.
For a = 1, the LBW distribution reduces to the KumEV distribution with parameters one
and b. For b = 1, it becomes the log exponentiated Weibull, which is a new model defined
here. The LBW random variable Z can be generated directly from the beta variate V with
parameters a > 0 and b > 0 by Z = log[− log(1− V )].
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• Moments

The sth ordinary moment of the LBW distribution (4) is

µ′s = E(Zs) =
1

B(a, b)

∫ ∞

−∞
zs exp[z − b exp(z)]

{
1− exp[− exp(z)]

}a−1
dz.

By expanding the binomial term and setting w = ez, we obtain

µ′s =
1

B(a, b)

∞∑

j=0

(
a− 1

j

)
(−1)j

∫ ∞

0
log(w)s exp[−(b + j)w]dw.

The above integral can be calculated from Prudnikov et al. (1986, Volume 1, equation
2.6.21.1) as

I(s, j) =
(

∂

∂p

)s [
(b + j)−p Γ(p)

] ∣∣∣∣
p=1

and then

µ′s =
1

B(a, b)

∞∑

j=0

(−1)j

(
a− 1

j

)
I(s, j). (6)

Equation (6) gives the moments of the LBW distribution. The skewness and kurtosis measures
can be calculated from the ordinary moments using well-known relationships. These measures
are controlled mainly by the parameters a and b. Plots of the skewness and kurtosis for
selected values of b as function of a, and for selected values of a as function of b, for µ = 0 and
σ = 1, are shown in Figures 1 and 2, respectively. These plots reveal that the skewness for
fixed b (a), as function of a (b) decreases and then increases (decreases), whereas the kurtosis
for fixed b (a) as function of a (b) decreases, increases and then decreases (decreases and then
increases).

• Moment Generating Function

The moment generating function (mgf) of Z, say M(t) = E(et Z), follows from (4) as

M(t) =
1

B(a, b)

∞∑

j=0

(−1)j

(
a− 1

j

) ∫ ∞

0
wt exp[−(b + j)w]dw

and then

M(t) =
Γ(t + 1)
B(a, b)

∞∑

j=0

(−1)j

(
a− 1

j

)
(b + j)−(t+1). (7)

Clearly, the moments (6) can be obtained from (7) by simple differentiation.
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Figure 1: Skewness of the LBW distribution. (a) Function of a for some values of b. (b) Function
of b for some values of a.

• Quantile Function
We now give an expansion for the quantile function q = F−1(p) (given p) of the LBW
distribution. First, we have p = F (q) = Is(a, b), where s = 1− exp[− exp(q)]. It is possible to
obtain s as function of p from some expansions for the inverse of the beta incomplete function
s = I−1

p (a, b). One of them can be found in Wolfram website1 as

s = I−1
p (a, b) = w +

b− 1
a + 1

w2 +
(b− 1)(a2 + 3ba− a + 5b− 4)

2(a + 1)2(a + 2)
w3

+
(b− 1)[a4 + (6b− 1)a3 + (b + 2)(8b− 5)a2 + (33b2 − 30b + 4)a + b(31b− 47) + 18]

3(a + 1)3(a + 2)(a + 3)
w4 + O(p5/a),

where w = [a pB(a, b)]1/a for a > 0. Hence, q = log[− log(1 − s)] and the above expansion
defines the LBW quantile function.

1http://functions.wolfram.com/06.23.06.0004.01
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Figure 2: Kurtosis of the LBW distribution. (a) Function of a for some values of b. (b) Function
of b for some values of a..

• Mean Deviations

The amount of scatter in Z is evidently measured to some extent by the totality of deviations
from the mean µ′1 and median m. These are known as the mean deviations about the mean
and the median – defined by

δ1(Z) =
∫ ∞

−∞
|x− µ|π(z; a, b)dz and δ2(Z) =

∫ ∞

−∞
|x−m|π(z; a, b)dz,

respectively. From (6) with s = 1, we obtain

µ′1 = E(Z) =
1

B(a, b)

∞∑

j=0

(−1)j+1
(
a−1

j

)

(b + j)
[γ + log(b + j)],

where γ is Euler’s constant. The median m is calculated from the nonlinear equation

7



I1−exp[− exp(m)](a, b) = 1/2. The measures δ1(Z) and δ2(Z) can be expressed as

δ1(Z) = 2µ′1[FZ(µ′1)− 1] + 2T (µ′1) and δ2(Z) = 2T (m)− µ′1,

where T (q) =
∫∞
q z π(z; a, b)dz. We obtain T (q) as

T (q) =
1

B(a, b)

∫ ∞

q
z exp[z − b exp(z)]

{
1− exp[− exp(z)]

}a−1

=
1

B(a, b)

∞∑

j=0

(−1)j

(
a− 1

j

) ∫ ∞

eq
log(w) exp[−(b + j)w]dw.

For b > 0 and p > 0, using a result in Prudnikov et al. (1986, Volume 1, equation 1.6.10.3),
namely

K(p, a) =
∫ ∞

p
log(x) e−bxdx = b−1 [e−bp log(p)− Ei(−bp)],

where Ei(x) =
∫ x
−∞ t−1 etdt is the exponential integral, we obtain

T (q) =
1

B(a, b)

∞∑

j=0

(−1)j
(
a−1

j

)

(b + j)
[q e−(b+j)eq − Ei(−(b + j)eq)].

This equation for T (q) can be used to determine Bonferroni and Lorenz curves that have
applications in economics to study income and poverty, reliability, demography, insurance
and medicine and other fields. They are defined by

B(p) =
µ′1 − T (q)

pµ′1
and L(p) =

µ′1 − T (q)
µ′1

,

respectively, where q = F−1(p) can be calculated for given p from the quantile function.

4 Order Statistics

Order statistics make their appearance in many areas of statistical theory and practice. The
density fi:n(x) of the ith order statistic (Zi:n) for i = 1, . . . , n from i.i.d. LBW random variables
Z1, . . . , Zn is simply given by

fi:n(z) =
π(z; a, b)

B(i, n− i + 1)

n−i∑

j=0

(−1)j

(
n− i

j

)
I1−exp[− exp(z)](a, b)i+j−1. (8)
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We now obtain an expansion for the density function of the LBW order statistics. First, we use
the incomplete beta function expansion for b > 0 real non-integer

I1−exp[− exp(z)](a, b) =
1

B(a, b)

∞∑

m=0

(1− b)m {1− exp[− exp(z)]}a+m

(a + m) m!
,

where (f)k = Γ(f + k)/Γ(f) is the ascending factorial. We have

I1−exp[− exp(z)](a, b) =
∞∑

k=0

dk exp[−k exp(z)], (9)

where the coefficients dk (for k = 0, 1, . . .) are

dk =
(−1)k

B(a, b)

∞∑

m=0

(1− b)m

(
a+m

k

)

(a + m) m!
.

Using the identity
(∑∞

k=0 ak xk
)n =

∑∞
j=0 cn,k xk for n positive integer (see Gradshteyn and

Ryzhik, 2000) in I1−exp[− exp(z)](a, b)i+j−1, we readily obtain

I1−exp[− exp(z)](a, b)i+j−1 =
∞∑

k=0

ci+j−1,k exp[−k exp(z)], (10)

where ci+j−1,0 = di+j−1
0 and, for k = 1, 2, . . .,

ci+j−1,k = (k d0)−1
k∑

r=1

[(i + j)r − k] di ci+j−1,k−r. (11)

Substituting (5) and (10) in equation (8), we have

fi:n(z) =
∞∑

m,k=0

(−1)m

(
a− 1

m

)
vk exp[z − (b + m + k) exp(z)], (12)

where

vk =

∑n−i
j=0(−1)j

(
n−i

j

)
ci+j−1,k

B(i, n− i + 1)B(a, b)
.

The moments, mgf, mean deviations of the LBW order statistics are easily obtained from (12) using
the same calculations for those quantities of the LBW distribution. For example, the sth ordinary
moment of Zi:n is expressed as

E(Xs
i:n) =

∞∑

m,k=0

(−1)m

(
a− 1

m

)
vk I(s,m + k),

where I(s,m + k) is defined just before (6).
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5 The log-beta Weibull regression model

In many practical applications, the lifetimes are affected by explanatory variables such as the
cholesterol level, blood pressure, weight and many others. Parametric models to estimate univariate
survival functions and for censored data regression problems are widely used. A parametric model
that provides a good fit to lifetime data tends to yield more precise estimates of the quantities of
interest. Based on the LBW density function, we propose a linear location-scale regression model
linking the response variable yi and the explanatory variable vector xT

i = (xi1, . . . , xip) as follows

yi = xT
i β + σzi, i = 1, . . . , n, (13)

where the random error zi has density function (4), β = (β1, . . . , βp)T , σ > 0, a > 0 and b > 0
are unknown parameters. The parameter µi = xT

i β is the location of yi. The location parameter
vector µ = (µ1, . . . , µn)T is represented by a linear model µ = Xβ, where X = (x1, . . . ,xn)T is
a known model matrix. The LBW model (13) opens new possibilities for fitting many different
types of data. It contains as special sub-models the following well-known regression models. For
a = b = 1, we obtain the classical Weibull regression model (see, Lawless, 2003). If σ = 1 and
σ = 0.5, in addition to a = b = 1, it coincides with the exponential and Rayleigh regression models,
respectively. For b = 1, it reduces to the log-exponentiated Weibull regression model (Cancho et
al., 1999, 2009, Ortega et al., 2006 and Hashimoto et al., 2010). If σ = 1, in addition to b = 1, the
LBW model yields the log-exponentiated exponential regression. If σ = 0.5, in addition to b = 1,
it becomes the log-generalized Rayleigh regression model. For σ = 1, we have a new model called
the log-beta exponential regression model.

Consider a sample (y1,x1), . . . , (yn,xn) of n independent observations, where each random
response is defined by yi = min{log(ti), log(ci)}. We assume non-informative censoring such that
the observed lifetimes and censoring times are independent. Let F and C be the sets of individuals
for which yi is the log-lifetime and log-censoring, respectively. The log-likelihood function for
the vector of parameters θ = (a, b, σ,βT )T from model (13) has the form l(θ) =

∑
i∈F

log[f(yi)] +
∑
i∈C

log[S(yi)], where f(yi) is the density function (2) and S(yi) is the survival function (3) of Yi.

The log-likelihood function for θ reduces to

l(θ) = −r log
{

log(σ) + log[B(a, b)]
}

+
∑

i∈F

zi − b
∑

i∈F

exp(zi)

+ (a− 1)
∑

i∈F

log
{
1− exp

[− exp(zi)
]}

+
∑

i∈C

log
{
1− I1−exp[− exp(zi)](a, b)

}
, (14)

where r is the number of uncensored observations (failures) and zi = (yi − xT
i β)/σ.

The MLE θ̂ of the vector θ of unknown parameters can be calculated by maximizing the log-
likelihood (14). We use the subroutine NLMixed in SAS to calculate θ̂. Initial values for σ and
β can be taken from the fit of the log-Weibull (LW) regression model with a = b = 1. The fitted
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LBW model gives the estimated survival function of Y for any individual with explanatory vector
x

S(y; â, b̂, σ̂, β̂
T
) = 1− I

1−exp

[
−exp

(
y−xT β̂

σ̂

)](â, b̂). (15)

The invariance property of the MLEs yields the survival function for T = exp(Y )

S(t; â, b̂, ĉ, λ̂) = 1− I1−exp{−(t/λ̂)ĉ}(â, b̂), (16)

where ĉ = 1/σ̂ and λ̂ = exp(xT β̂).
Under conditions that are fulfilled for the parameter vector θ in the interior of the parameter

space but not on the boundary, the asymptotic distribution of
√

n(θ̂ − θ) is multivariate normal
Np+3(0,K(θ)−1), where K(θ) is the information matrix. The asymptotic covariance matrix K(θ)−1

of θ̂ can be approximated by the inverse of the (p + 3) × (p + 3) observed information matrix
−L̈(θ) = {Lr,s}, whose elements Lr,s are given in Appendix A.

The approximate multivariate normal distribution Np+3(0,−L̈(θ)−1) for θ̂ can be used in the
classical way to construct approximate confidence regions for some parameters in θ. We can use
the likelihood ratio (LR) statistic for comparing some special sub-models with the LBW model. We
consider the partition θ = (θT

1 , θT
2 )T , where θ1 is a subset of parameters of interest and θ2 is a subset

of remaining parameters. The LR statistic for testing the null hypothesis H0 : θ1 = θ
(0)
1 versus

the alternative hypothesis H1 : θ1 6= θ
(0)
1 is given by w = 2{`(θ̂) − `(θ̃)}, where θ̃ and θ̂ are the

estimates under the null and alternative hypotheses, respectively. The statistic w is asymptotically
(as n →∞) distributed as χ2

k, where k is the dimension of the subset θ1 of parameters of interest.

6 Application: Prostate cancer recurrence data

In this section, we develop an application of the LBW regression model to a prostate cancer
data. The study cohort comprises 1324 patients with clinically localized prostate cancer treated by
open radical prostatectomy between 1987 and 2003. Patient data were obtained from the Cleveland
Clinic from a single surgeon. The data consist of the random response variable given by the number
of months (yi) without detectable disease after prostatectomy. Uncensored observations correspond
to patients having cancer recurrent time computed. Censored observations correspond to patients
who were not observed to have cancer recurrence at the time the data were collected. The numbers
of censored and uncensored observations are 1096 and 228, respectively, of the total of 1324 patients.
The following explanatory variables were associated with each patient (for i = 1, . . . , 1324):

• δi : is the event indicator where 1 represents the event and 0 is censored;

• neoadi : is whether the patient received neo-adjuvant hormones, i.e., treated with hormone
therapy prior to radical prostatectomy (yes=1 and no=0);
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• psai : is the PSA value (in ng/mL) from the laboratory report before receiving prostatectomy;

• ece ti : is the extracapsular extension on path report (yes=1, no=0);

• svi ti : is the seminal vesicle invasion on path report (yes=1, no=0);

• pgx : is the pathology report Gleason sum 4-7, 7, 8-10. We construct two dummy random
variables: (pgx t1: [4,7) versus 7 and pgx t2: [4,7) versus [8,10]);

• lni ti : is the lymph node involvement on path report (neg=1, pos=0);

• sm ti : is surgical margin status (yes=1, no=0).

Now, we present results by fitting the model

yi = β0 + β1 neoadi + β2 psai + β3 ece ti + β4 svi ti

+β5 lni ti + β6 pgx t1i + β7 pgx t2i + β8 sm ti + σzi,

where the dependent variable yi follows the LBW density function (2) for i = 1, . . . , 1324. The
MLEs of the model parameters are calculated using the procedure NLMixed in SAS. Iterative
maximization of the logarithm of the likelihood function (14) starts with initial values for β and σ
taken from the fit of the LW regression model with a = b = 1.

Table 1 lists the MLEs of the parameters for the LBW and LW regression models fitted to the
current data. The LR statistic for testing the hypotheses H0: a = b = 1 versus H1: H0 is not
true, i.e., to compare the LW and LBW regression models, is w = 2{−716.45− (−730.80)} = 28.70
(p-value < 0.0001), which gives favorable indications toward to the LBW model. The LBW model
involves two extra parameters which gives it more flexibility to fit the data. The fitted LBW
regression model indicates that all explanatory variables are significant at 5%.

Cox (1972) proposed a very useful regression model for analyzing censoring failure times, where
the random variable of interest represents failure time and the failures times are assumed identically
distributed in some specified form. He noted that if the proportional hazards assumption holds
(or, is assumed to hold) then it is possible to estimate the effect parameter(s) without any conside-
ration of the hazard function (non-parametric approach). This approach to survival data is called
proportional hazards model. The Cox model may be specialized if a reason exists to assume that
the baseline hazard follows a parametric form. In this case, the baseline hazard can be replaced by
a parametric density. Typically, we can then maximize the full likelihood which greatly simplifies
model-fitting and provides interpretability at the cost of flexibility.

Let R(ti) be the set of individuals at risk at time ti. Conditionally on the risk sets, the required
likelihood L(β) can be expressed as

L(β) =
n∏

i=1

[
exp(xT

i β)∑
j∈R(ti)

exp(xT
i β)

]δi

, (17)
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Table 1: MLEs of the parameters for the LBW and LW regression models fitted to the recurrence
prostate cancer data.

LBW Regression Model LW Regression Model
θ Estimate S.E p-value 95%CI Estimate S.E p-value 95%CI
a 267.08 0.11 - (266.85; 267.30) 1 - - -
b 21.63 0.12 - (21.40; 21.86) 1 - - -
σ 24.12 1.21 - (21.74; 26.50) 1.24 0.07 - (1.11; 1.37)
β0 -16.00 1.04 <0.0001 (-18.05; -13.96) 7.40 0.42 <0.0001 (6.56; 8.23)
β1 -0.59 0.23 0.0085 (-1.04; -0.15) -0.72 0.21 0.0006 (-1.13; -0.31)
β2 -0.02 0.007 0.0017 (-0.04; -0.01) -0.01 0.004 0.0040 (-0.02; -0.003)
β3 -0.84 0.20 <0.0001 (-1.23; -0.45) -0.93 0.21 <0.0001 (-1.35; -0.51)
β4 -1.01 0.27 0.0002 (-1.54; -0.48) -0.76 0.23 0.0013 (-1.22; -0.30)
β5 0.67 0.25 0.0075 (0.18; 1.16) 0.67 0.29 0.0227 (0.09; 1.25)
β6 -0.90 0.19 <0.0001 (-1.27; -0.52) -1.01 0.23 <0.0001 (-1.46; -0.56)
β7 -2.09 0.30 <0.0001 (-2.68; -1.51) -2.00 0.30 <0.0001 (-2.59; -1.42)
β8 -1.09 0.18 <0.0001 (-1.46; -0.74) -0.88 0.19 <0.0001 (-1.25; -0.51)

where δi is the censoring indicator.
The MLE β̂ of β can be calculated by maximizing the likelihood function (17) using the matrix

programming language SAS. Table 2 provides the estimates, corresponding standard errors and
p-values for the fitted Cox regression model. All explanatory variables are marginally significant at
the 5% significance level. For a prostate cancer patient with explanatory vector x, the recurrence
free probability, say P (T ≥ t; β,x) = S(t; β,x), can be predicted from Cox regression model by

S(t; β̂,x) =
[
Ŝ0(t)

]exp(xT ˆβ)
, (18)

where Ŝ0(t) = exp
[− Λ̂0(T )

]
, Λ̂0(T ) =

∑
j:tj<t

[
dj∑

l∈Rj

exp(xT
l

ˆβ)

]
and dj is the number of failures in tj .

Further, Table 3 lists the Akaike Information Criterion (AIC), Bayesian Information Criterion
(BIC) and the global deviance (GD) given by −2 log{Lβ̂}, to compare the LBW, LW and Cox
proportional hazard regression models. The LBW regression model outperforms the other models
irrespective of the criteria and it can be used effectively in the analysis of these data. So, the
proposed model is a great alternative to model survival data.

In order to assess if the model is appropriate, we fit the LBW and LW regression models for
each explanatory variable. In Figures 3a,b,c,d and 4a,b,c, we plot the empirical survival function
and the estimated survival function (16) for each explanatory variable. We conclude that the LBW
regression model provides a good fit to these data.

Prediction
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Table 2: Estimates for the Cox regression model fitted to the recurrence prostate cancer data.

Parameter Estimate SE p-value 95% C.I.
β1 0.558 0.168 0.0009 (0.228, 0.887)
β2 0.008 0.003 0.0122 (0.002, 0.014)
β3 0.755 0.167 <.0001 (0.428, 1.082)
β4 0.618 0.186 0.0009 (0.253, 0.982)
β5 -0.539 0.239 0.0240 (-1.007, -0.071)
β6 0.797 0.183 <.0001 (0.439, 1.155)
β7 1.598 0.237 <.0001 (1.134, 2.062)
β8 0.703 0.147 <.0001 (0.419, 0.986)

Table 3: AIC, BIC and GD statistics for comparing the LBW and LW models.

Model AIC BIC GD
LBW 1456.9 1519.1 1432.9
LW 1481.6 1533.5 1461.6
Cox proportional hazards 2742.4 2742.4 2726.4

For a prostate cancer patient treated by open radical prostatectomy with explanatory vector
x, we can estimate the recurrence free probability, say P (T ≥ t; a, b, σ,β,x) = S(t; a, b, σ,β,x), by
using (16). Evidently, the recurrence free probability converges to zero when the linear predictor
µi = xT

i β tends to −∞ and converges to one when the linear predictor goes to +∞. In other
words, the recurrence for patients with clinically localized prostate cancer treated by open radical
prostatectomy for a fixing time t after the surgery, approaches one (zero) when the linear predictor
µ increases to a very large negative (positive) number.

We can use (16) to predict the recurrence free probability S(t;x) = S(t; â, b̂, σ̂, β̂,x) of prostate
cancer at t months. As an illustration, we consider four hypothetical patients A,B,C and D who
underwent radical prostatectomy having fixed values for the explanatory variables given in Table
4. In Figure 5, we provide the plots of the estimated recurrence free probabilities for these four
patients.

7 Concluding Remarks

We introduce the called log-beta Weibull (LBW) distribution whose hazard rate function ac-
commodates four types of shape forms, namely increasing, decreasing, bathtub and unimodal. We
derive expressions for its moments, moment generating function, quantile function, mean devia-
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Figure 3: Kaplan-Meier curves stratified by explanatory variable and estimated survival functions to
the recurrence prostate cancer data: (a) neoad explanatory variable. (b) ecet explanatory variable.
(c) svit explanatory variable. (d) lnit explanatory variable.

tions and order statistics. Based on this new distribution, we propose a LBW regression model very
suitable for modeling censored and uncensored lifetime data. We provide an application to predict

15



(a) (b)

0 50 100 150

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Months from radical prostatectomy

R
ec

ur
re

nc
e 

fr
ee

 p
ro

ba
bi

lit
y

Kaplan−Meier
BW Regression model (pgx t1=0)
BW Regression model (pgx t1=1)
Weibull Regression model (pgx t1=0)
Weibull Regression model (pgx t1=1)

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Months from radical prostatectomy
R

ec
ur

re
nc

e 
fr

ee
 p

ro
ba

bi
lit

y

Kaplan−Meier
BW Regression model (pgx t2=0)
BW Regression model (pgx t2=1)
Weibull Regression model (pgx t2=0)
Weibull Regression model (pgx t2=1)

(c)

0 50 100 150

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Months from radical prostatectomy

R
ec

ur
re

nc
e 

fr
ee

 p
ro

ba
bi

lit
y

Kaplan−Meier
BW Regression model (sm t=0)
BW Regression model (sm t=1)
Weibull Regression model (sm t=0)
Weibull Regression model (sm t=1)

Figure 4: Kaplan-Meier curves stratified by explanatory variable and estimated survival functions
to the recurrence prostate cancer data: (a) pgxt1 explanatory variable. (b) pgxt2 explanatory
variable. (c) smt explanatory variable.

cure of prostate cancer. The new regression model allows to perform goodness of fit tests for some
known regression models as special cases. Hence, the proposed regression model serves as a good
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Table 4: Recurrence free probability under the BW regression model.

Patient neoad psa ece t svi t lni t pgx t1 pgx t2 sm t

A 0 5 1 0 1 1 0 1
B 0 25 1 0 1 1 0 1
C 1 30 0 1 0 0 1 0
D 1 60 0 1 0 0 1 0
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Figure 5: Estimated recurrence free probability curves for patients A, B, C and D.

alternative for lifetime data analysis. Further, the new regression model is much more flexible than
the exponentiated Weibull, Weibull and generalized Rayleigh sub-models. In one application to
real prostate cancer data, we show that the LBW model can produce better fit than its sub-models.
We compare three fitted models using the AIC, BIC and global deviance criterions to give evidence
that the LBW regression model outperforms the other two models.
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Appendix A: Matrix of second derivatives −L̈(θ)

Here, we give the formulas to obtain the second-order partial derivatives of the log-likelihood
function. After some algebraic manipulations, we obtain

Laa =
∑

i∈F

[
ψ
′
(a + b)− ψ

′
(a)

]
−

∑

i∈C

{
v−2
i

(
[İG(zi)(a, b)]a

)2
+

v−1
i

[
[ψ(a)− ψ(a + b)]2

B(a, b)
− ψ

′
(a)− ψ

′
(a + b)

B(a, b)
+ M(a)

]}
,

Lab =
∑

i∈F

ψ
′
(a + b)−

∑

i∈C

{
v−2
i [İG(zi)(a, b)]a[İG(zi)(a, b)]b+

v−1
i

[
[ψ(a)− ψ(a + b)][ψ(b)− ψ(a + b)]

B(a, b)
+

ψ
′
(a + b)

B(a, b)
+ M(ab)

]}
,

Laσ = −σ−1
∑

i∈F

zioi −
∑

i∈C

{
v−2
i [İG(zi)(a, b)]a[İG(zi)(a, b)]σ − v−1

i ziqi log[G(zi)]
}

,

Laβj = −σ−1
∑

i∈F

xijoi −
∑

i∈C

{
v−2
i [İG(zi)(a, b)]a[İG(zi)(a, b)]βj − v−1

i xijqi log[G(zi)]
}

,

Lbb =
∑

i∈F

[
ψ
′
(a + b)− ψ

′
(b)

]
−

∑

i∈C

{
v−2
i

(
[İG(zi)(a, b)]b

)2
+

v−1
i

[
[ψ(b)− ψ(a + b)]2

B(a, b)
− ψ

′
(b)− ψ

′
(a + b)

B(a, b)
+ M(b)

]}
,

Lbσ = σ−1
∑

i∈F

zi exp(zi)−
∑

i∈C

{
v−2
i [İG(zi)(a, b)]b[İG(zi)(a, b)]σ − v−1

i ziqi exp(zi)
}

,

Lbβj
= σ−1

∑

i∈F

xij exp(zi)−
∑

i∈C

{
v−2
i [İG(zi)(a, b)]b[İG(zi)(a, b)]βj

− v−1
i xijqi exp(zi)

}
,
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Lσσ =
∑

i∈F

{
σ−2(1 + 2zi)− bσ−2zi exp(zi) + ziui [2 + zi(1− exp(zi))− oi]

}−

∑

i∈C

{
v−2
i

(
[İG(zi)(a, b)]σ

)2
+ v−1

i zidi

[
zi(b exp(zi)− 1)− σ2ziui − 2

]}
,

Lσβj =
∑

i∈F

{
σ−2xij − bσ−2xij exp(zi)(1 + zi) + xijui [1 + zi(1− exp(zi))− zioi]

}−
∑

i∈C

{
v−2
i [İG(zi)(a, b)]σ[İG(zi)(a, b)]βj + v−1

i xijdi

[
zi(b exp(zi)− 1)− σ2ziui − 1

]}

and

Lβjβs = −
∑

i∈F

{
bσ−2xijxis exp(zi)− xijxisui [1− exp(zi)− oi]

}−
∑

i∈C

{
v−2
i [İG(zi)(a, b)]βj [İG(zi)(a, b)]βs + v−1

i xijxisdi

[
b exp(zi)− 1− σ2ui

]}
,

where

zi = (yi − xT
i β)/σ, G(zi) = 1− exp[− exp(z)],

vi = 1− IG(zi)(a, b), oi = [G(zi)]−1 exp[zi − exp(zi)],

M(a) =
∫ G(zi)

0
wa−1(1− w)b−1[log(w)]2dw, M(b) =

∫ G(zi)

0
wa−1(1− w)b−1[log(1− w)]2dw,

M(ab) =
∫ G(zi)

0
wa−1(1− w)b−1 log(w) log(1− w)dw, qi = σ−1[G(zi)]a−1 exp[zi − b exp(zi)],

ui = σ−2[G(zi)]−1(a− 1) exp[zi − exp(zi)], di = σ−2[G(zi)]a−1 exp[zi − b exp(zi)],

[İG(zi)(a, b)]a = [ψ(a + b)− ψ(a)]/B(a, b) +
∫ G(zi)

0
wa−1(1− w)b−1 log(w)dw,

[İG(zi)(a, b)]b = [ψ(a + b)− ψ(b)]/B(a, b) +
∫ G(zi)

0
wa−1(1− w)b−1 log(1− w)dw,

[İG(zi)(a, b)]σ = −σ−1zi[G(zi)]a−1 exp[zi − exp(zi)]

and

[İG(zi)(a, b)]βj
= −σ−1xij [G(zi)]a−1 exp[zi − exp(zi)].
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