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For any continuous baseline G distribution [G.M. Cordeiro and M. de Castro, A new family of generalized
distributions, J. Statist. Comput. Simul. 81 (2011), pp. 883–898], proposed a new generalized distribution
(denoted here with the prefix ‘Kw-G’(Kumaraswamy-G)) with two extra positive parameters. They studied
some of its mathematical properties and presented special sub-models.We derive a simple representation for
the Kw-G density function as a linear combination of exponentiated-G distributions. Some new distributions
are proposed as sub-models of this family, for example, the Kw-Chen [Z.A. Chen, A new two-parameter
lifetime distribution with bathtub shape or increasing failure rate function, Statist. Probab. Lett. 49 (2000),
pp. 155–161], Kw-XTG [M. Xie, Y. Tang, and T.N. Goh, A modified Weibull extension with bathtub
failure rate function, Reliab. Eng. System Safety 76 (2002), pp. 279–285] and Kw-Flexible Weibull [M.
Bebbington, C.D. Lai, and R. Zitikis, A flexible Weibull extension, Reliab. Eng. System Safety 92 (2007),
pp. 719–726]. New properties of the Kw-G distribution are derived which include asymptotes, shapes,
moments, moment generating function, mean deviations, Bonferroni and Lorenz curves, reliability, Rényi
entropy and Shannon entropy. New properties of the order statistics are investigated. We discuss the
estimation of the parameters by maximum likelihood. We provide two applications to real data sets and
discuss a bivariate extension of the Kw-G distribution.

Keywords: estimation; exponential distribution; extreme values; Kw-G distribution; mean deviation;
moment generating function

1. Introduction

Kumaraswamy [1] introduced a two-parameter distribution on (0, 1), the so-called Kumaraswamy
distribution, with cumulative distribution function (cdf) given by

G(x; α, β) = 1 − (1 − xα)β, x ∈ (0, 1), (1)

where α > 0 and β > 0 are shape parameters. Equation (1) compares extremely favourably in
terms of simplicity with the beta cumulative function. The probability density function (pdf)
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2 S. Nadarajah et al.

corresponding to Equation (1) is

g(x; α, β) = αβxα−1(1 − xα)β−1, x ∈ (0, 1).

For a detailed survey of the Kumaraswamy distribution the reader is referred to [2].
For any baseline cumulative function G(x), Cordeiro and de Castro [3] proposed the

Kumaraswamy-G (‘Kw-G’ for short) distribution with pdf f (x) and cdf F(x) given by

f (x) = abg(x)Ga−1(x){1 − Ga(x)}b−1 (2)

and

F(x) = 1 − {1 − Ga(x)}b, (3)

respectively, where g(x) = dG(x)/dx. The Kw-G distribution has the same parameters of the G
distribution plus two additional shape parameters a > 0 and b > 0. The associated hazard rate
function (hrf) is

τ(x) = abg(x)Ga−1(x)

1 − Ga(x)
. (4)

If X is a random variable with density function (2), then we write X ∼ Kw-G(a, b). Each new Kw-
G distribution can be obtained from a specified G distribution. For a = b = 1, the G distribution
is a special sub-model of the Kw-G distribution with a continuous crossover towards cases with
different shapes (e.g., a particular combination of skewness and kurtosis). One major benefit of
the Kw-G family of densities (2) is its ability of fitting skewed data that cannot be properly fitted
by existing distributions. Further, this family allows for greater flexibility of its tails and can be
widely applied in many areas of engineering and biology.

First, we present two examples of the Kw-G distributions. The Kw-Weibull density function
(for x > 0), defined from the Weibull cdf G(x) = 1 − exp{−(βx)c} with parameters β > 0 and
c > 0, reduces to

f (x) = abcβcxc−1 exp{−(βx)c}[1 − exp{−(βx)c}]a−1{1 − [1 − exp{−(βx)c}]a}b−1.

For c = 1, we obtain as a special sub-model the Kw-exponential distribution. The Kw-Gumbel
density function, defined from the Gumbel cdf G(x) = 1 − exp{− exp(−(x − μ)/σ)} (for x ∈ R)
with location parameter μ > 0 and scale parameter σ > 0, is given by

f (x) = ab

σ
exp

{
x − μ

σ
− exp

(
x − μ

σ

)} [
1 − exp

{
− exp

(
−x − μ

σ

)}]a−1

×
{

1 −
[

1 − exp

{
− exp

(
−x − μ

σ

)}]a}b−1

.

Figures 1 and 2 provide some plots of the Kw-Weibull and Kw-Gumbel distributions, respectively.
Secondly, we propose three new distributions in the Kw-G family.

(1) The Kw-Chen density function is given by

f (x) = abλ1β1x
β1−1 exp(xβ1) exp{λ1[1 − exp(xβ1)]}[1 − exp{λ1[1 − exp(xβ1)]}]a−1

× {1 − (1 − exp{λ1[1 − exp(xβ1)]})a}b−1, (5)

where λ1 > 0 and β1 > 0. If X is a random variable with density function (5), then we
write X ∼ Kw-Chen(a, b, λ1, β1). For a = b = 1, it becomes the Chen distribution [4]. The
Kw-Chen survival function is

S(x) = [1 − (1 − exp{λ1[1 − exp(xβ1)]})a]b.
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Figure 1. Plots of the Kw-Weibull density function for selected parameter values.

(2) The new Kw-XTG density function has the form

f (x) = abλ2β2

(
x

α2

)β2−1

exp

{(
x

α2

)β2

+ λ2α2

[
1 − exp

((
x

α2

)β2
)]}

×
[

1 − exp

{
λ2α2

[
1 − exp

((
x

α2

)β2
)]}]a−1

×
{

1 −
(

1 − exp

{
λ2α2

[
1 − exp

((
x

α2

)β1
)]})a}b−1

, (6)

where λ2 > 0, α2 > 0 and β2 > 0. If X is a random variable with density (6), then we write
X ∼ Kw-XTG(a, b, λ2, α2, β2). For a = b = 1, it becomes the XTG distribution proposed
by Xie et al. [5]. The Kw-XTG survival function is

S(x) =
[

1 −
(

1 − exp

{
λ2α2

[
1 − exp

((
x

α2

)β2
)]})a]b

.
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4 S. Nadarajah et al.

Figure 2. Plots of the Kw-Gumbel density function for selected parameter values.

(3) The new Kw-flexible Weibull (Kw-FW) density function is given by

f (x) = ab

(
α3 + β3

x2

)
exp

(
α3x − β3

x

)
exp

{
− exp

(
α3x − β3

x

)}

×
[

1 − exp

{
− exp

(
α3x − β3

x

)}]a−1

×
{

1 −
(

1 − exp

{
− exp

(
α3x − β

x

)})a}b−1

, (7)

where α3 > 0 and β3 > 0. If X is a random variable with density (7), then we write X ∼
Kw-FW(a, b, α3, β3). If a = b = 1, then it becomes the flexible Weibull (FW) distribution
proposed by Bebbington et al. [6]. The Kw-FW survival function is

S(x) =
[

1 −
(

1 − exp

{
− exp

(
α3x − β3

x

)})a]b

.

Figures 3, 4 and 5 provide some plots of the Kw-Chen, Kw-XTG and Kw-Fw distributions,
respectively.
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Figure 3. Plots of the Kw-Chen density function for some parameters. (a) For λ1 = 0.5 and β1 = 3.2. (b) For λ = 0.5
and β1 = 3.2. (c) For a = 3.5, b = 2.5 and λ1 = 0.5.

A physical interpretation of the Kw-G distribution given by Equations (2) and (3) (for a and b

positive integers) is as follows. Consider that a system is formed by b independent components
and that each component is made up of a independent subcomponents. Suppose the system fails if
any of the b components fails and that each component fails if all of the a subcomponents fail. Let
Xj1, . . . , Xja denote the lifetimes of the subcomponents within the j th component, j = 1, . . . , b,
having a common cdf G(x). Let Xj denote the lifetime of the j th component, for j = 1, . . . , b,
and let X denote the lifetime of the entire system. Then, the cdf of X is

Pr(X ≤ x) = 1 − Pr(X1 > x, . . . , Xb > x) = 1 − Prb(X1 > x)

= 1 − {1 − Pr(X1 ≤ x)}b = 1 − {1 − Pr(X11 ≤ x, . . . , X1a ≤ x)}b
= 1 − {1 − Pra(X11 ≤ x)}b = 1 − {1 − Ga(x)}b.

So, it follows that the Kw-G distribution given by Equations (2) and (3) is precisely the time to
failure distribution of the entire system.

The rest of the article is organized as follows.A range of mathematical properties of Equation (2)
is considered in Sections 2–5. These include asymptotes and shapes, a simple representation for the
Kw-G density function, two methods for simulation, moments, moment generating function (mgf),
characteristic function, mean deviations about the mean and the median, Bonferroni and Lorenz
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6 S. Nadarajah et al.

Figure 4. Plots of the Kw-XTG density function for some parameters. (a) For λ2 = 0.01, α2 = 10 and β2 = 6. (b) For
λ2 = 0.01, α2 = 10 and β2 = 6. (c) For a = 0.07, b = 0.6, λ2 = 0.01 and β2 = 6.

curves, asymptotic distributions of the extreme values, Rénvy entropy, Shannon entropy, relia-
bility and some properties of the order statistics. A relation with the so-called beta-G distribution
is explored in Section 6. Estimation by the method of maximum likelihood—including the case of
censoring and the Fisher information matrix—is presented in Section 7. Applications to two real
data sets are illustrated in Section 8. A multivariate generalization of (2) is discussed in Section 9.
Finally, some conclusions are noted in Section 10.

2. Asymptotes, shapes and simulation

2.1. Asymptotes and shapes

The asymptotes of Equations (2)–(4) as x → 0, ∞ are given by

f (x) ∼ abg(x)Ga−1(x) as x → 0, f (x) ∼ abg(x){1 − Ga(x)}b−1 as x → ∞,

F (x) ∼ aGa(x) as x → 0, 1 − F(x) ∼ {1 − Ga(x)}b as x → ∞,

τ (x) ∼ abg(x)Ga−1(x) as x → 0, τ (x) ∼ abg(x)

1 − Ga(x)
as x → ∞.
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Figure 5. Plots of the Kw-FW density function for the indicated parameter. (a) For α3 = 0.5 and β3 = 3.2. (b) For
α3 = 0.5 and β3 = 3.2. (c) For a = 3.5, b = 2.5 and λ1 = 0.5.

The shapes of the pdf (2) and the hrf (4) can be described analytically. The critical points of
the pdf are the roots of the equation:

g′(x)

g(x)
+ (a − 1)

g(x)

G(x)
= a(b − 1)

g(x)Ga−1(x)

1 − Ga(x)
. (8)

There may be more than one root to Equation (8). If x = x0 is a root of Equation (8), then it
corresponds to a local maximum, a local minimum or a point of inflexion depending on whether
λ(x0) < 0, λ(x0) > 0 or λ(x0) = 0, where

λ(x) = g(x)g′′(x) − (g′(x))2

g2(x)
+ (a − 1)

G(x)g′(x) − g2(x)

G2(x)

− a(b − 1)
Ga−2(x){(a − 1)g2(x) + G(x)g′(x)}

1 − Ga(x)
− a2(b − 1)

G2a−2(x)g2(x)

{1 − Ga(x)}2
.

The critical points of the hrf are the roots of the equation:

g′(x)

g(x)
+ (a − 1)

g(x)

G(x)
= −a

g(x)Ga−1(x)

1 − Ga(x)
. (9)
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8 S. Nadarajah et al.

There may be more than one root to Equation (9). If x = x0 is a root of Equation (9), then it
corresponds to a local maximum, a local minimum or a point of inflexion depending on whether
λ(x0) < 0, λ(x0) > 0 or λ(x0) = 0, where

λ(x) = g(x)g′′(x) − (g′(x))2

g2(x)
+ (a − 1)

G(x)g′(x) − g2(x)

G2(x)

− a
Ga−2(x){(a − 1)g2(x) + G(x)g′(x)}

1 − Ga(x)
− a2 G2a−2(x)g2(x)

{1 − Ga(x)}2
.

2.2. Simple representation

Some series expansions for Equations (2) and (3) can be derived using the concept of exponen-
tiated distributions. For an arbitrary baseline cdf G(x), a random variable is said to have the
exponentiated-G distribution with parameter a > 0, say X ∼ Exp-G(a), if its pdf and cdf are

ha(x) = ag(x)Ga−1(x) and Ha(x) = Ga(x),

respectively. The properties of exponentiated distributions have been studied by many authors in
recent years, see Mudholkar et al. [7], for exponentiated Weibull, Gupta et al. [8] for exponentiated
Pareto, Gupta and Kundu [9] for exponentiated exponential and Nadarajah and Gupta [10] for
exponentiated gamma distribution.

Expanding the binomial terms in Equations (2) and (3), the pdf and the cdf of the Kw-G
distribution can be expressed as

f (x) = a−1
∞∑

k=0

wk

(k + 1)
ha(k+1)(x) (10)

and

F(x) = 1 −
∞∑

k=0

(
b

k

)
(−1)kHka(x), (11)

where wk = (−1)kab
(
b−1
k

)
, ha(k+1)(x) and Hk a(x) are the pdf and cdf of the Exp-G(a(k + 1)) and

Exp-G(ka) distributions, respectively. So, the properties of the Kw-G distribution can be obtained
by knowing those of the exponentiated-G distribution, see, for example, Mudholkar et al. [7],
Gupta and Kundu [9], Nadarajah and Kotz [10], among others.

2.3. Simulation

We present two methods for simulation from the Kw-G distribution. The first uses the inversion
method. The quantile function corresponding to Equation (3) is directly obtained from the quantile
function associated with G(x) by

F−1(x) = G−1{[1 − (1 − x)1/b]1/a}. (12)

So, one can generate Kw-G variates by

X = G−1{[1 − (1 − U)1/b]1/a},
where U is a uniform variate on the unit interval [0, 1].
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Our second method for simulation from the Kw-G distribution is based on the rejection method.
It holds if a ≥ 1 and b ≥ 1. Define a constant M by

M = abb(a − 1)1−1/a(b − 1)b−1

(ab − 1)b−1/a
.

Then the following scheme holds for simulating Kw-G variates:

(1) simulate X = x from the pdf g;
(2) simulate Y = UMg(x), where U is a uniform variate on the unit interval [0, 1];
(3) accept X = x as a Kw-G variate if Y < f (x). If Y ≥ f (x) return to step 2.

3. Moments and moment generating function

3.1. Moments

From now on, let X ∼ Kw-G(a, b). Cordeiro and de Castro [3] derived explicit expressions for
the moments of X as linear functions of probability weighted moments of X. A first representation
for the nth moment of X can be obtained from Equation (10) as

E(Xn) = a−1
∞∑
i=0

wi

(i + 1)
E(Y n

i ),

where Yi ∼ Exp-G(a(i + 1)). Expressions for moments of several exponentiated distributions are
given by Nadarajah and Kotz [11] which can be used to produce E(Xn).

For b > 0 real non-integer, we can rewrite Equation (2) as

f (x) =
∞∑
i=0

wiG(x)a(i+1)−1g(x). (13)

If b is an integer, the index i in the previous sum stops at b − 1. A second representation for
E(Xn) follows from Equation (13) as

E(Xn) =
∞∑
i=0

wiτ(n, a(i + 1) − 1), (14)

where the integral τ(n, a) = ∫ ∞
−∞ xnG(x)ag(x) dx can be expressed in terms of the baseline

quantile function Q(x) = G−1(x) as

τ(n, a) =
∫ 1

0
Q(u)nua du. (15)

The ordinary moments of several Kw-G distributions can be calculated directly from Equa-
tions (14) and (15). For example, the moments of the Kw-exponential (with parameter λ > 0) and
Kw-Pareto, where G(x) = 1 − (1 + x)−ν and ν > 0, are

E(Xn) = n!λn

∞∑
i,j=0

(−1)n+j
(
a(i+1)−1

j

)
wi

(j + 1)n+1
,

E(Xn) =
∞∑

i,j=0

(−1)n+jwi

(
n

j

)
B(a(i + 1), 1 − jν−1),
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10 S. Nadarajah et al.

respectively, where B(·, ·) is the beta function. For the Kw-standard logistic, where G(x) =
{1 + exp(−x)}−1, we obtain from Prudnikov et al. [12, Section 2.6.13, Equation 4]

E(Xn) =
∞∑
i=0

wi

(
∂

∂t

)n

B(t + a(i + 1), 1 − t)|t=0.

The skewness and kurtosis measures can be computed from the ordinary moments using well-
known relationships. Plots of the skewness and kurtosis for some choices of the parameter b as
function of a, and for some choices of a as function of b are given below.

• The Kw-Chen distribution. For λ1 = 0.2 and β1 = 0.3, Figures 6 and 7 show that the skewness
curves decrease and increase with b (a fixed) and a (b fixed), respectively. The kurtosis curves
decrease with b (a fixed) and both decrease and increase with a (b fixed), respectively.

• The Kw-XTG distribution. For λ2 = 0.01, α2 = 1.5 and β2 = 0.05, Figures 8 and 9 show that
the skewness curves decrease and increase with b (a fixed) and decrease with a (b fixed),
respectively. The kurtosis curves decrease and increase with b (a fixed) and decrease with a (b
fixed), respectively.

• The Kw-FW distribution. For α3 = 0.01 and β3 = 0.0001, Figures 10 and 11 reveal that the
skewness curves decrease and increase with b (a fixed) and a (b fixed), respectively. The kurtosis
curves decrease and increase with b (a fixed) and a (b fixed), respectively.

Figure 6. Skewness and kurtosis of the Kw-Chen distribution as a function of b, for some values of a with λ1 = 0.2
and β1 = 0.3.

Figure 7. Skewness and kurtosis of the Kw-Chen distribution as a function of a, for some values of b with λ1 = 0.2
and β1 = 0.3.
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3.2. Moment generating function

Let X ∼ Kw-G(a, b). We provide four representations for the mgf M(t) = E[exp(tX)] of X.
Clearly, the first one is

M(t) =
∞∑

s=0

μ′
s

s! t s , (16)

Figure 8. Skewness and kurtosis of the Kw-XTG distribution as a function of b, for some values of a with λ2 = 0.01,
α2 = 1.5 and β2 = 0.05.

Figure 9. Skewness and kurtosis of the Kw-XTG distribution as a function of a, for some values of b with λ2 = 0.01,
α2 = 1.5 and β2 = 0.05.

Figure 10. Skewness and kurtosis of the Kw-FW distribution as a function of b, for some values of a with α3 = 0.01
and β3 = 0.0001.
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12 S. Nadarajah et al.

Figure 11. Skewness and kurtosis of the Kw-FW distribution as a function of a, for some values of b with α3 = 0.01
and β3 = 0.0001.

where μ′
s = E(Xs). Further, the second one comes from

M(t) = abE[exp(tX)Ga−1(X){1 − Ga(X)}b−1] = ab

∞∑
k=0

(
b − 1

k

)
(−1)kE

[
exp(tX)

U−[a(k+1)−1]

]
,

where U is a uniform random variable on the unit interval. Note that X and U are not independent.
A third representation for M(t) is obtained from (10)

M(t) = a−1
∞∑
i=0

wi

(i + 1)
Mi(t),

where Mi(t) is the mgf of Yi ∼ Exp-G(a(i + 1)). Hence, for several Kw-G distributions, M(t)

can be immediately determined from the mgf of the G distribution.
A fourth representation for M(t) can be derived from Equation (13) as

M(t) =
∞∑
i=0

wiρ(t, a(i + 1) − 1), (17)

where the function ρ(t, a) = ∫ ∞
−∞ exp(tx)G(x)ag(x) dx can be calculated from the baseline

quantile function Q(x) = G−1(x) by

ρ(t, a) =
∫ 1

0
exp{tQ(u)}ua du. (18)

We can obtain the mgf of several Kw-G distributions from Equation (17) and (18). For example,
the mgf’s of the Kw-exponencial (with parameter λ), Kw-standard logistic and Kw-Pareto (with
parameter ν > 0) are determined from Equation (17) as

M(t) =
∞∑
i=0

wiB(a(i + 1), 1 − λt), M(t) =
∞∑
i=0

wiB(t + a(i + 1), 1 − t)

and

M(t) = exp(−t)

∞∑
i,r=0

wiB(a(i + 1), 1 − rν−1)

r! t r ,

respectively.
Clearly, four representations for the characteristic function (chf) φ(t) = E[exp(i tX)] of the

Kw-G distribution are immediately obtained from the above representations for the mgf by φ(t) =
M(i t), where i = √−1.
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4. Other measures

4.1. Mean deviations

Let X ∼ KwG(a, b). The mean deviations about the mean (δ1(X)) and about the median (δ2(X))

can be expressed as

δ1(X) = E(|X − μ′
1|) = 2μ′

1F(μ′
1) − 2T (μ′

1) and δ2(X) = E(|X − M|) = μ′
1 − 2T (M),

(19)
respectively, where μ′

1 = E(X), M = Median(X) denotes the median, F(μ′
1) comes from

Equation (3) and T (z) = ∫ z

−∞ xf (x) dx. The median M follows from Equation (12) as

M = G−1{[1 − 2−1/b]1/a}.
Setting u = G(x) in Equation (13) yields

T (z) =
∞∑

k=0

wkTk(z), (20)

where the integral Tk(z) can be expressed in terms of Q(u) = G−1(u) by

Tk(z) =
∫ G(z)

0
Q(u)ua(k+1)−1 du. (21)

The mean deviations of any Kw-G distribution can be computed from Equations (19)–(21). For
example, the mean deviations of the Kw-exponencial (with parameter λ), Kw-standard logistic
and Kw-Pareto (with parameter ν > 0) are immediately calculated (after using the generalized
binomial expansion) from the functions

Tk(z) = λ−1�(a(k + 1) + 1)

∞∑
j=0

(−1)j {1 − exp(−jλz)}
�(a(k + 1) + 1 − j)(j + 1)! ,

Tk(z) = 1

�(k)

∞∑
j=0

(−1)j�(a(k + 1) + j){1 − exp(−jz)}
(j + 1)!

and

Tk(z) =
∞∑

j=0

j∑
r=0

(−1)j
(
a(k+1)

j

)(
j

r

)
(1 − rν)

z1−rν,

respectively.
An alternative representation for T (z) can be derived from Equation (10) as

T (z) =
∫ z

−∞
xf (x) dx = a−1

∞∑
k=0

wk

k + 1
Jk(z), (22)

where

Jk(z) =
∫ z

−∞
xha(k+1)(x) dx. (23)

Equation (23) is the basic quantity to compute the mean deviations of the exponentiated-G
distributions. Hence, the Kw-G mean deviations depend only on the mean deviations of the
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14 S. Nadarajah et al.

exponentiated-G distribution. So, alternative representations for δ1(X) and δ2(X) are

δ1(X) = 2μ′
1F(μ′

1) − 2a−1
∞∑

k=0

wk

k + 1
Jk(μ

′
1)δ2(X) = μ′

1 − 2a−1
∞∑

k=0

wk

k + 1
Jk(M).

A simple application is provided for the Kw-Weibull distribution. The exponentiated Weibull with
parameter a(k + 1) has density function (for x > 0) given by

ha(k+1)(x) = a(k + 1)cβcxc−1 exp{−(βx)c}[1 − exp{−(βx)c}]a(k+1)−1

and then

Jk(z) = a(k + 1)cβc

∫ z

0
xc exp{−(βx)c}[1 − exp{−(βx)c}]a(k+1)−1 dx

= a(k + 1)cβc

∞∑
r=0

(−1)r
(

a(k + 1) − 1

r

) ∫ z

0
xc exp{−(r + 1)(βx)c} dx.

We can calculate the last integral using the incomplete gamma function γ (α, x) =∫ x

0 wα−1 exp(−w) dw (for α > 0) and then

Jk(z) = a(k + 1)β−1
∞∑

r=0

(−1)r
(
a(k+1)−1

r

)
(r + 1)1+c−1 γ (1 + c−1, (r + 1)(βz)c).

Equations (20) and (22) are the main results of this section. Applications of these equations can
be given to obtain Bonferroni and Lorenz curves defined for a given probability p by

B(p) = T (q)

pμ′
1

and L(p) = T (q)

μ′
1

,

respectively, where μ′
1 = E(X) and q = F−1(p) = G−1{[1 − (1 − p)1/b]1/a}.

4.2. Extreme values

If X̄ = (X1 + · · · + Xn)/n denotes the sample mean from i.i.d. random variables following (2),
then by the usual central limit theorem

√
n(X̄ − E(X))/

√
Var(X) approaches the standard normal

distribution as n → ∞ under suitable conditions. Sometimes one would be interested in the
asymptotics of the extreme values Mn = max(X1, . . . , Xn) and mn = min(X1, . . . , Xn).

First, suppose that G belongs to the max domain of attraction of the Gumbel extreme value
distribution. Then by Leadbetter et al. [13, Chapter 1], there must exist a strictly positive function,
say h(t), such that

lim
t→∞

1 − G(t + xh(t))

1 − G(t)
= exp(−x)

for every x ∈ (−∞, ∞). But

lim
t→∞

1 − F(t + xh(t))

1 − F(t)
= lim

t→∞

{
1 − Ga(t + xh(t))

1 − Ga(t)

}b

= lim
t→∞

{
1 − G(t + xh(t))

1 − G(t)

}b

= exp(−bx)
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for every x ∈ (−∞, ∞). So, it follows by Leadbetter et al. [13, Chapter 1] that F also belongs
to the max domain of attraction of the Gumbel extreme value distribution with

lim
n→∞ Pr{an(Mn − bn) ≤ x} = exp{− exp(−bx)}

for some suitable norming constants an > 0 and bn.
Second, suppose that G belongs to the max domain of attraction of the Fréchet extreme value

distribution. Then by Leadbetter et al. [13, Chapter 1], there must exist a β > 0, such that

lim
t→∞

1 − G(tx)

1 − G(t)
= xβ

for every x > 0. But

lim
t→∞

1 − F(tx)

1 − F(t)
= lim

t→∞

{
1 − Ga(tx)

1 − Ga(t)

}b

= lim
t→∞

{
1 − G(tx)

1 − G(t)

}b

= xβb

for every x > 0. So, it follows by Leadbetter et al. [13, Chapter 1] that F also belongs to the max
domain of attraction of the Fréchet extreme value distribution with

lim
n→∞ Pr{an(Mn − bn) ≤ x} = exp(−xβb)

for some suitable norming constants an > 0 and bn.
Third, suppose that G belongs to the max domain of attraction of the Weibull extreme value

distribution. Then by Leadbetter et al. [13, Chapter 1], there must exist a α > 0, such that

lim
t→0

G(tx)

G(t)
= xα

for every x < 0. But

lim
t→0

F(tx)

F (t)
= lim

t→0

{
G(tx)

G(t)

}a

= xαa

for every x < 0. So, it follows by Leadbetter et al. [13, Chapter 1] that F also belongs to the max
domain of attraction of the Weibull extreme value distribution with

lim
n→∞ Pr{an(Mn − bn) ≤ x} = exp{−(−x)αa}

for some suitable norming constants an > 0 and bn.
The same argument applies to min domains of attraction. That is, F belongs to the same min

domain of attraction as that of G.

4.3. Shannon entropy

The entropy of a random variable X with density function f (x) is a measure of variation of the
uncertainty. Shannon entropy is defined by E[− log f (X)]. Suppose X ∼ Kw-G(a, b). Then,

E[− log f (X)] = − log(ab) − E[log g(X)] − (a − 1)E[log G(X)]
− (b − 1)E[log{1 − Ga(X)}]. (24)
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16 S. Nadarajah et al.

The three expectations in Equation (24) can be expressed as

E[log g(X)] = ab

∫ ∞

−∞
log g(x)g(x)Ga−1(x){1 − Ga(x)}b−1 dx =

∞∑
k=0

wkIk,

E[log G(X)] = b

a

∫ 1

0
log u(1 − u)b−1 du = b

a

∂B(α + 1, b)

∂α

∣∣∣∣
α=0

= −C + ψ(b + 1)

a

and

E[log{1 − Ga(X)}] = b

∫ 1

0
log(u)ub−1 du = −1

b
.

Here, C is Euler’s constant and Ik can be rewritten as

Ik =
∫ ∞

−∞
log{g(x)}g(x)Ga(k+1)−1(x) dx =

∫ 1

0
log{g(Q(u))}ua(k+1)−1 du,

where g(Q(u)) is the quantile density function. So, it follows from Equation (24) that

E[− log f (X)] = − log(ab) −
∞∑

k=0

wkIk + (a − 1){C + ψ(b + 1)}
a

+ b − 1

b
.

We can determine Ik for some Kw-G models. For the Kw-exponencial distribution with parameter
λ, the quantile density function is g(Q(u)) = λ(1 − u) and then

Ik = λ

a(k + 1)
+

∫ 1

0
log(1 − u)ua(k+1)−1 du.

The last integral can be calculated for a real non-integer by changing variable v = 1 − u, using
the generalized binomial expansion and noting that

∫ 1
0 log(v) vadv = −(a + 1)−2. We have

Ik = λ

a(k + 1)
+

∞∑
j=0

(−1)j+1�(a(k + 1))

�(a(k + 1) − j)j !(j + 1)2
.

If a is an integer, then the index j stops at a(k + 1) − 1.
For the Kw-standard logistic distribution, g(Q(u)) = u(1 − u) and, in the same way, we obtain

Ik = −1

a2(k + 1)2
+

∞∑
j=0

(−1)j+1�(a(k + 1))

�(a(k + 1) − j)j !(j + 1)2
.

For the Kw-Pareto distribution with parameter ν, we obtain g(Q(u)) = ν(1 − u)1+ν−1
and then

Ik = log(ν)

a(k + 1)
+ (1 + ν−1)

∞∑
j=0

(−1)j+1�(a(k + 1))

�(a(k + 1) − j)j !(j + 1)2
.

An alternative expression for the first expectation in Equation (24) follows from Equation (22)
as

E[log g(X)] = a−1
∞∑

k=0

wk

k + 1
E[log{g(Yk)}],
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where Yk ∼ Exp-G(a(k + 1)). So, one can also express Equation (24) as

E[− log{f (X)}] = − log(ab) − a−1
∞∑

k=0

wk

k + 1
E[log g(Yk)]

+ (a − 1){C + ψ(b + 1)}
a

+ b − 1

b
.

The above expectation can be computed for several Exp-G distributions.

4.4. Rényi entropy

The entropy of a random variable X with density function f (x) is a measure of variation of the
uncertainty. One of the popular entropy measure is the Rényi entropy given by

JR(c) = 1

1 − c
log

[∫ ∞

−∞
f c(x) dx

]
, c > 0, c 
= 1. (25)

The integral can be written as

∫ ∞

−∞
f c(x) dx = (ab)c

∫ ∞

−∞
gc(x)G(a−1)c(x){1 − Ga(x)}(b−1)c dx

and then expanding the binomial and changing the variable

∫ ∞

−∞
f c(x) dx = (ab)c

∞∑
j=0

(
(b − 1)c

j

)
(−1)jK(c, j). (26)

Here, K(c, j) denotes the integral

K(c, j) =
∫ 1

0
gc−1(Q(u))ua(c+j)−c du,

to be calculated for each Kw-model. For the Kw-exponential (with parameter λ), Kw-standard
logistic and Kw-Pareto (with parameter ν) distributions, we obtain

K(c, j) = λc−1B(a(c + j) − c, c − 1), K(c, j) = B(a(c + j) − 1, c − 1)

and

K(c, j) = νc−1B(a(c + j) − c, (1 + ν−1)(c − 1)),

respectively. Equation (26) is the main result of this section.

4.5. Reliability

Here, we derive the reliability R = Pr(X2 < X1) when X1 ∼ Kw-G(a1, b1) and X2 ∼
Kw-G(a2, b2) are independent random variables with a positive support. It has many applica-
tions especially in engineering concepts. Let fi denote the pdf of Xi and Fi denote the cdf of Xi .
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18 S. Nadarajah et al.

By expanding the binomials in f1 and F2, we obtain

R = 1 − a1b1

∞∑
j=0

∞∑
k=0

(
b1 − 1

j

)(
b2

k

)
(−1)j+k

[a1(j + 1) + a2k] . (27)

In the particular case a1 = a2 = a, one can reduce Equation (27) to

R = 1 − b1

∞∑
j=0

(
b1 + b2 − 1

j

)
(−1)j

(j + 1)
.

Further, if a1 = a2 and b1 = b2, then R = 1
2 . An alternative expression for R, obtained using

Equations (10) and (11), is

R = 1 − a

∞∑
k,m=0

(
b − 1

k

)(
b − 1

m

)
(−1)k+mRk,m

(k + 1)
,

where Rk,m becomes

Rk,m =
∫ ∞

0
ha(k+1)(x)Ha m(x) dx.

Clearly, Rk,m denotes the reliability function of independent random variables (with a positive
support) following exponentiated-G distributions with parameters a(k + 1) and a m. Hence, the
reliability for the Kw-G(a1, b1) and Kw-G(a2, b2) independent random variables reduces to a
linear combination of the reliability functions Rk,m’s.

5. Order statistics

Order statistics make their appearance in many areas of statistical theory and practice. The density
function fi:n(x) of the ith order statistic Xi:n, for i = 1, . . . , n, from i.i.d. random variables
X1, . . . , Xn following any Kw-G distribution, is simply given by

fi:n(x) = f (x)

B(i, n − i + 1)

n−i∑
j=0

(−1)j
(

n − i

j

)
F(x)i+j−1. (28)

Cordeiro and de Castro [3] showed that

fi:n(x) =
∞∑

r,k=0

qr,k G(x)a(k+1)+r−1g(x), (29)

where

qr,k =
n−i∑
j=0

(−1)j
(
n−i

j

)
wkpr,i+j−1

B(i, n − i + 1)

and the quantities pr,u(a, b) (for r, u = 0, 1, . . .) are given by

pr,u(a, b) =
u∑

k=0

(−1)k
(

u

k

) ∞∑
m=0

∞∑
l=r

(−1)mr+l

(
kb

m

)(
ma

l

)(
l

r

)
.
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From the definition of τ(n, a) given in Equation (15), the sth moment of the order statistic Xi:n
can be written as

E(Xs
i:n) =

∞∑
r,k=0

qr,kτ (s, a(k + 1) + r − 1). (30)

The mgf of Xi:n can be obtained from Equations (18) and (29) as

Mi:n(t) =
∞∑

r,k=0

qr,kρ(t, a(k + 1) + r − 1). (31)

Now, we provide a simple application. The quantities E(Xs
i:n) and Mi:n(t) for the Kw-exponencial

distribution with parameter λ > 0 follow from Equations (30) and (31), respectively, as

E(Xs
i:n) = s!λs

∞∑
r,k,j=0

qr,k

(−1)s+j
(
a(k+1)+r−1

j

)
(j + 1)s+1

and

Mi:n(t) =
∞∑

r,k=0

qr,kB(a(k + 1) + r, 1 − λt).

These quantities are easily derived for the Kw-G distributions cited before.
Alternatively, we can express fi:n(x) as a linear combination of exponentiated-G density

functions. Equation (29) can be rewritten as

fi:n(x) =
∞∑

r,k=0

q�
r,kha(k+1)+r , (32)

where

q�
r,k = qr,k

a(k + 1) + r
.

Clearly,
∑∞

r,k=0 q�
r,k = 1. Some mathematical properties of the Kw-G order statistics can be imme-

diately derived from Equation (32) by knowing those of the exponentiated-G distribution including
moments, inverse and factorial moments, mgf, mean deviations and Bonferroni and Lorenz curves.
Equations (29)–(32) are the main results of this section.

6. Relation with the beta G distribution

Consider starting from the baseline cdf G(x) and pdf g(x), Eugene et al. [14] defined the beta-
G(a, b) density function by

f (x) = 1

B(a, b)
G(x)a−1{1 − G(x)}b−1g(x), (33)

where a > 0 and b > 0 are two additional parameters to those parameters of G and B(a, b) =
�(a + b)/[�(a)�(b)] is the beta function. Eugene et al. [14] and Nadarajah and Kotz [11,15]
defined the beta normal, beta Gumbel and beta exponencial distributions by taking G(x) as the cdf
of the normal, Gumbel and exponential distributions. We can easily see that if Z ∼ Exp-G(a) with
cdf Ha(x) = G(x)a , then the beta-Ha(1, b) distribution is identical to the Kw-G(a, b) distribution.
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20 S. Nadarajah et al.

So, the beta-G(1, b) distribution applied to the Exp-G(a) yields the Kw-G(a, b) distribution.
Some properties of special Kw-G sub-models can be derived in this way. Clearly, if Z has the
beta-G(1, b) distribution, then X = G−1(Z1/a) will have the Kw-G(a, b) distribution.

Now, we obtain some properties of the Kw-exponential(a, b) using the results of Barreto-
Souza et al. [16] who investigated the beta exponentiated exponential distribution. Consider
the exponential distribution with parameter λ. The properties of the Kw-exponential(a, b, λ)

can be immediately derived from those of the four parameter beta exponentiated exponential
distribution, defined here as a three parameter BEE(1, b, λ, a) model [16]. The density function
of the Kw-exponential random variable X (with parameters a, b and λ) is

f (x) = abλ e−λx(1 − e−λx)a−1{1 − (1 − e−λx)a}b−1, x > 0. (34)

For a b > 0 a real non-integer, the moments of X are

μ′
r = E(Xr) = a�(b + 1)

λr

∞∑
j=0

(−1)j+r

(
b − 1

j

)
drB(p, a(j + 1))

dpr

∣∣∣∣
p=1

.

If b > 0 is an integer, then the above sum stops at b − 1.
When t < λ, the mgf follows immediately from Barreto-Souza et al. [16] for a b > 0 real

non-integer as

M(t) = ab

∞∑
j=0

(
b − 1

j

)
(−1)jB

(
1 − t

λ, a(j + 1)

)
.

If b > 0 is an integer, then assuming t < λ, the above sum stops at b − 1.
The rth moment of Xi:n, for a b > 0 real non-integer becomes

E(Xr
i:n) =

n−i∑
k=0

∞∑
m1=0

. . .

∞∑
mk+i−1=0

δkE(Xr
k)

where

δk = (−1)k+∑k+i−1
j=1 mj

(
n−i

k

)
B(α{a(i + 1) + ∑k+i−1

j=1 mj }, b)

B(a, b)k+iB(i, n − i + 1)

k+j−1∏
j=1

(
b−1
mj

)
(a + mj)

and Xk ∼ BGE(a{(i + 1) + ∑k+i−1
j=1 mj }, b, λ, a). For a b > 0 integer, the indices in the above

sums stop atb − 1. Clearly, the properties for any Kw-G distribution are required from our previous
results if there is no beta-H construction for H defined as an exponentiated-G distribution.

7. Estimation

Here, we consider estimation by the method of maximum likelihood and provide expressions for
the associated Fisher information matrix. We also consider estimation issues for censored data.

Suppose x1, . . . , xn is a random sample from the Kw-G distribution (2). Suppose too that g

is parameterized by a vector θ of length p. The log-likelihood (LL) function of the parameters,
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(a, b, θ), is

log L(a, b, θ) = n log a + n log b +
n∑

j=1

log g(xj ; θ) + (a − 1)

n∑
j=1

log G(xj ; θ)

+ (b − 1)

n∑
j=1

log{1 − Ga(xj ; θ)}. (35)

The maximum likelihood estimates (MLEs) are the simultaneous solutions of the equations:

n

a
+

n∑
j=1

log G(xj ; θ) − (b − 1)

n∑
j=1

Ga(xj ; θ) log G(xj ; θ)

1 − Ga(xj ; θ)
= 0,

n

b
+

n∑
j=1

log{1 − Ga(xj ; θ)} = 0

and

n∑
j=1

1

g(xj ; θ)

∂g(xj ; θ)

∂θk

+ (a − 1)

n∑
j=1

1

G(xj ; θ)

∂G(xj ; θ)

∂θk

− a(b − 1)

n∑
j=1

Ga−1(xj ; θ)

1 − Ga(xj ; θ)

∂G(xj ; θ)

∂θk

= 0.

For an interval estimation of the parameters, (a, b, θ), and tests of hypotheses, one requires the
Fisher information matrix. Interval estimation for the model parameters can be obtainable with
standard likelihood theory. The elements of this matrix for Equation (35) can be worked out as

E

(
−∂2 log L

∂a2

)
= n

a2
+ nE

[
(log G(X; θ))2Ga(X; θ)

{1 − Ga(X; θ)}2

]
,

E

(
−∂2 log L

∂a∂b

)
= nE

[
log G(X; θ)Ga(X; θ)

1 − Ga(X; θ)

]
,

E

(
−∂2 log L

∂a∂θj

)
= −nE

[
1

G(X; θ)

∂G(X; θ)

∂θj

]

+ n(b − 1)E

[
Ga−1(X; θ){a log G(X; θ) + 1}

1 − Ga(X; θ)

∂G(X; θ)

∂θj

]

− naE

[
G2a−1(X; θ) log G(X; θ)

{1 − Ga(X; θ)}2

∂G(X; θ)

∂θj

]
,

E

(
−∂2 log L

∂b2

)
= n

b2
,

E

(
−∂2 log L

∂b∂θj

)
= naE

[
Ga−1(X; θ)

1 − Ga(X; θ)

∂G(X; θ)

∂θj

]
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and

E

(
−∂2 log L

∂θj∂θk

)
= nE

[
1

g2(X; θ)

∂g(X; θ)

∂θj

∂g(X; θ)

∂θk

]

+ n(a − 1)E

[
1

G2(X; θ)

∂G(X; θ)

∂θj

∂G(X; θ)

∂θk

]

− nE

[
1

g(X; θ)

∂2g(X; θ)

∂θj ∂θk

]
− nE

[
1

G(X; θ)

∂2G(X; θ)

∂θj ∂θk

]

+ na(a − 1)(b − 1)E

[
Ga−2(X; θ)

1 − Ga(X; θ)

∂G(X; θ)

∂θj

∂G(X; θ)

∂θk

]

+ na2(b − 1)E

[
G2(a−1)(X; θ)

{1 − Ga(X; θ)}2

∂G(X; θ)

∂θj

∂G(X; θ)

∂θk

]

+ na(b − 1)E

[
Ga−1(X; θ)

1 − Ga(X; θ)

∂2G(X; θ)

∂θj ∂θk

]
.

The expectations in the first two elements can be calculated as

E

[
(log G(X; θ))2Ga(X; θ)

{1 − Ga(X; θ)}2

]
= bB(2, b − 2)

6a2
× N,

where N = {π2 − 6ψ
′
(b) − 12C − 12ψ(b) + 6C2 + 12Cψ(b) + 6ψ2(b)} and

E

[
log G(X; θ)Ga(X; θ)

1 − Ga(X; θ)

]
= bB(2, b − 1)

a
{1 − C − ψ(b + 1)}.

The remaining expectations can be computed numerically.
Often with lifetime data, one encounters censored data. There are different forms of censoring:

type I censoring, type II censoring, etc. Here, we consider the general case of multicensored data:
there are n subjects of which

• n0 are known to have failed at the times x1, . . . , xn0 .
• n1 are known to have failed in the interval [sj−1, sj ], j = 1, . . . , n1.
• n2 survived to a time rj , j = 1, . . . , n2 but not observed any longer.

Note that n = n0 + n1 + n2. Note too that type I censoring and type II censoring are contained
as particular cases of multicensoring. The LL function of the parameters, (a, b, θ), for this
multicensoring data is

log L(a, b, θ) = n0 log a + n0 log b +
n0∑

j=1

log g(xj ; θ) + (a − 1)

n0∑
j=1

log G(xj ; θ)

+ (b − 1)

n0∑
j=1

log{1 − Ga(xj ; θ)}

+
n1∑

j=1

log{[1 − Ga(sj−1; θ)]b − [1 − Ga(sj ; θ)]b}

+ b

n2∑
j=1

log{1 − Ga(rj ; θ)}. (36)
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It follows that the MLEs are the simultaneous solutions of the equations:

n0

a
+

n0∑
j=1

log G(xj ; θ) − (b − 1)

n0∑
j=1

Ga(xj ; θ) log G(xj ; θ)

1 − Ga(xj ; θ)

+ b

n1∑
j=1

U(sj ; θ) − U(sj−1; θ)

[1 − Ga(sj−1; θ)]b − [1 − Ga(sj ; θ)]b − b

n2∑
j=1

Ga(rj ; θ) log G(rj ; θ)

1 − Ga(rj ; θ)
= 0,

n0

b
+

n0∑
j=1

log{1 − Ga(xj ; θ)} −
n1∑

j=1

V (sj ; θ) − V (sj−1; θ)

[1 − Ga(sj−1; θ)]b − [1 − Ga(sj ; θ)]b

+
n2∑

j=1

log{1 − Ga(rj ; θ)} = 0

and

n0∑
j=1

1

g(xj ; θ)

∂g(xj ; θ)

∂θk

+ (a − 1)

n0∑
j=1

1

G(xj ; θ)

∂G(xj ; θ)

∂θk

− a(b − 1)

n0∑
j=1

Ga−1(xj ; θ)

1 − Ga(xj ; θ)

∂G(xj ; θ)

∂θk

+ ab

n1∑
j=1

W(sj ; θ) − W(sj−1; θ)

[1 − Ga(sj−1; θ)]b − [1 − Ga(sj ; θ)]b

− ab

n2∑
j=1

Ga−1(rj ; θ)∂G(rj ; θ)/∂θk

1 − Ga(rj ; θ)
= 0,

whereU(s) = {1 − Ga(s)}b−1Ga(s) log G(s),V (s) = {1 − Ga(s)}b log{1 − Ga(s)} andW(s) =
{1 − Ga(s)}b−1Ga−1(s)∂G(s)/∂θk .The Fisher information matrix corresponding to Equation (36)
is too complicated to be presented here.

8. Applications

We illustrate the superiority of some new Kw-G distributions proposed here as compared with
some of their sub-models. We give two applications (uncensored and censored data) using well-
known data sets to demonstrate the applicability of the proposed regression model.

8.1. Uncensored data: voltage

Here, we compare the results of the fits of some distributions to a data set [17, p. 383], which gives
the times of failure and running times for a sample of devices from a field-tracking study of a
larger system. At a certain point in time, 30 units were installed in normal service conditions. Two
causes of failure were observed for each unit that failed: the failure caused by an accumulation
of randomly occurring damage from power-line voltage spikes during electric storms and failure
caused by normal product wear. The required numerical evaluations were implemented using the
SAS procedure NLMIXED. Table 1 lists the MLEs (and the corresponding standard errors in
parentheses) of the parameters and the values of the following statistics for some fitted models:
AIC (Akaike information criterion), BIC (Bayesian information criterion) and CAIC (Consistent
Akaike information criterion). These results indicate that the Kw-Weibull model has the lowest
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Table 1. MLEs of the parameters for some fitted models to the voltage data (the standard errors are given in parentheses) and the values of the AIC, CAIC and BIC statistics.

Model a b λ2 α2 β2 AIC CAIC BIC

Kw-XTG 0.0725 (0.0169) 0.6298 (0.0125) 1.01e−6 (0.0000) 209.43 (0.0027) 6.0854 (0.1707) 337.8 340.3 344.8
XTG 1 1 0.0016 (0.0007) 85.4922 (9.8953) 0.8020 (0.2543) 364.4 365.3 368.6

a b α3 β3
Kw-FW 0.0603 (0.0004) 0.0738 (0.0134) 0.0115 (0.00003) 69.0275 (2.0281) 356.4 358.0 362.0
FW 1 1 0.0033 (0.0005) 15.8889 (5.2693) 387.6 388.1 390.4

a b λ1 β1
Kw-Chen 0.1051 (0.0437) 0.3855 (0.1762) 1e−8 (1e−10) 0.5165 (0.0059) 357.5 359.1 363.1
Chen 1 1 0.0051 (0.0034) 0.3125 (0.0205) 366.0 366.5 368.8

a b c β

Kw-Weibull 0.0516 (0.0241) 0.2288 (0.0905) 7.7026 (0.2191) 0.0043 (0.0003) 352.3 353.9 357.9

a b c λ

Beta Weibull 0.1467 (0.0280) 30.0404 (2.3411) 6.3920 (0.1765) 0.0017 (0.0002) 362.6 364.2 368.2
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AIC, CAIC and BIC values among all fitted models, and so it could be chosen as the best model.
The beta Weibull density is given by

f (x) = cλc

B(a, b)
xc−1exp{−b(λx)c}[1 − exp{−(λx)c}]a−1, x, a, b, c, λ > 0.

In order to assess whether the model is appropriate, plots of the histogram of the data and the
fitted Kw-XGT, XGT, Kw-FW, FW, Kw-Chen, Chen, Kw-Weibull and beta Weibull distributions
are given in Figure 12. Figure 13 provides the empirical and estimated survival functions of these
distributions. We conclude that the Kw-XGT distribution fits well to these data.

8.2. Censored data: radiotherapy

The data set refers to the survival time (days) for cancer patients (n = 51) undergoing radiother-
apy [18]. The percentage of censored observations is 17.65%. Thus, the Kw-G family seems to be

Figure 12. Estimated densities for some models fitted to the voltage data.

Figure 13. Estimated survival functions for some models and the empirical survival function for voltage data.
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an appropriate model for fitting such data. Table 2 lists the MLEs of the model parameters. The
values of the three statistics are smaller for the Kw-Weibull, Kw-Chen and Kw-XGT distribu-
tions compared with those values of the other distributions. In these terms, the three distributions
are very competitive models for lifetime data analysis. In Figure 14, we plot the empirical sur-
vival function and the estimated survival function for the Kw-XGT, Kw-Chen and Kw-Weibull
distributions which give satisfactory fits.

9. Multivariate generalization

The Kw-G distribution defined by Equation (3) can be generalized to the bivariate and multivariate
cases in a natural way. Consider the bivariate case for simplicity. Let G denote a bivariate cdf on
(0, ∞) × (0, ∞) with joint pdf g, marginal pdfs gi , i = 1, 2 and marginal cdfs Gi , i = 1, 2. Then
a bivariate Kw-G distribution can defined by the cdf

F(x1, x2) = 1 − {1 − Ga(x1, x2)}b (37)

for a > 0 and b > 0. The marginal pdfs fi , i = 1, 2 and marginal cdfs Fi , i = 1, 2 of F are

fi(x) = abgi(x)Ga−1
i (x){1 − Ga

i (x)}b−1

and

Fi(x) = 1 − {1 − Ga
i (x)}b

for i = 1, 2. The conditional cdfs of F are

F(x2 | x1) = 1 − {1 − Ga(x1, x2)}b
1 − {1 − Ga

1(x1)}b

and

F(x1 | x2) = 1 − {1 − Ga(x1, x2)}b
1 − {1 − Ga

2(x2)}b .

The joint pdf of F is

f (x1, x2) = abGa−2(x1, x2){A(x1, x2) + B(x1, x2) + C(x1, x2)}
{1 − Ga(x1, x2)}1−b

,

where

A(x1, x2) = −a(b − 1)Ga(x1, x2)

1 − Ga(x1, x2)

∂G(x1, x2)

∂x1

∂G(x1, x2)

∂x2
,

B(x1, x2) = (a − 1)
∂G(x1, x2)

∂x1

∂G(x1, x2)

∂x2

and

C(x1, x2) = G(x1, x2)g(x1, x2).

The marginal pdfs of F are

f (x1 | x2) = {1 − Ga
2(x2)}1−bGa−2(x1, x2){A(x1, x2) + B(x1, x2) + CA(x1, x2)}

{1 − Ga(x1, x2)}1−bg2(x2)G
a−1
2 (x2)

D
ow

nl
oa

de
d 

by
 [

U
SP

 U
ni

ve
rs

ity
 o

f 
Sa

o 
Pa

ul
o]

 a
t 0

4:
24

 0
7 

Ju
ly

 2
01

1 



JournalofStatisticalC
om

putation
and

Sim
ulation

27

Table 2. MLEs of the parameters for the Kw-G family fitted to the radiotherapy data (the standard errors are in parentheses) and the value of the AIC, CAIC and BIC statistics.

Model a b λ2 α2 β2 AIC CAIC BIC

Kw-XTG 89.0008 (7.3293) 1.3733 (0.1554) 3.1464 (1.4881) 0.3046 (0.1397) 0.0837 (0.0102) 596.2 597.5 605.9
XTG 1 1 20.8961 (2.0322) 0.00002 (18e − 6) 0.1212 (0.0011) 605.5 606.0 611.3

a b α3 β3
Kw-FW 0 .3069 (0.0841) 0.5716 (0.1646) 0.0009 (0.0003) 254.76 (7.0300) 606.9 607.8 614.6
FW 1 1 0.0007 (0.0002) 109.43 (18.1249) 609.7 610.0 613.6

a b λ1 β1
Kw-Chen 105.43 (47.67) 1.4934 (0.8845) 1.2080 (0.5839) 0.0833 (0.0013) 594.2 595.1 601.9
Chen 1 1 0.0185 (0.0067) 0.2260 (0.0119) 608.0 608.3 611.9

a b c β

Kw-Weibull 21.5936 (4.7489) 1.1589 (0.6803) 0.2668 (0.0447) 0.3617 (0.1307) 594.1 595.0 601.8

a b c λ

Beta Weibull 0.00004 (0.000012) 0.7021 (0.3196) 1.7670 (0.4176) 34.7002 (4.84070) 599.2 600.0 606.9
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28 S. Nadarajah et al.

Figure 14. Estimated survival functions for some fitted models and the empirical survival function for radiotherapy
data.

and

f (x2 | x1) = {1 − Ga
1(x1)}1−bGa−2(x1, x2){A(x1, x2) + B(x1, x2) + CA(x1, x2)}

{1 − Ga(x1, x2)}1−bg1(x1)G
a−1
1 (x1)

.

The properties of Equation (37) can be studied as in Sections 2–15. For instance, if G is
parameterized by a vector θ of length p, then the MLEs of the parameters, (a, b, θ), are the
simultaneous solutions of the equations:

n

a
+

n∑
j=1

log G(x1j , x2j ; θ) − (b − 1)

n∑
j=1

Ga(x1j , x2j ; θ) log G(x1j , x2j ; θ)

1 − Ga(x1j , x2j ; θ)
= 0,

n

b
+

n∑
j=1

log{1 − Ga(x1j , x2j ; θ)} = 0

and
n∑

j=1

1

g(x1j , x2j ; θ)

∂g(x1j , x2j ; θ)

∂θk

+ (a − 1)

n∑
j=1

1

G(x1j , x2j ; θ)

∂G(x1j , x2j ; θ)

∂θk

− a(b − 1)

n∑
j=1

Ga−1(x1j , x2j ; θ)

1 − Ga(x1j , x2j ; θ)

∂G(x1j , x2j ; θ)

∂θk

= 0,

where (x11, x21), (x12, x22), . . . , (x1n, x2n) is a random sample from Equation (37). We hope to
provide a comprehensive treatment of the bivariate and multivariate cases in a future paper.

10. Conclusions

Cordeiro and de Castro [3] proposed the Kw-G family of distributions to extend several widely
known distributions such as the normal, Weibull, gamma and Gumbel distributions. We demon-
strate that the probability density function (pdf) of any Kw-G distribution can be expressed as a
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linear combination of exponentiated-G density functions. This result allows us to derive general
explicit expressions for several measures of the Kw-G distributions such as moments, generating
function, mean deviations, Bonferroni and Lorenz curves, Shannon entropy, Rénvy entropy and
reliability. Further, we demonstrate that pdf of the Kw-G order statistics can be expressed as a
linear combination of exponentiated-G density functions. Our formulas related with any Kw-G
model are manageable, and with the use of modern computer resources with analytic and numerical
capabilities, may turn into adequate tools comprising the arsenal of applied statisticians.

The estimation of parameters is approached by the method of maximum likelihood. The useful-
ness of the Kw-G models is illustrated in two analysis of real data using the AIC, BIC and CAIC.
Applications of some Kw-G distributions to two real data sets are given to show their usefulness.
In conclusion, the Kw-G family of distributions provides a rather flexible mechanism for fitting
a wide spectrum of positive real world data.
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