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a b s t r a c t

In general, the distribution of residuals cannot be obtained explicitly. In this paper we give
an asymptotic formula for the density of Pearson residuals in continuous generalized linear
models corrected to order n−1, where n is the sample size. We define a set of corrected
Pearson residuals for these models that, to this order of approximation, have exactly the
same distribution of the true Pearson residuals. An application to a real data set and
simulation results for a gamma model illustrate the usefulness of our corrected Pearson
residuals.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The residuals carry important information concerning the appropriateness of assumptions that underlie statistical
models, and thereby play an important role in checking model adequacy. They are used to identify discrepancies between
models and data, so it is natural to base residuals on the contributions made by individual observations to measures of
model fit. The use of residuals for assessing the adequacy of fitted regression models is nowadays commonplace due to the
widespread availability of statistical software, many of which are capable of displaying residuals and diagnostic plots, at
least for the more commonly used models. Beyond special models, relatively little is known about asymptotic properties
of residuals in general regression models. There is a clear need to study second-order asymptotic properties of appropriate
residuals to be used for diagnostic purposes in nonlinear regression models.
The paper by Nelder andWedderburn (1972) first identified and unified the theory of generalized linear models (GLMs),

including a general algorithm for computing maximum likelihood estimates (MLEs). In continuous GLMs, the random
variables Y1, . . . , Yn are assumed independent and each Yi has a density function in the linear exponential family

π(y; θi, φ) = exp[φ{yθi − b(θi)} + c(y, φ)], (1)

where b(·) and c(·, ·) are known appropriate functions. We assume that the precision parameter φ = σ−2, σ 2 is the so-
called dispersion parameter, is the same for all observations, although possibly unknown. We also assume a probability
density function π with respect to the Lebesgue measure. We do not consider the discrete distributions such as Poisson,
binomial and negative binomial which take the form (1). For two-parameter full exponential family distributions with
canonical parameters φ and φθ , the decomposition c(y, φ) = φa(y)+ d1(y)+ d2(φ) holds. The mean and variance of Yi are,
respectively, E(Yi) = µi = db(θi)/dθi and Var(Yi) = φ−1Vi, where V = dµ/dθ is the variance function. For gammamodels,
the dispersion parameter σ 2 is the reciprocal of the index; for normal and inverse Gaussian models, σ 2 is the variance and
Var(Yi)/E(Yi)3, respectively. The parameter θ =

∫
V−1dµ = q(µ) is a known one-to-one function ofµ. A linear exponential

family is characterized by its variance function, which plays a key role in estimation.
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A GLM is defined by the family of distributions (1) and the systematic component g(µ) = η = Xβ , where g(·) is a
known one-to-one continuously twice-differentiable function, X is a specified n × p model matrix of full rank p < n and
β = (β1, . . . , βp)

T is a set of unknown linear parameters to be estimated. Let β̂ be the MLE of β .
Residuals in GLMswere first discussed by Pregibon (1981), though ostensibly concerned with logistic regressionmodels,

Williams (1984, 1987) and Pierce and Schafer (1986). McCullagh and Nelder (1989) provided a survey of GLMs, with
substantial attention to definition of residuals. Pearson residuals are the most commonly used measure of overall fit for
GLMs. They are defined by Ri = (Yi − µ̂i)/V̂i

1/2
, where µ̂i and V̂i are respectively the fitted mean and fitted variance

function of Yi. In this paper we consider only Pearson residuals appropriate to our particular asymptotic aimswhen n→∞.
Cordeiro (2004) obtained matrix formulae for the expectations, variances and covariances of these residuals, and defined
adjusted Pearson residuals in these models having zero mean and unit variance to order n−1. The Pearson residuals defined
in Cordeiro (2004) are proportional to

√
φ, although we are considering here Ri as usual without the precision parameter

φ. While Cordeiro’s adjusted Pearson residuals do correct the residuals for equal mean and variance, the distribution of
these residuals is not equal to the distribution of the true Pearson residuals to order n−1. Further, Cordeiro and Paula
(1989) introduced the class of exponential family nonlinear models which generalizes the GLMs. Later, Wei (1998) gave a
comprehensive introduction to exponential family nonlinear models. More recently, Simas and Cordeiro (2009) generalized
Cordeiro’s (2004) result by obtaining matrix formulae for the O(n−1) expectations, variances and covariances for Pearson
residuals in exponential family nonlinear models.
In a general setup, the distribution of residuals usually differs from the distribution of the true residuals by terms of

order n−1. Cox and Snell (1968) discussed a general definition of residuals, applicable to a wide range of models, and
obtained useful expressions to orderO(n−1) for their first twomoments, where n is the sample size. Loynes (1969) derived,
under some regularity conditions, and again to order n−1, the asymptotic expansion for the density function of the Cox and
Snell’s residuals, and then defined corrected residuals having the same distribution as the random variables which they
are effectively estimating. In all but the simplest situations, the use of the results by Cox, Snell and Loynes will require
a considerable amount of tedious algebra. Our chief goal is to obtain an explicit formula for the density of the Pearson
residuals to order n−1 which holds for all continuous GLMs. In Section 2 we give a summary of key results from Loynes
(1969) applied to Pearson residuals in GLMs. The density of Pearson residuals in these models corrected to order n−1 is
presented in Section 3. In Section 4we provide applications to some commonmodels. In Section 5we compare our corrected
residuals with the adjusted residuals proposed by Cordeiro (2004). In Section 6, we present simulation studies to assess the
adequacy of the approximations for a gamma model with log link. In Section 7, we provide an application to a real data set
that demonstrates the usefulness of the corrected residuals. Concluding remarks are given in Section 8 and, in the Appendix,
we present a more rigorous proof of the general results discussed by Loynes (1969).

2. Conditional moments of Pearson residuals

Let li be the log-likelihood contribution from Yi. We obtain from (1)

li = φ {yiθi − b(θi)} + c(yi, φ)

and then the ith element of the score function is simply

U (i)r =
∂ li
∂βr
= φV−1/2i w

1/2
i (Yi − µi)xir ,

where w = V−1µ′2 is the weight function and from now on dashes indicate derivatives with respect to η. Let εi =
V−1/2i (Yi − µi) be the true Pearson residual corresponding to the Pearson residual Ri = V̂i

−1/2
(Yi − µ̂i). Suppose we write

the Pearson residual as Ri = εi + δi. We can write the following conditional moments given εi = x to order n−1 (Loynes,
1969)

Cov(β̂r , β̂s | εi = x) = −κ rs,

b(i)s (x) = E(β̂s − βs | εi = x) = B(β̂s)−
p∑
r=1

κ srU (i)r (x), (2)

where −κ sr is the (s, r)th element of the inverse Fisher information matrix K−1 for β , B(β̂s) is the O(n−1) bias of β̂s and
U (i)r (x) = E(U

(i)
r | εi = x) is the conditioned score function. The mean and variance of the asymptotic distribution of δi,

given εi = x, are respectively to order n−1

θ (i)x = E(δi | εi = x) =
p∑
r=1

H(i)r (x)b
(i)
r (x)−

1
2

p∑
r,s

H(i)rs (x)κ
rs, (3)

φ(i)
2

x = Var(δi | εi = x) = −
p∑

r,s=1

H(i)r (x)H
(i)
s (x)κ

rs, (4)
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where H(i)r = ∂εi/∂βr , H
(i)
rs = ∂

2εi/∂βr∂βs, H
(i)
r (x) = E(H

(i)
r | εi = x) and H

(i)
rs (x) = E(H

(i)
rs | εi = x). Let V

(m)
i =

dmVi
dµmi

for
m = 1, 2. We obtain by simple differentiation

H(i)r = {−V
−1/2
i µ′i −

1
2
V−3/2i V (1)i µ′i(Yi − µi)} xir

and

H(i)rs = {−V
−1/2
i µ′′i + V

−3/2
i V (1)i µ′2i +

3
4
V−5/2i V (1)

2

i µ′2(Yi − µi)

−
1
2
V−3/2i V (2)i µ′2i (Yi − µi)−

1
2
V−3/2i V (1)i µ′i(Yi − µi)} xirxis.

Conditioning on εi = x leads to H
(i)
r (x) = ei(x)xir and H

(i)
rs (x) = hi(x)xirxis, where

ei(x) = −V
−1/2
i µ′i −

1
2
V−1i V

(1)
i µ′i x (5)

and

hi(x) = −V
−1/2
i µ′′i + V

−3/2
i V (1)i µ′2i +

1
4
{(3V−2i V

(1)2
i − 2V−1i V

(2)
i )µ′2i − 2V

−1
i V

(1)
i µ′′i } x. (6)

For canonical models (θ = η), (5) and (6) become

ei(x) = −V
1/2
i −

V (1)i
2
x and hi(x) =

1
4
(V (1)

2

i − 2ViV
(2)
i )x.

Conditioning the score function U (i)r = φV−1/2i w
1/2
i (Yi − µi)xir on εi = x yields U

(i)
r (x) = φ w

1/2
i xir x, and then using (2)

we find

b(i)s (x) = B(β̂s)+ φ w
1/2
i x τ Ts K

−1XTγi,

where K−1 = φ−1(XTWX)−1,W = diag{wi} is a diagonal matrix of weights, τs is a p-vector with one in the sth position and
zeros elsewhere and γi is an n-vector with one in the ith position and zeros elsewhere. DefiningM = {msi} = (XTWX)−1XT,
it is easily verified that

b(i)s (x) = w
1/2
i msi x+ B(β̂s).

Cordeiro and McCullagh (1991) showed that the n−1 bias of β̂ is given by

B(β̂) = −(2φ)−1(XTWX)−1XTZd F 1,

where F = diag{V−1i µ′i µ
′′

i }, Z = {zij} = X(X
TWX)−1XT, Zd = diag{zii} is a diagonal matrix with the diagonal elements of Z

and 1 is an n-vector of ones. The asymptotic covariancematrix of theMLE η̂ of the linear predictor is simplyφ−1 Z . We obtain
p∑
r=1

H(i)r (x)b
(1)
r (x) = ei(x)

{
xw1/2i

p∑
r=1

mrixir +
p∑
r=1

B(β̂r)xir

}
= ei(x){w

1/2
i zii x+ B(η̂i)},

where B(η̂i) is the ith element of the O(n−1) bias B(η̂) = −(2φ)−1ZZd F 1 of η̂. This bias depends on the model matrix, the
variance function and the first two derivatives of the link function. Also,

−
1
2

p∑
r,s=1

H(i)rs (x)κ
rs
= −

zii
2φ
hi(x).

The conditional mean θ (i)x from (3) is then a second-degree polynomial in x given by

θ (i)x = {w
1/2
i ziix+ B(η̂i)}ei(x)+

zii
2φ
hi(x), (7)

where ei(x) and hi(x) are obtained from (5) and (6).
We now compute the conditional variance φ(i)

2

x . From (4) it follows

φ(i)
2

x =
zii
φ
ei(x)2. (8)

Hence, φ(i)
2

x is also a second-degree polynomial in x.
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Table 1
Densities of the true residuals for some distributions.

Distribution Density in (1) Density of the true residual (fε(x))

Normal 1
√
2πσ
exp

{
−
(x−µ)2

2σ 2

}
1

√
2πσ
exp

(
−
x2

2σ 2

)
, x ∈ R

Gamma (φx)φ−1φ
Γ (φ)µφ

exp(−φx/µ) {φ(1+x)}φ−1φ
Γ (φ)

exp{−φ(1+ x)}, x > −1

Inverse Gaussian
√
φ

√

2πx3
exp

{
−
φ(x−µ)2

2µ2x

} {
φ

2π(µ1/2x+1)3

} 1
2
exp

{
−

φx2

2(µ1/2x+1)

}
, x > −1

√
µ

3. The density of Pearson residuals

A simple calculation from (1) gives the density of the true Pearson residual

fεi(x) =
√
Vi exp

[
φ
{√
Vi θi x+ µi θi − b(θi)

}
+ c

(√
Vi x+ µi, φ

)]
, (9)

where θ = q(µ). Table 1 gives the densities of the true Pearson residuals for the normal, gamma and inverse Gaussian
distributions, where Γ (·) is the gamma function.
Throughout the following we shall assume all necessary regularity conditions are satisfied. The density function of the

Pearson residual Ri in continuous GLMs to order n−1 follows from Loynes (1969). See, also, equation (21). We have

fRi(x) = fεi(x)−
d{fεi(x)θ

(i)
x }

dx
+
1
2
d2{fεi(x)φ

(i)2
x }

dx2
, (10)

where fεi(x), θ
(i)
x and φ

(i)2
x come from (9), (7) and (8), respectively.

We nowdefine corrected Pearson residuals for GLMs of the form R′i = Ri+ρi(Ri), where ρ(·) is a function of orderO(n
−1)

constructed in order to produce the residual R′i with the same distribution of εi to order n
−1. Loynes (1969) showed (see,

also, the proof given in the Appendix) that

ρi(x) = −θ (i)x +
1

2fεi(x)
d{fεi(x)φ

(i)2
x }

dx
(11)

makes fR′i (x) = fεi(x) to order n
−1, i.e., the corrected residuals R′i have exactly the same distribution of the true residuals to

this order. Combining (8) with (9) gives

1
2fεi(x)

d{fεi(x)φ
(i)2
x }

dx
=
zii
φ
ei(x)

dei(x)
dx
+
zii
2φ
ei(x)2

{
φ
√
Vi θi +

d
dx
c(
√
Vi x+ µi, φ)

}
. (12)

Using (11), (7) and (12), the correction function turns out to be

ρi(x) = ei(x)
{
−
1
2φ
V−1i V

(1)
i µ′i zii − B(η̂i)− w

1/2
i zii x

}
−
zii
2φ
hi(x)+

zii
2φ
ei(x)2

{
φ
√
Vi q(µi)+

d
dx
c
(√
Vix+ µi, φ

)}
. (13)

Direct substitution using (13) yields corrected Pearson residuals R′i for most GLMs. The term φ
−1 zii in this equation is just

Var(η̂i). Although there are several terms in (13), this expression is simply applied to any continuous model since we need
only to calculate ei(x), hi(x) and d

dx c(
√
Vix + µi, φ) from (5), (6) and (1), the others terms being standard quantities in the

theory of GLMs.More generally, the corrected residualsR′i depend on theGLMonly through themodelmatrixX , the precision
parameter φ, the function c(·, ·) and the variance and link functions with their first two derivatives.
The density of the true residual for the inverse Gaussian model given in Table 1 depends on the unknown mean µ.

However, we can estimate this density using the general expression for the corrected MLE of µ, µ̃ say, given by Cordeiro
andMcCullagh (1991), formula (4.4). The resulting estimated density is identical to the true density except by terms of order
less than n−1 and the results of Sections 3 and 4 could also be applied to this distribution. To prove this, let µ̃ = µ+ c/n2.
Then, keeping only terms up to order n−2, we have

µ̃1/2 =
√
µ

√
1+

c
n2µ
=
√
µ

(
1+

c
2n2µ

)
.
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Table 2
Values of µ′ , µ′′ andw for some link functions.

Link function Formula µ′ µ′′ w

Linear µ = η 1 0 V−1

Log log(µ) = η µ µ µ2V−1

Reciprocal µ−1 = η −µ2 2µ3 µ4V−1

Inverse of the square µ−2 = η −µ3/2 3µ5/4 µ6V−1/4

Table 3
Values of q(µ), V ,w, and d

dx c(
√
Vx+ µ, φ) for the normal, gamma and inverse Gaussian distributions.

Model q(µ) V w d
dx c(
√
Vx+ µ, φ)

Normal µ 1 µ′2 −(x+ µ)φ
Gamma −1/µ µ2 µ−2µ′2 (φ − 1)/(1+ x)
Inverse Gaussian −1/(2µ2) µ3 µ−3µ′2 −

3µ3/2

2(µ3/2x+µ)
+

φµ3/2

2(µ3/2x+µ)2

Also,

(µ̃1/2x+ 1)−3/2 = (
√
µx+ 1)−3/2

{
1−

3 x c
4n2
√
µ(
√
µx+ 1)

}
and

exp
{

−φx2

2(µ̃1/2x+ 1)

}
= exp

[
−φx2

2(
√
µx+ 1)

1
{1+ x c

2n2
√
µ(
√
µx+1)
}

]
.

Then,

exp
{

−φx2

2(µ̃1/2x+ 1)

}
= exp

{
−φ x2

2(
√
µx+ 1)

}
exp

{
φ x3 c

4n2
√
µ(
√
µx+ 1)2

}
.

Hence,√
φ

2π
1

(µ̃1/2x+ 1)3/2
exp

{
−φx2

2(µ̃1/2x+ 1)

}
=

√
φ

2π
(
√
µx+ 1)−3/2

(
1−

c1
n2

)
exp

{
−φx2

2(
√
µx+ 1)

}
exp

( c2
n2

)
,

where c1 = 3 x c
4
√
µ(
√
µx+1) and c2 =

φ x3 c
4
√
µ(
√
µx+1)2

. This equation shows that the estimated density and the true density of ε

agree to order n−1.
The results of this section have been obtained assuming that the dispersion parameter is known. However, we show in

Sections 6 and 7 that they can be applied even when the dispersion parameter is replaced by a consistent estimate.

4. Some special models

Formula (13) holds for all continuous GLMs including the models in common use: linear models, canonical models,
normal models, gammamodels and inverse Gaussian models. In this section wewill compute the correction ρi(·) in (13) for
some important GLMs from which we can obtain the corrected residuals R′i = Ri + ρi(Ri). Table 2 gives the values of µ

′, µ′′

andw for some useful link functions and Table 3 gives q(µ), V ,w and d
dx c(
√
Vx+µ, φ) for the normal, gamma and inverse

Gaussian distributions.

4.1. Linear models

For linear models, µi = ηi, µ′i = 1, µ
′′

i = 0, wi = V
−1
i , B(η̂i) = 0 and then ei(x) = −V

−1/2
i −

1
2V
−1
i V

(1)
i x and

hi(x) = V
−3/2
i V (1)i +

3
4V
−2
i V

(1)2
i x− 1

2V
−1
i V

(2)
i x. Thus, we have

ρi(x) = V−1i zii x

(
1−

V−1i V
(1)2
i

8φ
+
V (2)i
4φ
+
V−1/2i V (1)i
2

x

)

+
zii
2φ

(
V−1i + V

−3/2
i V (1)i x+

1
4
V−2i V

(1)2
i x2

){
φ
√
Viq(µi)+

d
dx
c(
√
Vi x+ µi, φ)

}
.
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4.2. Canonical models

For canonical models, ηi = θi, wi = Vi, µ′i = Vi and µ
′′

i = ViV
(1)
i . Further, ei(x) = −V

1/2
i −

1
2V

(1)
i x and hi(x) =

1
4 (V

(1)2
i − 2ViV

(2)
i ) x. Hence,

ρi(x) =

(
V 1/2i +

V (1)i
2
x

)
B(η̂i)+ zii

(
V 1/2i V

(1)
i

2φ
+ Vix+

V (1)
2

i

8φ
x+

ViV
(2)
i

4φ
x

)
+
V 1/2i V

(1)
i

2
x2

+
zii
2φ

(
Vi + V

1/2
i V

(1)
i x+

1
4
V (1)

2

i x2
){

φ
√
Vi q(µi)+

d
dx
c
(√
Vi x+ µi, φ

)}
.

4.3. Normal models

For normal models, Vi = 1, wi = µ′2i , c(x, φ) = −{x
2φ + log(2π/φ)}/2, ddx c(x+ µ, φ) = −(x+ µ)φ, ei(x) = −µ

′

i and
hi(x) = −µ′′i . We have

ρi(x) = B(η̂i)µ′i +
µ′′i zii
2φ
+
µ′2i zii
2
x.

As a special case of the normal model, we consider the normal linear model for which µ = θ = η, ei(x) = −1 and
hi(x) = 0. Then, we obtain

ρi(x) = zii x/2,

and the corrected residuals become

R′i = Ri
(
1+

zii
2

)
.

It is easily proved that Var(R′i) = 1 + O(n−2). A check of this expression follows for the simplest case of independent and
identically distributed observations. We have Z = n−1 1 1T, zii = n−1 and then

R′i = Ri

(
1+

1
2n

)
,

which is identical to the equation given in the example discussed by Loynes (1969).

4.4. Gamma models

For gamma models, Vi = µ2i , wi = µ−2i µ
′2
i , c(x, φ) = (φ − 1) log(x) + φ log(φ) − logΓ (φ) and d

dx c(µx + µ, φ) =
(φ − 1)/(1+ x). We have ei(x) = −µ−1i µ

′

i − µ
−1
i µ

′

ix and hi(x) = −µ
−1
i µ

′′

i + 2µ
−2
i µ

′2
i − µ

−1
i µ

′′

i x+ 2µ
−2
i µ

′2
i x. Then,

ρi(x) = (1+ x)

(
µ−1i µ

′

iB(η̂i)+
µ−1i µ

′′

i

2φ
zii −

µ−2i µ
′2
i

2φ
zii +

µ−2i µ
′2
i zii
2

x

)
.

4.5. Inverse Gaussian models

For inverse Gaussian models, Vi = µ3i ,wi = µ
−3
i µ

′2
i , c(x, φ) = (1/2) log{φ/(2πx

3)} − φ/(2x) and d
dx c(µ

3/2x+ µ, φ) =

−
3µ3/2

2(µ3/2x+µ)
+

φµ3/2

2(µ3/2x+µ)2
. Further, ei(x) = −µ

−3/2
i µ′i −

3
2µ
−1
i µ

′

ix and hi(x) = −µ
−3/2
i µ′′i + 3µ

−5/2
i µ′2i +

15
4 µ
−2
i µ

′2
i x −

3
2µ
−1
i µ

′′

i x. Then,

ρi(x) =
(
µ
−3/2
i µ′i +

3µ′i
2µi
x
)
B(η̂i)+

µ
3/2
i µ′′i zii
2φ

+

(
3µ′2i zii
8φµ2i

+
3µ′′i zii
4φµi

)
x+

µ′2i zii
µ3i
x+

3µ′2i zii
2µ5/2i

x2

+
µ−3i zii
4φ

(
µ′2i + 3µ

1/2
i µ′2i x+

9µiµ′2i
4
x2
){
−

φ

µ
1/2
i

−
3µ3/2i

(µ
3/2
i x+ µi)

+
φµ

3/2
i

(µ
3/2
i x+ µi)2

}
.
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5. Expansion for Cordeiro’s adjusted residual

In this section we derive the density function of the adjusted Pearson residuals proposed by Cordeiro (2004). He gave
simple expressions to order n−1 for themean and variance of the Pearson residual Ri in GLMs, namely E(Ri) = mi/n+O(n−2)
and Var(Ri) = σ 2 + vi/n+ O(n−2), where

mi
n
= −

σ 2

2
γi(I − H) J z and

vi

n
=
σ 4

2
γi(Q H J − T )z,

I is the identity matrix of order n, H = W 1/2X(XTWX)−1XTW 1/2 is the projection matrix, J,Q and T are diagonal matrices
given by J = diag{V−1/2i µ′′i },Q = diag{V

−1/2
i V (1)i }, T = diag{2φwi+wiV

(2)
i +V

−1
i V

(1)
i µ′′i }, z = (z11, . . . , znn)

T is an n-vector
with the diagonal elements of Z = X(XTWX)−1XT, and γi is, as defined in Section 2, an n-vector with one in the ith position
and zeros elsewhere. The adjusted residuals proposed by Cordeiro (2004) are

R∗i =
Ri − m̂i/n

(σ 2 + v̂i/n)1/2
. (14)

Expanding (σ 2 + v̂i
n )
−1/2 as σ−1(1− v̂i

2nσ 2
+ · · ·) yields to order n−1

R∗i = σ
−1
{(
1−

v̂i

2nσ 2

)
Ri −

m̂i
n

}
.

Since m̂i = mi + Op(n−1/2) and v̂i = vi + Op(n−1/2), we can write R∗i equivalently to order n
−1 as

R∗i = σ
−1
{
Ri − n−1

(
mi +

viRi
2σ 2

)}
, (15)

which implies trivially that E(R∗i ) = 0+O(n−3/2) and Var(R∗i ) = 1+O(n−3/2). Then, the adjusted residuals (14) have zero
mean and unit variance to order n−1.
Let Si = {Ri − n−1(mi +

viRi
2σ 2
)}. Since Ri = Op(1), the cumulative distribution function of Si, FSi(x) say, can be obtained

from (15) to order n−1 following the approach developed by Cordeiro and Ferrari (1998a; 1998b, Section 2). We have

FSi(x) = FRi(x)+
1
n

(
mi +

vix
2σ 2

)
fRi(x). (16)

Differentiation of (16) with respect to x, and replacing fRi(x) by its asymptotic expansion in (10), yields the density of Si to
order n−1

fSi(x) = fεi(x)−
d
dx
{θ (i)x fεi(x)} +

1
2
d2

dx2
{φ(i)

2

x fεi(x)} +
1
n

{(
mi +

vix
2σ 2

) dfεi(x)
dx
+

vi

2σ 2
fεi(x)

}
. (17)

The density function of R∗i is fR∗i (x) = σ fSi(σ x), where fSi(σ x) comes from (17) with σ x in place of x. The sum of the

second and third terms of (17) are expressed as ddx {ρi(x)fεi(x)}. Since mi/n, vi/n, θ
(i)
x and φ

(i)2
x are all quantities of order

O(n−1), the terms on the right hand side of (17), except fεi(x), are of this order and then the densities fR∗i (x) and fεi(x) differ
by terms of orderO(n−1). However, we showed in Section 3, that the densities fR′i (x) and fεi(x) are equal to this order. Thus,
the distribution of the corrected residuals R′i , even in small samples, must be closer to the distribution of the true Pearson
residuals than the distribution of the adjusted residuals R∗i .
We now give a simple example of the expansion for the density fR∗i (x) of the adjusted residuals R

∗

i to order n
−1 for the

normal model with any link function. We have

fR∗i (x) =
e−

x2
2

√
2π

(
1+

3µ′2i zii
2
+

vi

2nσ 2
−
mi
σn
x−

µ′iB(η̂i)
σ

x−
σµ′′i zii
2
x−

vi

2nσ 2
x2 −

3µ′2i zii
2
x2
)
.

6. Simulation results

In this section some simulation results are presented to study the finite-sample distributions of the Pearson residual Ri,
its corrected version R′i , its adjusted version R

∗

i proposed by Cordeiro (2004) and the true Pearson residual. We use a gamma
model with log link

logµ = β0 + β1x1 + β2x2,

where the true parameters were taken as β0 = 1/2, β1 = 1, β2 = −1 and φ = 4. The explanatory variables x1 and
x2 were generated from the uniform U(0, 1) distribution for n = 20 and their values were held constant throughout the
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Table 4
Comparison of the mean and variance of Pearson, corrected, adjusted and true residuals.

i Mean Variance
Ri R′i R∗i εi Ri R′i R∗i εi

1 0.013 0.006 0.011 0.004 0.234 0.255 1.059 0.257
2 −0.010 −0.006 0.007 0.001 0.183 0.232 1.112 0.255
3 0.002 −0.002 −0.004 −0.002 0.220 0.248 1.040 0.254
4 0.006 0.003 0.010 0.005 0.208 0.241 1.051 0.253
5 0.015 0.004 0.005 0.002 0.237 0.247 1.006 0.249
6 −0.003 −0.005 0.003 −0.001 0.188 0.229 1.043 0.245
7 −0.002 −0.006 −0.008 −0.005 0.201 0.237 1.038 0.244
8 −0.012 −0.009 0.001 −0.001 0.180 0.230 1.107 0.258
9 0.000 −0.001 0.008 0.000 0.201 0.244 1.087 0.253
10 −0.005 −0.010 −0.014 −0.010 0.207 0.235 0.999 0.236
11 −0.000 0.001 0.010 0.002 0.201 0.244 1.079 0.254
12 0.010 −0.001 −0.006 −0.000 0.243 0.252 1.022 0.259
13 −0.009 −0.012 −0.016 −0.009 0.199 0.230 1.002 0.239
14 −0.003 −0.001 0.019 0.005 0.176 0.227 1.116 0.248
15 0.012 0.005 0.010 0.004 0.221 0.243 1.017 0.252
16 −0.017 −0.017 −0.014 −0.007 0.174 0.225 1.105 0.249
17 0.004 −0.004 −0.009 −0.004 0.221 0.241 1.022 0.246
18 0.001 −0.004 −0.005 −0.004 0.214 0.240 1.020 0.246
19 0.000 −0.004 −0.006 −0.002 0.215 0.239 1.019 0.249
20 −0.003 −0.004 −0.003 −0.002 0.196 0.230 1.008 0.240

simulations. The total number of Monte Carlo replications was set at 10,000. All simulations were performed using the
statistical software R.
In each of the 10,000 replications, we fitted the model and computed the MLEs β̂ and µ̂, the Pearson residuals Ri, the

function ρ(·) for this model and the corrected Pearson residuals R′i . Further, we computed the expected values and variances
from the expressions given by Cordeiro (2004) to obtain the adjusted Pearson residuals R∗i and calculated the true Pearson
residuals εi. Tables 4 and 5 give the sample mean and variance and the sample skewness and kurtosis of the residuals Ri,
R′i , R

∗

i and εi, respectively, out of the 10,000 simulated values. Good agreement with the normal distribution happens when
these figures are, on average, close to 0, 1, 0 and 3, respectively. The corrected residuals R′i should agreewith the true Pearson
residuals rather than to the normal distribution.
The figures in Tables 4 and 5 show that the distribution of the corrected Pearson residuals is generally closer to the

distribution of the true residuals than the distribution of the Pearson residuals. The correction ρ(.) seems to be effective
even when the sample size is small. The distribution of all residuals for the gamma model are positively skewed. All four
cumulants of the corrected Pearson residuals R′i are generally closer to the corresponding cumulants of the true Pearson
residuals εi than those of the other residuals. The adjusted Pearson residualsR∗i have cumulantsmuch closer to the cumulants
of the standard normal distribution as argued by Cordeiro (2004).
Table 6 gives the values of the one-sample Kolmogorov–Smirnov (K–S) and Anderson–Darling (A–D) distances (see,

for instance, Anderson and Darling (1952) and Thode (2002, Section 5.1.4)) between the empirical distribution of the
uncorrected and corrected residuals and the estimated distribution of the true residuals (a shifted gamma). The values of the
K–S and A–D statistics measure the distances between the empirical distribution of each set of 10,000 uncorrected residuals
Ri and corrected residuals R′i , for i = 1, . . . , 20, and the estimated distribution of the true residuals. Here, the estimated
distribution is the shifted gamma distribution with dispersion parameter φ estimated by the sample mean of the estimates
of the dispersion parameter at each step of the Monte Carlo experiment.
We are now interested in checking if the empirical distributions of the uncorrected Ri and corrected R′i residuals have

the same empirical distribution of the true residuals εi. Hence, we give in Table 7 both two-sample K–S and A–D distances
between the empirical distribution of the uncorrected and corrected residuals and the empirical distribution of the true
residuals.
The figures in Tables 6 and 7 indicate that the empirical distribution of the corrected residuals R′i is closer to the

distribution of the true residuals than the empirical distribution of the uncorrected residuals Ri, since the values of the K–S
and A–D distances for the corrected residuals are substantially smaller than the corresponding distances for the uncorrected
ones. This fact indicates that the corrected residuals represent an improvement over the uncorrected residuals when the
model is well-specified.
We now provide an application of the corrected residuals in order to assess the adequacy of the gamma model. Under

a well-specified model, we expect that the distribution of the corrected residuals will have approximately the distribution
of the true residuals. However, even though it is common to compare the distribution of the Pearson residuals with the
normal distribution, the standard normal approximation could not be adequate in small samples. Hence, we compare the
empirical distribution of the corrected residuals with the distribution of the true residuals and the empirical distribution of
the uncorrected residuals with the normal distribution. We use QQ plots of the sample quantiles of the corrected residuals
versus the theoretical quantiles from the estimated distribution of the true residuals and of the sample quantiles of the
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Table 5
Comparison of the skewness and kurtosis of Pearson, corrected, adjusted and true residuals.

i Skewness Kurtosis
Ri R′i R∗i εi Ri R′i R∗i εi

1 0.837 0.943 0.626 1.005 3.798 4.105 2.967 4.468
2 0.586 0.822 0.494 0.986 3.205 3.780 2.805 4.399
3 0.824 0.973 0.605 1.080 3.898 4.350 3.020 4.859
4 0.703 0.863 0.550 0.979 3.417 3.825 2.882 4.395
5 0.876 0.942 0.626 0.964 4.040 4.232 3.012 4.275
6 0.628 0.829 0.523 0.987 3.278 3.772 2.823 4.387
7 0.715 0.901 0.548 0.960 3.548 4.052 2.920 4.317
8 0.611 0.864 0.500 1.068 3.318 3.984 2.865 4.813
9 0.711 0.923 0.557 1.017 3.561 4.162 2.911 4.667
10 0.809 0.965 0.628 1.018 3.904 4.387 3.061 4.811
11 0.727 0.936 0.556 1.018 3.590 4.176 2.920 4.532
12 0.939 1.001 0.659 1.077 4.361 4.560 3.076 4.929
13 0.746 0.907 0.603 0.938 3.607 4.052 3.006 4.106
14 0.553 0.801 0.474 0.939 3.150 3.709 2.820 4.254
15 0.808 0.928 0.606 1.048 3.813 4.154 3.033 4.737
16 0.593 0.851 0.506 1.006 3.246 3.833 2.859 4.510
17 0.793 0.910 0.606 0.958 3.727 4.058 2.994 4.202
18 0.783 0.923 0.610 0.992 3.686 4.078 2.977 4.411
19 0.776 0.904 0.603 0.963 3.687 4.060 2.993 4.292
20 0.715 0.888 0.569 0.963 3.532 4.004 2.960 4.346

Table 6
One-sample K–S and A–D statistics on Pearson and corrected residuals.

i K–S stat. for Ri A–D stat. for Ri K–S stat. for R′i A–D stat. for R′i
All 0.0232 300.42 0.0036 6.7641
1 0.0230 7.5944 0.0103 1.7875
2 0.0317 30.7031 0.0074 1.2504
3 0.0208 7.9810 0.0077 1.0710
4 0.0287 17.5666 0.0100 1.2283
5 0.0216 8.9498 0.0098 1.1761
6 0.0307 28.3464 0.0074 0.8353
7 0.0273 17.8230 0.0088 1.0719
8 0.0311 34.7206 0.0109 1.7666
9 0.0277 19.3796 0.0081 0.9986
10 0.0244 12.6919 0.0123 1.9530
11 0.0306 19.5087 0.0089 0.6709
12 0.0167 3.6271 0.0106 2.0631
13 0.0208 15.1071 0.0107 2.2356
14 0.0401 49.8411 0.0117 1.6905
15 0.0277 16.1354 0.0150 1.8709
16 0.0360 43.4746 0.0155 2.5022
17 0.0186 7.3023 0.0082 1.0216
18 0.0235 9.8595 0.0068 0.6481
19 0.0172 7.6480 0.0085 0.8816
20 0.0282 21.7356 0.0072 0.7146

uncorrected residuals versus the theoretical quantiles from the normal distribution with zero mean and variance 1/φ̂. If the
distribution of the corrected residuals is close to the distribution of the true residuals, the plot should form a straight line.
Thus, we expect that the QQ plot of the corrected residuals versus the estimated distribution of the true residuals should be
closer to the diagonal line than the QQ plot of the uncorrected residuals against the normal distribution mentioned above.
As a further study, we also provide the QQ plot of the adjusted residuals against the theoretical quantiles of the standard
normal distribution.
Fig. 1 gives two QQ plots, one for the vector of the 10,000 ordered uncorrected residuals and other for the vector of the

10,000 ordered corrected residuals. These plots show that even for a well-specifiedmodel, the uncorrected residuals display
large deviations from the diagonal linewhen compared to the corrected residuals. In fact, the plotted points for the corrected
residuals appear to cluster around the straight line drawn through them, visually supportive evidence that these residuals
come from a distribution which can be adequately approximated by the estimated shifted gamma distribution. The plot
for the adjusted residuals given in Fig. 2 it is clearly an improvement on the plot of the uncorrected residuals, but it shows
substantive deviations from the diagonal line when compared to the corrected residuals. Hence, the corrected residuals
behave very well and lead to the right conclusion, i.e., that the model is well-specified. We then recommend the corrected
residuals to build up QQ plots.
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Table 7
Two-sample K–S and A–D statistics on Pearson and corrected residuals.

i K–S stat. for Ri A–D stat. for Ri K–S stat. for R′i A–D stat. for R′i
All 0.0283 444.193 0.0041 9.5703
1 0.0246 10.5690 0.0086 0.5191
2 0.0356 44.3716 0.0125 1.1887
3 0.0273 15.8880 0.0100 0.8209
4 0.0331 22.3655 0.0079 0.9083
5 0.0227 9.41018 0.0070 0.4727
6 0.0355 33.9614 0.0094 1.5002
7 0.0348 23.8043 0.0077 0.5297
8 0.0394 54.3072 0.0126 1.3377
9 0.0325 27.3448 0.0071 0.5715
10 0.0270 14.1363 0.0065 0.2252
11 0.0336 28.1285 0.0100 0.8706
12 0.0218 9.17441 0.0102 0.4995
13 0.0342 22.1684 0.0112 1.2824
14 0.0426 56.0126 0.0132 2.5277
15 0.0281 15.7758 0.0121 1.1146
16 0.0444 57.0837 0.0109 1.9487
17 0.0255 14.0805 0.0081 0.5073
18 0.0310 16.4867 0.0089 0.4553
19 0.0282 16.7720 0.0094 1.0549
20 0.0303 22.7455 0.0087 0.8158

Fig. 1. QQ plots for the Pearson and corrected residuals.

Fig. 2. QQ plot for the adjusted residuals.
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Table 8
Times until loss of velocity for five types of turbines.

Type of turbine

Type I Type II Type III Type IV Type V

3.03 3.19 3.46 5.88 6.43
5.53 4.26 5.22 6.74 9.97
5.60 4.47 5.69 6.90 10.39
9.30 4.53 6.54 6.98 13.55
9.92 4.67 9.16 7.21 14.45
12.51 4.69 9.40 8.14 14.72
12.95 5.78 10.19 8.59 16.81
15.21 6.79 10.71 9.80 18.39
16.04 9.37 12.58 12.28 20.84
16.84 12.75 13.41 25.46 21.51

Fig. 3. QQ plot for the unadjusted Pearson residuals in the complete model.

7. Application to real data

We now show the usefulness of the corrected residuals with an application to a real data set. The data given in Table 8 is
taken from Lawless (1982, p. 201) and consist of the times to evaluate the performance of five types of high-speed turbines
for plane engines. Ten engines of each type were considered in the analysis and the times (in million of cycles units) until
the loss of velocity are recorded.
Let Tij be the time until the loss of velocity of the jth engine for the ith type of turbine, i = 1, . . . , 5 and j = 1, . . . , 10.

We assume that Tij has a gamma distribution with mean µij and dispersion parameter φ−1. To compare the five types of
turbines we consider the one-way classification model

µij = µ+ βi,

where β1 = 0.
The deviance of the fitted model is 42.56 on 45 degrees of freedom yielding an adequate global fit. The estimates of the

parameters with standard errors in parentheses are: µ̂ = 10.69 (1.54), β̂2 = −4.643 (1.773), β̂3 = −2.057 (1.983), β̂4 =
−0.895 (2.093) and β̂5 = 4.013 (2.624). The MLE of φ is φ̂ = 4.803.
We use the Pearson residuals to check for discrepancies between the model and the data. Fig. 3 exhibits the QQ plot

for the quantiles of the unadjusted Pearson residuals against the quantiles of a normal distribution with the corresponding
numerical envelope (see, for instance, Atkinson (1985)). The numerical envelope is used to circumvent the fact that the
unadjusted Pearson residuals do not have a normal distribution. Fig. 3 shows that there are no discrepancies between the
model and the data, thus indicating a good fit.
Fig. 4 exhibits the QQ plot for the quantiles of the corrected Pearson residuals against the quantiles of the estimated

shifted gamma distribution. This plot indicates that there are two outliers, namely the observations 20 and 40, but except
for these two observations, the complete model seems adequate to fit the data. To verify this fact, Fig. 5 gives the plot of
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Fig. 4. QQ plot for the corrected Pearson residuals in the complete model.

Fig. 5. Plot of the Cook’s distance.

Cook’s distance versus the index of the observation to detect possible influent observations, suggesting that the observations
20 and 40 are influent as detected before using the corrected residuals.
The analysis discussed before shows that the corrected residuals can be useful to provide diagnostic tools.Moreover, since

we are dealing with the true distribution of the residuals to order O(n−1), the numerical envelope could not be necessary,
since we can obtain much more information from the QQ plot.
We go further to study the inferential aspects on the estimates and an appropriate test of interest could be H0 : β3 =

β4 = 0 against H1 : β3 6= 0 or β4 6= 0. For testing H0, we obtain a p-value 0.562 which indicates that this hypothesis
should not be rejected.
If we eliminate both observations 20 and 40, the conclusion of the above test will not change. Hence, we estimate a new

model with β1 = β3 = β4 = 0. As suggested by both procedures, i.e. the corrected residuals and Cook’s distances, we
estimate this new model without the observations 20 and 40. For the fitted reduced model without these observations, we
obtain µ̂ = 9.1659 (0.6412), β̂2 = −3.8603 (0.9247) and β̂5 = 5.5401 (1.8657) and the MLE of φ is now φ̂ = 7.045474.
Fig. 6 exhibits the QQ plot for the quantiles of the unadjusted Pearson residuals against the quantiles of a normal

distribution with the corresponding numerical envelope. As before, this plot suggests that the reduced model is well-
specified. Fig. 7 gives the QQ plot for the quantiles of the corrected Pearson residuals against the quantiles of a shifted
gamma distribution. We also conclude that the reduced model is satisfactory and there are no influent observations.
Finally, we conclude from this application that the unadjusted Pearson residuals seem to be too optimistic andwould lead

a practitioner to stop the investigation in an early stage of themodel selection, since the influent observations could deserve
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Fig. 6. QQ plot for the unadjusted Pearson residuals in the reduced model.

Fig. 7. QQ plot for the corrected Pearson residuals in the reduced model.

a further investigation. Nevertheless, the corrected residuals in this case determine precisely the influent observations as
they were detected by the Cook’s distance plot.

8. Conclusion

In regression models, Pearson residuals are either compared with quantiles of the standard normal distribution or
analyzed with the aid of residual plots with simulated envelopes. However, the normal approximation is not adequate
in small samples. For the first time, we obtain the density of Pearson residuals in continuous generalized linear models
corrected to order n−1, where n is the sample size, and define corrected residuals for these models which have the same
distribution of the true residuals to this order of approximation. The setup is similar to the paper by Loynes (1969), but
applied in a wide context of regression models, and Pierce and Schafer (1986). The article can also be considered a sequel to
Cordeiro (2004). We provide applications to some commonmodels. The performance of the uncorrected Pearson, corrected
and adjusted residuals proposed by Cordeiro (2004) are compared in a simulation study. Under a well-specified gamma
model, we show by simulation that the QQ plot of the corrected residuals versus the estimated distribution of the true
residuals is much closer to the straight line than the QQ plot of the uncorrected residuals against the normal distribution.
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Moreover, in an example applied to a real data set, we demonstrate that the corrected residuals are better than the
uncorrected Pearson residuals to identify discrepancies between the fitted model and the data.

Acknowledgment

We are very grateful to two referees and the Editor for helpful comments that considerably improved the paper. We
gratefully acknowledge financial support from CNPq.

Appendix

Suppose we write the residual R in terms of the true residual ε as R = ε + δ, where ε and δ are absolutely continuous
random variables with respect to the Lebesgue measure and δ is of order Op(n−1). Our goal is to define a corrected residual
R′ having the same density of ε to order n−1. Initially, we have

E(eisR) = E{eisεE(eisδ | ε)} and
∂k

∂sk
E(eisδ | ε)

∣∣∣∣
s=0
= ikE(δk | ε).

Expanding E(eisδ | ε) in a Taylor series around s = 0 gives

E(eisδ | ε) = 1+ (is)E(δ | ε)+
(is)2

2
E(δ2 | ε)+ · · · .

Let θx = E(δ | ε = x) and φ2x = Var(δ | ε = x). Thus,

E{eisεE(eisδ | ε)} =
∫
∞

−∞

eisx
{
1+ (is)θx +

(is)2

2
(φ2x + θ

2
x )+ · · ·

}
fε(x)dx, (18)

where fε(·) is the density function of ε. Using Cox and Snell’s (1968) formulae (25) and (26) with ε = 0, we conclude that
E(δ) and Var(δ) (and thus E(δ2)) are of orderO(n−1) and, in the sameway, that the highermoments of δ are of order o(n−1).
In a similar manner, we can show that E(δ | ε = x) and Var(δ | ε = x) are of order O(n−1), and also that the higher-order
conditional moments are of order o(n−1). Hence, we can rewrite Eq. (18) as

E{eisεE(eisδ | ε)} =
∫
∞

−∞

eisx
{
1+ (is)θx +

(is)2

2
φ2x

}
fε(x)dx+ o(n−1). (19)

We can express the integral on the right side of (19) as a sum of three integrals. Then, integration by parts, one time for the
integral containing θx and two times for the integral containing φ2x , gives

E(eisR) =
∫
∞

−∞

eisx
[
fε(x)−

d
dx
{fε(x)θx} +

1
2
d2

dx2
{fε(x)φ2x }

]
dx+ o(n−1). (20)

The uniqueness theorem for characteristic functions yields the density of R to order n−1

fR(x) = fε(x)−
d
dx
{fε(x)θx} +

1
2
d2

dx2
{fε(x)φx} + o(n−1). (21)

Equation (21) is identical to formula (5) in Loynes (1969).
Further, we define corrected residuals of the form R′ = R+ρ(R), where ρ(·) is a function of orderO(n−1) used to recover

the distribution of ε. We may proceed as above, noting that E{ρ(R) | R = x} = ρ(x), to obtain the density of R′ to order n−1

fR′(x) = fR(x)−
d
dx
{ρ(x)fR(x)}.

Since the quantities ρ(x), θx and φ2x are all of orderO(n
−1), we have to this order that ddx {ρ(x)fR(x)} =

d
dx {ρ(x)fε(x)}. Hence,

the density functions of R and ε will be the same to order n−1 if

d
dx
{ρ(x)fε(x)} = −

d
dx
{fε(x)θx} +

1
2
d2

dx2
{fε(x)φx}.

Integration gives

ρ(x) = −θx +
1

2fε(x)
d
dx
{fε(x)φx}. (22)

Eq. (22) is precisely equation (6) given in Loynes (1969) and it is clear from the proof that the support of ε does not need
to be the entire line. We can have proper intervals as support. We should note that the assumptions needed can be made
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weaker if we require that an expansion of the Taylor polynomial of order two with a remainder term (for instance, Lagrange
remainder) can be taken instead of the complete series.
We could also prove Loynes (1969) results by using the equivalence of (3c) and (4c), together with (5) and (6) of Cox and

Reid (1987) and appropriate regularity conditions. The idea of this approach is as follows: consider in equation (3c) of Cox
and Reid (1987) X0 = ε, X1 = n1/2δ and X2 = 0. This means that we are writing Yn as Yn = ε + δ + Op(n−3/2), where ε is
Op(1) and δ is Op(n−1). Then, by (4c), (5) and (6) of Cox and Reid (1987), we can write the cumulative distribution function
(cdf) of Yn as

Gn(y) = F0(y)− E(δ | ε = y)f0(y)+
1
2
∂

∂y
{E(δ2 | ε = x)f0(y)} + O(n−3/2),

where F0(·) and f0(·) are the cdf and density function of ε, respectively. This equation implies expression (21). We can also
obtain the expansion for R + ρ(R) from the equivalence of (3c) and (4c) of Cox and Reid (1987) by setting X0 = R, X1 = 0
and X2 = ρ(R). The rest of the proof is identical to the one gave above. Note also, that this proof does not require ε to be
supported in the entire line since this is not needed in the regularity conditions.
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