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In this paper we propose a series of goodness-of-fit tests for the family of skew-normal models when all
parameters are unknown.As the null distributions of the considered test statistics depend only on asymmetry
parameter, we used a default and proper prior on skewness parameter leading to the prior predictive p-value
advocated by G. Box. Goodness-of-fit tests, here proposed, depend only on sample size and exhibit full
agreement between nominal and actual size. They also have good power against local alternative models
which also account for asymmetry in the data.
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1. Introduction

The class of skew-normal densities (SN hereafter) has appeared independently several times
in statistical literature as in [26,28]. The present name is given by Azzalini [3] and it has been
generalized to the multivariate case in [4,6]. In this paper we consider only the univariate case.

One of the main features of the SN distribution is the ability to model the skewness through a
shape parameter, λ. This model exhibits remarkable properties in terms of mathematical tractabil-
ity and it has been applied, as a reference model, in several scientific disciplines as, for example,
epidemiology, geology and economics (i.e., [7,10,18,19]).

The use of a parametric model has to be supported by an adequate goodness-of-fit (GOF
hereafter) on the observed data. The model checking problem, addressed in this paper, is a pre-
liminary analysis in that if data are compatible with the assumed model, then the full (and difficult)
process of model elaboration and model selection (or averaging) can be avoided. Model selection
is not addressed here and we refer to [8,9,25] for a comprehensive discussion on the relation
between model checking and model selection.
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224 S. Cabras and M.E. Castellanos

Works on GOF for the SN model can be found in [29] where normality is tested within the
SN class by showing that the coefficient of skewness is locally the most powerful location and
scale invariant statistic; Pewsey [27] used the same test statistics for testing departures from the
half-normal distribution; Gupta and Chen [20] studied the Kolmogorov–Smirnov test to assess
GOF of the SN model assuming all parameters known; where instead Mateu–Figueras et al. [24]
derived the distribution of several test statistics when all unknown parameters are estimated with
the maximum likelihood estimators (MLE), this work reports tables with critical values of GOF
test for fixed values of λ and different sample sizes, n, obtaining an agreement between nominal
and actual size of the test only for large n(n > 400). In a recent work, Dalla Valle [15] proposed
a test based on the Anderson–Darling test statistic (AD statistic, in the sequel) to analyse the fit
of the SN model. To avoid the dependence of the approximated quantiles on the λ parameter
in [15], a polynomial regression is considered, on the quantiles of the AD statistic as function of
the skewness parameter. Unfortunately, in this latter work, there is a lack of agreement between
nominal and actual size of the test, at least, for the analysed sample sizes (n = 50 and n = 100,
see [15, Tables 4 and 5]). From this, it seems that in current literature a suitable GOF procedure for
SN is not available, in terms of test size and power, as also required in the discussion section of [2].

In this paper we follow, instead, the Bayesian methodology proposed by Box [12] and exten-
sively discussed in [8,9]. We approximate by Monte Carlo simulations the predictive prior
distribution under the SN model, with null distribution, for some empirical distribution function
test statistics (EDF hereafter). This is achieved by integrating out λ with respect to the Jeffreys’
prior distribution discussed in [22]. In this way we can assess the compatibility of whole SN
class with the data, moreover, the null distribution does not depend on unknown parameters and
it has full agreement between nominal and actual test size for every n ≥ 3. The full agreement is
assessed by the fact that the sample null distribution of the p-value is uniform. The key point is
that marginal prior predictive distributions of the used EDF test statistics: (i) do not depend on
location and scale parameters when they are efficiently estimated in the sense of [16] and (ii) the
Jeffreys’ prior, in this case, is a proper distribution.

The rest of the paper is organized as follows: Section 2 reviews the SN model, Section 3
discusses the EDF statistics and proposes a simple algorithm to derive their respective marginal
predictive distributions. In Section 4 presents a power study against local alternative models. To
illustrate how to use our procedure to check the GOF of the SN model two applications are
included in Section 5, while conclusions are summarized in Section 6.

2. The skew-normal model

We say that X ∼ SN if X has density

f (x | ξ, η, λ) = 2

η
φ

(
x − ξ

η

)
�

(
λ

x − ξ

η

)
, −∞ < x < ∞,

where φ(·) and �(·) are, respectively, density and cumulative distribution function (cdf) of the
standard normal distribution. Parameters −∞ < ξ < ∞ and 0 < η < ∞ are, respectively, loca-
tion and scale and −∞ < λ < ∞ is the shape parameter. When λ = 0, the SN corresponds to
the normal model, while when λ → ±∞ the distribution tends to the half-normal model. It is
interesting to note that the skewness, γ , varies in the interval (−0.995, 0.995) (see [27]), and this
may cause incompatibility with data that present larger skewness.

MLE of SN parameters present the following problems: (i) MLE of λ, λ̂, may be infinite with
high probability for small n and large λ (see [22]); (ii) the Fisher information matrix is singular
at λ = 0 (see [3]); (iii) the profile-likelihood function for λ may have different stationary points,
with one at λ = 0 independently of the observed sample [27].
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Journal of Applied Statistics 225

In [4,22,27] they analysed different estimation techniques in order to mitigate or avoid the
mentioned problems. In particular, problem (ii) can be avoided by working with the central
parametrization [3], denoted by SN CP(μ, σ, γ ), where μ, σ and γ are mean, standard deviation
and skewness, respectively (see [27], Formula (1)). Problem (iii) is important for small n and
apparently it has no straightforward solution in a frequentist framework (see [4, Section 6.3]).
Liseo and Loperfido [22] proposed to use the Jeffrey’s and reference prior [11] on λ (or equivalently
on γ ) to mitigate the irregularities of the likelihood function. As explained the following, in our
setup we need only the scalar prior on λ. We use the Jeffrey’s or reference prior reported in [22,
Section 2] and the fact that it is a proper prior distribution.

3. GOF tests for the skew-normal model

In order to construct a GOF test we need three elements: (1) a diagnostic test statistic, T , to
quantify incompatibility with the data, using the convention that large observed values, tobs,
indicate incompatibility; (2) a completely specified distribution for T , h(t), under the null model;
(3) a way to measure the conflict between tobs and h(t) as the popular tail area p-value used in
this work.

3.1 Definitions of EDF statistics

EDF statistics measure the difference between the empirical distribution, Fn, and a theoretical
one, F , which in our case must be some element of the SN class. We fix F using: MLE of
γ, γ̂ , sample mean, μ̃, and sample standard deviation, σ̃ , for μ and σ , respectively. Therefore,
the theoretical distribution is

F ≡ SN CP(μ̃, σ̃ , γ̂ ).

Note that our F differs from the one used in [24] only in the estimation of μ and σ . As commented
in [4], even using the central parametrization for moderate sample sizes, there are still problems
with the MLE estimator; in fact, the estimation of λ can occur in the frontier of λ support, that is,
λ̂ → ±∞ (γ̂ → ±0.99527). For the samples in which this occurs we adopt the strategy mentioned
in [4] when the maximization of λ is diverging, we choose the smallest λ̂ whose likelihood is not
significantly smaller than the likelihood with λ = ∞ according to a likelihood-ratio test.

The EDF statistics we use are discussed in [30]. They are the Kolmogorov–Smirnov, D, and
the Kuiper, V ,

D+ = sup
x

{Fn(x) − F(x)}, D− = sup
x

{F(x) − Fn(x)},

D = max{D+, D−}, V = D+ + D−,

Cramér-von Mises, W 2, and Watson’s U 2 statistics is given by

W 2 = n

∫ +∞

−∞
(Fn(x) − F(x))2 dF(x),

U 2 = n

∫ +∞

−∞

(
Fn(x) − F(x) −

∫ +∞

−∞
(Fn(x) − F(x)) dF(x)

)2

dF(x).
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226 S. Cabras and M.E. Castellanos

Their corresponding sample version is obtained using the following formulas:

D+ = max
i

(
i

n
− zi

)
, D− = max

i

(
zi − i − 1

n

)
, D = max{D+, D−},

V = D+ + D−, W 2 =
n∑

i=1

(
zi − 2i − 1

2n

)2

+ 1

12n
, U 2 = W 2 − n

(
z̄ − 1

2

)2

,

(1)

where zi = F(x(i)), z̄ = ∑n
i=1 zi/n and x(i) denotes the i order statistics (x(i) < x(i+1),

i = 1, . . . , n).
As μ and σ are unknown we replace them with efficient estimators in the sense of [16] such as

μ̃ and σ̃ . As noted in [30, Section 4.3.2], when unknown parameters are location or scale, and if
these are estimated by appropriate methods, the distribution of EDF statistics will not depend on
their true values.

However, h(t) still depends on γ and in the frequentist paradigm h(t) it is usually obtained by
plugging in a point estimator of unknown parameters (i.e., γ̂ ) obtaining the corresponding plug-in
p-value, pplug. This type of p-value is known to be conservative in small samples because of the
double use of the data: first to estimate h(t) and second, to calculate the p-value using again the
data through tobs (see [8,9]), where pplug is used in [24], and because of the double use of the data,
it results in less power than the one proposed here.

Our Bayesian approach avoids this issue as the null distribution h(t) is the marginal prior
predictive distribution of T obtained by integrating γ with respect to the Jeffreys’ prior. This
procedure is not feasible, in general, as the Jeffreys’ prior is usually improper.

3.2 Bayesian checking of the SN model

We use the marginal prior predictive distribution of T by averaging γ in the conditional distribution
h(t | γ ) with respect to the prior π(γ ):

m(t) =
∫

h(t | γ )π(γ ) dγ, (2)

where π(γ ) is

π(γ ) ∝ π(λ)

∣∣∣∣ dλ

dγ

∣∣∣∣ , π(λ) = K−1

√∫ ∞

−∞
2z2φ(z)

φ2(λz)

�(λz)
dz, (3)

and K is obtained by using adaptive quadrature integration for the integrals with respect to z

and λ. Using the numerical approximation of prior cdf we can easily simulate from π(λ). Note
that it is sufficient to approximate prior (3) only once and distribution (2) just once for a given
n. This approach is more general than those in [24] where one has to know γ and look at the
corresponding h(t | γ ). Prior π(λ) plays an important rule in this model checking procedure and it
shows useful properties for GOF: (i) m(t) always exists; (ii) it is invariant under reparametrization
allowing to switch easily between central and direct parametrization because π(γ ) is obtained by
applying the corresponding transformation rule (see [27, Formula (1)]) on simulated values of λ.
To approximate h(t) for a particular n we used M = 106 draws from m(t) using the following 3
steps algorithm:

Step 1 Draw γ (1,...,m,...,M) ∼ π(γ ), for M = 106;
Step 2 for each γ (m) generate a random sample of size n from the SN model with μ = 0, σ = 1

(h(t) does not depend on μ,σ ) and γ = γ (m);
Step 3 for the mth sample calculate the EDF statistic on the random sample.
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Journal of Applied Statistics 227

The p-values are uniformly distributed for every n ≥ 3 as showed in Figure 1.
Table 1 provides critical quantiles of the prior predictive distribution (2) for each EDF statistics

and different n. We can see that each m(t) has an asymptotical limiting distribution for n → ∞
whose quantiles are approximately those of the last right column (n = 500).

Figure 1. Quantile–Quantile-plot of p-value distribution (1000 samples) under the null model
SN (x | λ), λ ∼ π(λ) against U(0, 1) for n = 3. and different test statistics.
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228 S. Cabras and M.E. Castellanos

Table 1. Critical quantiles of m(t) for EDF test statistics.

Sample size (n)

Probability 5 10 20 30 50 100 150 200 300 400 500

W 2

0.100 0.073 0.079 0.087 0.092 0.095 0.095 0.095 0.096 0.096 0.096 0.096
0.050 0.089 0.098 0.106 0.113 0.118 0.120 0.120 0.121 0.120 0.121 0.120
0.025 0.105 0.118 0.128 0.134 0.142 0.147 0.147 0.147 0.147 0.148 0.147
0.010 0.128 0.148 0.161 0.166 0.176 0.187 0.186 0.187 0.186 0.186 0.183

U2

0.100 0.073 0.079 0.086 0.091 0.094 0.095 0.095 0.096 0.095 0.096 0.095
0.050 0.088 0.098 0.106 0.112 0.117 0.119 0.119 0.120 0.120 0.120 0.119
0.025 0.104 0.118 0.128 0.133 0.141 0.146 0.146 0.146 0.146 0.147 0.146
0.010 0.128 0.147 0.161 0.166 0.175 0.185 0.185 0.186 0.185 0.185 0.181

√
nD

0.100 0.608 0.679 0.723 0.745 0.762 0.775 0.781 0.783 0.787 0.790 0.789
0.050 0.658 0.734 0.784 0.812 0.831 0.847 0.850 0.858 0.857 0.863 0.860
0.025 0.702 0.785 0.845 0.870 0.892 0.915 0.922 0.926 0.923 0.930 0.930
0.010 0.753 0.853 0.915 0.945 0.971 1.000 1.010 1.013 1.021 1.018 1.015

√
nV

0.100 1.143 1.228 1.295 1.335 1.362 1.383 1.391 1.398 1.403 1.406 1.404
0.050 1.232 1.332 1.401 1.445 1.480 1.504 1.512 1.522 1.525 1.530 1.530
0.025 1.310 1.433 1.510 1.548 1.592 1.624 1.633 1.641 1.641 1.648 1.642
0.010 1.426 1.554 1.636 1.674 1.722 1.776 1.789 1.787 1.797 1.793 1.792

4. Power study under some alternative models

We approximate the power of GOF tests for different EDF statistics against alternative distributions
of the SN . All the considered distributions account for asymmetry in the data. Figure 2 reports
the power for a test of size 95% against the following models:

Lognormal: Lognormal(μ = 0, σ ) with location μ and shape parameter σ (see [21, p. 208]).
We consider σ equals 0.3, as small values of σ makes Lognormal distribution similar
to SN .

Gamma: Gamma(α, β) with shape α and rate β. Large values of α makes this model similar
to the SN . For seeking of comparison with [24] we consider these special cases:
exponential distribution and the χ2 distribution with four degrees of freedom.

Skew-T : ST(μ = 0, σ = 1, γ = 0.5, df ) where μ, σ and γ are location, scale and shape
parameter respectively, and df indicates the degrees of freedom. This model, intro-
duced byAzzalini and Capitanio [5], encompasses the SN through the df parameter:
ST(μ, σ, γ, df ) → SN (μ, σ, γ ) as df → ∞. We consider the Skew-T model with
1, 3 and 10 df .

Weibull: Weibull(c = 2, α = 1), where c and α are shape and scale parameters, respectively
(see [22, p. 641]). Large values of c makes the Weibull model similar to the SN .

Statistic W 2 is generally the most powerful, followed by the U 2. We also used the AD test
statistic, which is not shown here (see [13]) as its power was unsatisfactory for moderate sample
sizes (n < 100) in general, except for Weibull alternatives with small α. As expected, Figure 2
shows that the power reduces when alternative models are close to the SN . This occurs for the ST
with df ≥ 10, the Gamma model with α ≥ 4, the Weibull model and for the Lognormal model.
We can see that GOF tests proposed here are more powerful than those in [24]; in particular,
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Journal of Applied Statistics 229

Figure 2. Power functions for the alternative models.

for n ≤ 20. This power difference, generally, reduces asymptotically, in fact for n = 500 and
Weibull(2, 1) the power is lower: 47% in [24] against 38% here. However, there are cases, such
as χ2

4 , where our tests still have considerably more power even for n = 500: 75% against 52%
in [24]. Also, our proposal is more powerful than the one in [15]. As appears in [15, Tables 6 and
7], our tests are more powerful for the Lognormal, Gamma and Weibull models for n = 100 and
n = 500 (sample sizes there considered).
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230 S. Cabras and M.E. Castellanos

Table 2. Estimations and test statistic W 2 for AIS data.

Variables Sex μ̃ σ̃ γ̂ W 2 Quantile 0.95 SN fitting

WT Female 67.343 10.915 −0.215 0.034 0.120 Yes
Male 82.524 12.406 0.339 0.049 0.120 Yes

RCC Female 4.404 0.321 0.696 0.047 0.120 Yes
Male 5.027 0.351 0.293 0.176 0.120 No

Figure 3. Quantile–Quantile-plot of sample female (left) and male (right) weights and RCC against the
theoretical distribution F .
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5. Application to real data

In this section we consider two datasets in order to show how tests work. The first consists of an
artificial dataset, while the second is a real dataset where the SN has been used as a reference
model.

First we consider the Frontier dataset used in [3] to show a case when MLE of λ does
not exist. Using the strategy mentioned in Section 3.1, the adjusted MLE of λ is 8.14, while
the moment estimators of μ and σ are 0.88 and 0.76, respectively. Substituting the parame-
ters by these estimations and computing the statistics as mentioned in Equations (1), we get
W 2 = 0.026, U 2 = 0.025,

√
nD = 0.441 and

√
nV = 0.791. All these values are well below the

quantile 90% showing that the Frontier data are compatible with the SN model.
The second dataset is a subset of the Australian Institute of Sport (AIS) data first examined

by Cook and Weisberg [14] within a framework of regression analysis. The AIS data consist
of several biomedical measurements on 102 male and 100 female athletes. In [5,6] the SN is
used to model some measurements. These data are also analysed in [1,17] using different skew
distributions. In [15] the fit of the SN to several variables using a modification of the AD test is
done. Here we consider two of the four variables analysed in this last paper, but fitting a separate
SN to males and females. The two variables considered are the weight (WT) (in kg), and the
number of red cells count (RCC). Table 2 shows parameter estimations for each variable and sex,
the value of W 2 (the most powerful EDF statistic), 95% quantile for n = 100, and the conclusion
about the fitting of the SN . Table 2 shows the SN results to be compatible for all measurements
but the RCC in males. In this case another model is needed. Quantile–Quantile-plots in Figure 3
informally confirm the results of the test. These results partially agree with those in [15, Table 10]
where the sex factor has been ignored. In fact, the SN does not fit the RCC, while here it fits
only for females. This also may be an evidence of sexual dimorphism as discussed in [23] and
references therein.

6. Conclusions

We propose GOF tests that depend only on sample size. This procedure, based on m(t) fully
agrees with the Neymann hypothesis testing, as rejection regions are fixed prior to observing
the data. The tests are based on the Jeffreys’ prior Equation (3), which is used to eliminate
the nuisance parameter γ present in the distribution of the test statistics. This may be viewed in
contrast to the methodology in [15], where the dependence on γ is avoided using a post-processing
of the quantiles of the null distribution of the test statistics. Goodness-of-fit tests used here as
benchmarks are less powerful [15,24]. This is true, in general, for tests based on a double use of
the data: parameter estimation, γ̂ , and calculus of p-value on observed tobs. Another open field of
research could be the assessing of the GOF for the Skew-T model. There, degrees of freedom is
another nuisance parameter present in the null distribution of the test statistic.
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