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The Role of Randomization in Inference 

Dennis V. Lindley 

1. Introduction 

Who is there that has not longed that the power and privilege 
of selection among alternatives should be taken away from him 
in some important crisis of his life, and that his conduct 
should be arranged for him, either this way or that, by some 
divine power if it were possible, -- by some patriarchal power 
in the absence of divinity, -- or by chance even, if nothing 
better than chance could be found to do it? Anthony Trollope 
Phineas Finn Vol. II, Ch. LX. 

In the design and analysis of an experiment there are several places 
where an element of randomization can be used: the design can be se- 
lected at random, the result can have a random element adjoined to it, 
or the random element already present can be used in the analysis. The 
first technique is much used by statisticians; for example, in making a 
survey of a population, Basu (1980) calls it prerandomization. The se- 
cond, postrandomization, is hardly ever advocated. Statisticians' at- 
titude towards the third is ambivalent; randomization is used when 
making a significance test but denied when effecting a likelihood anal- 
ysis. In this paper we discuss all three ideas and argue that random- 
ization is undesirable in each case. This follows easily from the 
Bayesian approach but also from two, simple principles; of condition- 
ality and similarity. Both viewpoints lead to the likelihood principle 
which completely denies the relevance of any random element once the 
data are available. The situation with experimental design is subtler. 
It is argued that it is important to ensure that the effect observed is 
really due to the factor that appears to cause it and not to some oth- 
er, unrecognized factor. To do this a procedure is required which is 
closely related to, but different from, randomization: we call it 
haphazardness. Thus the practical advice to randomize is sensible, but 
to make use of this randomization in the analysis is not. We also 
discuss the important concept of exchangeability in the use of experi- 
mental data. 
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2. Analysis of Data 

The discussion begins with consideration of whether randomization 
has any role to play in the analysis of data: we shall later discuss 
the role in the design of an experiment. This is the correct, logical 
order since one cannot sensibly discuss the choice between two experi- 
mental designs until one has discovered how to analyze the data they 
might yield. 

An experiment consists of a protocol to be followed and a specifica- 
tion of the possible outcomes of pursuing the protocol. Denote by X 
the set of outcomes x. In analyzing the data we have to report the 
effect the data have on something. We follow the usual statistical 
device of introducing a space o of parameters e and linking it to X by 
supposing that for each 0 there is a probability distribution over X. 
Our task is to make a statement about 6 on the basis of the result x 
of the experiment. The form of this statement need not concern us: 
our results will be valid for any form. 

An experiment is a triplet E = {X, o, p(xle)} where p(xle) is the 

probability1 of x, given e: that is p(xle) > 0 for all (x, e) and 

X.X p(xli) = 1 for all 6. We will follow Basu (1975) in referring to 

the information (about e) contained in an experiment E that yields 
data x: write I(E, x). We want to see what element randomization 
might play in the evaluation of this information. 

Consider first the Bayesian view. This says that (E, x) provides 
information about a by changing the probability distribution for 6. 
The change is effected by multiplying the original distribution by the 
likelihood function p(xle), for the observed x, and then normalizing 
the result. In other words, the information in (E, x) is entirely con- 
veyed by the likelihood function for x. A few words in amplification 
may be in order. 

The function p(x]e), considered as a function of x for fixed e is a 
probability mass function: we sometimes write p(- o) to emphasize the 
distinction between the function and its value p(xle) at x. Similarly 
p(xl-) is the likelihood function of e for data x. The likelihood 
function does not sum (over o) to 1 and indeed any constant multiple 
cp(xj|) will serve as a likelihood. This is clear from Bayes theorem. 
The Bayesian argument therefore immediately leads to the 

Likelihood principle I(E, x) = I(o, p(xl-)). 

In words, given x, the only elements of E = {X, a, p(-I-)} that are 
relevant in extracting the evidence are o and p(xl.) for the observed 
x. Notice that the principle enables us to dispense with X and with 
p(.1.) except for the observed x. In particular no randomization 
whatsoever enters into the analysis. An alternative expression of the 
principle is to say that if E1 and E2 are two experiments sharing a 
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common o and results xl and x2 share a common likelihood, p(xll.) = 

cp(x21.), then I(E1, x1) = .(E2, x2), since both are equal to 

I(O, p(x' *)). 

Randomization, or more precisely postrandomization, can take two 
forms. External randomization adds a random element to x. Internal 
randomization uses the random element already present in p(*le). As an 
example of the latter consider a significance test of the null hypothe- 
sis 0 = e0: this uses a significance level 

'xER P(xleO) 

where R is a set (the rejection region) in X. The likelihood principle 
rules out both forms of randomization. We now show that two simple 
principles, quite outside the Bayesian paradigm, also lead to the like- 
lihood principle. The argument is due to Basu (1975), following ear- 
lier work by Birnbaum (1962,1972). 

Consider two experiments Ei = {Xi, o, p(xile)} (i = 1, 2) sharing a 

common parameter space o, and derive from them a new experiment E, 
called a mixture experiment, with the protocol: with known probability 
a perform E1, with complementary probability (1 - a) perform E2. (It 
is important that a does not depend on e.) The result of performing E 
will be a pair (i, xi), i = 1, 2. 

Conditionality principle I(E, (i, xi)) = I(Ei, xi). 

In words, this says that if, in performing E, you perform E1 and obtain 

X1, it does not matter at all that you might have performed E2, and 

similarly with the roles of E1 and E2 reversed. The principle is dis- 

cussed below. 

The experiments E1 and E2 above are said to be similar if there is a 

one-to-one correspondence between the elements of X1 and X2 which pre- 
serves the probability distributions for all e. If the correspondence 
is x2 = gx1 or x1 = g lx2, then p(x21e) = p(xlle) whenever x2 = gx1. 

Similarity principle If E1 and E2 are similar then 

I(E1, x1) = I(E2, x2) whenever x2 = gx1. 

We now prove that these two principles together imply the likelihood 
principle. Let E1 and E2 be any two experiments with a common o and 
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with xl, x2 such that p(xlle) = cp(x2le) for all e and some c: that 

is, x1 and x2 yield the same likelihood function. Let E be the mixture 

experiment derived from E1 and E2 with a = 1/(1 + c) and 1 - = 

c/(l + c). Then by the conditionality principle 

_T(E, (1, x1)) = It(E1, x1) 

and (2.1) 

I(E, (2, x2)) = I(E2, x2) 

The likelihood for x1 in E is p(xil-)/(l + c) and for x2 is 

cp(x21|)/(1 + c), but p(xlJ.) = cp(x21.), so that x1 and x2 in E have 

the same likelihood; indeed, in E, p(xll.) = p(x21.). Now consider a 

transformation of E into itself with gx1 = x2 and gx2 = xl but other- 

wise gx = x. By the similarity principle 

I(E, (1, x1)) = I(E, (2, x2)). (2.2) 

Combining (2.1) and (2.2) we have I(E1, x1) = I(E2, x2) which is the 

likelihood principle. 

It has therefore been shown that the conditionality and similarity 
principles together rule out all forms of randomization in the analysis 
of data. Let us therefore consider the two principles. The similarity 
one is so obviously correct that it is superfluous to comment. The 
conditionality principle is perhaps not so transparent. Statisticians' 
attitudes to it have been ambivalent. Sometimes it is accepted as ob- 
vious, as when a random sample of size n is taken, call this En, and 

the analysis ignores other possible Em, m f n. Sometimes it is vig- 

orously resisted, as with significance tests when the likelihood prin- 
ciple it implies is violated. The ambivalence is most clearly seen in 
connection with ancillary statistics. 

A function, or statistic, t(x) is ancillary if its distribution does 
not depend on e. We may then write 

p(xle) = p(t(x))p(xlt(x), o) 

and E is clearly a mixture of experiments Et, Et being the experiment 

in which the ancillary takes the value t. Statisticians often, to 
reduce E to Et, use an ancillary but then go on to use a significance 
test based on a region in the sample space of Et, thus violating the 

likelihood principle. Cox (1980) is an example. Embarrassment is 
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caused by the fact that there may exist several ancillaries and the 
unresolved question then arises of which one to use. 

My own attitude to the conditionality principle is that, on reflec- 
tion, it is entirely acceptable. The fact that, in performing E1, you 
might have performed E2, where the choice between E1 and E2 was by a 
chance mechanism known to you, seems irrelevant. There is the addi- 
tional fact that it leads to the likelihood principle, which is not 
known to give rise to difficulties. 

One objection to our argument says that sometimes the basic struc- 
ture of E as a triplet {X, o, p(xle)} is inappropriate because no 
natural parameter space o exists. These are situations in which there 
is one natural probability measure over X and the purpose of the ex- 
periment is to see whether this probability reasonably obtains. The 
description of E is a pair {X, p(x)} and p(x) is often called the null 
hypothesis. A significance test of the null hypothesis is obtained, as 
above, by selecting a rejection region R of X with level 

XxER p(x) = a- 

In this context the likelihood principle is vacuous because there is no 
likelihood. The conditionality and similarity principles still make 
sense, with the set o containing a single point, and the proof given 
above says that E1 = {X1, pl(x)} and E2 = {X2, P2(x)} have the same 

information, about whether their respective null hypotheses obtain, if 
pl(xl) = p2(x2). This condition does not typically obtain with a sig- 
nificance test. 

However, the conditionality principle is doubtful in this context 
since queries about Pl(x) are not necessarily the same as those about 

P2(x) or about the mixture probability apl(x) + (1 - a)p2(x). In the 
treatment with a nondegenerate parameter space the shared value of e 
means that the query concerns, and the information is about, this 
common feature. This is not true in the case of only one probability 
distribution. 

My response to this line of reasoning is that it does not make sense 
to test a hypothesis without alternatives in mind. Data x may be 
astonishing according to the null hypothesis (or p(x) is small) but, 
unless we can think of an alternative with appreciably larger prob- 
ability for x, should we not still accept the null; for rare events 
should happen sometimes, albeit rarely. Any consideration of what 
constitutes a "good" significance test involves tacit discussion of 
alternatives. Furthermore, by the likelihood principle, we know that, 
whatever alternatives were considered, only p(x) from the null value 
(plus p(xj-) from the alternatives) would be required, so why use p(x') 
for x' f x when the alternatives are unspecified? Another point is 
that no one has so far succeeded in constructing a satisfactory theory 
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of significance tests of a null hypothesis without introducing alterna- 
tives. 

3. Design of experiments 

We now turn to the question of whether randomization plays any role 
in the design of an experiment, as distinct from its analysis. Let us 
first note that from a Bayesian view it does not. In that view the 
design of an experiment consists of a choice between a number of deci- 
sions, each one being a decision to carry out a particular experiment. 
Any decision has its expected utility, as seen by the experimenter, and 
the best decision is the one that maximizes this value. Then if two 
possible experiments (or decisions) E1 and E2 have respectively ex- 

pectea utilities u1 and u2, a random choice between them, in which E1 
is selected with probability p, has expected utility pu1 + (1 - p)u2. 
If u1 f u2, and for definiteness u1 > u2, this value is less than ul 
and the random choice is never preferred. It is only when u1 = u2 that 

the randomized experiment need be considered but then its expected 
utility is the same as the common value for E1 and E2 and therefore has 

no advantage over them. The extension from two to any number of ex- 
periments is immediate. In summary, randomization can do no good, and 
may do harm in the decrease of utility. 

The conditionality principle also denies the value of experimental 
randomization because it says that if we randomly choose between E1 and 

E2 and in fact perform E1, then the fact that E1 was randomly selected 

is irrelevant in the subsequent analysis. 

Consequently there is a direct conflict between the Bayesian view, 
the conditionality principle, and accepted practical wisdom which says 
that randomization is an essential part of good experimental design and 
that its introduction by Fisher was a major, scientific advance. In 
the rest of this paper we resolve this apparent conflict by showing 
that it is not the use of a randomizing device that is important but 
rather a certain haphazard quality that is needed and this haphazard- 
ness is accommodated in the Bayesian approach. Thus a minor change of 
emphasis confirms the practical wisdom and supports Fisher's brilliance 
whilst preserving the logical, coherent view of inference. 

The conflict resolution is most easily discussed in the context of 
an example. Suppose that there is an even number, 2n, of units avail- 
able for experimentation. A unit may be a person in a medical ex- 
periment or a plot of land in an agricultural field trial. Half of the 
units are to be given a treatment T, the other half are to be denied 
the treatment T: in medical language they will receive a placebo. The 
only unresolved question in the experimental design is which n units 
are to be given the treatment. One possibility is to assign the treat- 
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ment at random so that each of the (2n)!/(n!)2 possibilities has the 
same chance of being selected. Some time after the treatment has, or 
has not, been applied to a unit a measurement Y is to be made on the 
unit, the possible values of Y being conventionally 1 or 0. In the 
medical situation these may be "dead" or "alive": in the field trial 
"infected, or not" The purpose of the experiment is to judge whether 
or not the treatment is beneficial (in the sense of reducing deaths or 
infections) and specifically whether it should be given to other units 
similar to those units that took part in the experiment. 

Before proceeding with the example there is one important matter to 
3 be considered. Suppose that some of the units can be recognized as 

being different from the others in a way that might reasonably affect 
Y. Thus we might recognize the females in the medical experiment as 
being less likely to die than the males. In that case the common view 
amongst practitioners, and a view which can be supported by arguments 
within the Bayesian framework, is that randomization should not take 
place over all 2n units but only within similar units: in the example, 
within the women, and within the men. We speak of sex here as being a 
covariate: or we say that the experiment is divided into blocks, here 
two, the males and females. It will therefore be supposed that no 
such relevant subsets can be recognized amongst the 2n units: rele- 
vant, that is for Y, and recognized by the experimenter. It is then 
that randomization becomes a serious possibility and, as we next show, 
tries to guard against relevant subsets that are not recognized. 

To illustrate the possibilities suppose that the treatment is not 
assigned at random but according to some rule or some deliberate 
policy. Suppose moreover that the assignment depends in an unrecog- 
nized way on some quantity X, which also assumes only values 1 and 0, 
and that X affects Y: in the language above, X is a covariate. The 
key point here is that X is not recognized but is relevant to T and Y. 
Since a randomizing device is not associated with any quantity X (for 
this is part of what we mean by "random") the assignment of the treat- 
ment at random tends to avoid the association with X. 

The following example taken from Lindley and Novick (1981) shows 
what might happen. Table 1 gives the result of an experiment on 

TABLE 1 

Effect of a treatment, T, on death rates 

Y = 1, dead Y = 0, alive Death rate 

T 20 20 40 50% 

T 24 16 40 60% 

80(n = 40) persons recording Y = 1, dead, and Y = 0, alive. The 
death rate for the treated individuals at 50% is lower than that for 
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those receiving the placebo at 60%. The conclusion, ignoring sampling 
error, is that the treatment has been efficacious in reducing the death 
rate by 10%. However, it happened that an unrecognized covariate was 
present and Table 2 shows the results that were obtained after the ex- 

TABLE 2 

Effect of a treatment, T, on death rates, 
allowing for a covariate X. 

X = 1 Y = 1, dead Y = 0, alive Death rate 

T 12 18 30 40% 

T 3 7 10 30% 

X= O 

T 8 2 10 80% 

T 21 9 30 70% 

periment has been completed and the covariate was subsequently recog- 
nized. Notice that the covariate is associated with the treatment 
because 30 treated patients had X = 1, whereas only 10 had X = 0; the 
numbers being reversed for those having the placebo. The covariate is 
also associated with Y, the death rates for patients with X = 1 being 
much lower than for those with X = 0. We thus have the situation de- 
scribed above with the unrecognized covariate being associated with 
both treatment and response, Y. Now look at the death rates within 
the previously unrecognized classes, X = 1 and X = 0. Within both of 
these the effect of the treatment is to increase the death rate by 10%, 
exactly the amount by which the treatment was seen to decrease the 
death rate in Table 1 before the covariate was recognized. The paradox 
that a treatment can be bad for men (X = 1) and bad for women (X = 0) 
(Table 2) but good for people (Table 1) is usually known as Simpson's 
paradox (1951) though it is discussed in Cohen and Nagel (1934). 

The example is enough to demonstrate the need to ensure that the 
allocation of treatments to units is done in a way that is unaffected 
by some covariates, namely those that might affect Y, for otherwise 
differences apparently attributable to treatment might really be due to 
the covariate. In our example the final effect is exactly the opposite 
of the apparent one. It is this danger that randomization is designed 
to avoid. Before we see how well it performs, let us be more precise 
about what is meant by a randomizing device. 

The archetype randomization tool is a table of random numbers. A 
table of numbers is random for you if the chance of any digit in any 
place is one tenth irrespective of the digits in any other places: 
indeed, irrespective of anything else. Consequently the use of a table 
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of random numbers would appear to ensure that the treatment allocation 
is unaffected by a covariate. However it is not as simple as that. In 
a finite set of 2n units there is a chance, albeit a very small one, 
that all the treated units have X = 1 and all the untreated X = 0. 
This chance may increase substantially when it is remembered that the 
number of possible covariates is very large. It is therefore prudent, 
after having allocated the treatments to units by randomization but 
before conducting the experiment, to inspect the allocation to see 
whether it suggests a covariate with which it might be associated. 
Our understanding is that this inspection, after randomization but 
before experimentation, is carried out by practitioners; that they 
would dismiss an allocation that appeared to them unsatisfactory and 
go on to perform a second randomization. Thus if the allocation of 
treatment to males in our medical example would have resulted in all 
the treated males being of one blood type and the untreated ones being 
of the opposite type, and if it is thought that blood type might affect 
the response Y, even though this had not been thought of before the 
allocation suggested the idea, a new allocation would be selected. 

If this inspection of the results of randomization is admitted to be 
a useful precaution, one might ask why randomize in the first place? 
Why not take a possible allocation, consider it for the presence of 
possible covariates, as with the randomized allocation, and accept it 
as the design? We describe a possible allocation that the experimenter 
judges to be free of covariate interference to be haphazard. Random- 
ization may be a convenient way of producing a haphazard design. We 
argue that it is the haphazard nature, and not the randomization, that 
is important. It was a major scientific advance when Fisher recognized 
this need for precaution in design. 

Let us now return to the Bayesian position. Therein it is necessary 
to consider each possible experiment, that is, each possible alloca- 
tion, and evaluate its expected utility. If an allocation has a pos- 
sible covariate, perhaps recognized, like the blood-type above, only 
after considering that design, then it is necessary to assess its 
likely effect in order to evaluate the utility. This would be compli- 
cated and hardly likely to be worth the effort if the effect is small, 
as it will be since covariates with large effects will almost certainly 
have been recognized at an earlier stage in the design. It seems 
therefore that a reasonable approximation to the optimum design would 
be to select a haphazard design in the sense of haphazard used above, 
namely unlikely to involve a relevant covariate.4 

Consequently the two, apparently conflicting, views of the random- 
izer and the Bayesian have been brought into agreement. It is the 
haphazard nature of the allocations, not the random element, that is 
important; and the use of a haphazard design saves the Bayesian a lot 
of trouble, with small chance of any appreciable gain, by producing a 
situation relatively easy to analyze. A further point is that a 
detailed, Bayesian consideration of possible covariates would almost 
certainly not be robust in that the analysis might be sensitive to 
small changes in the judgments about covariates. 
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4. Use of Experimental Results 

There is another aspect of experimental design that is worth ex- 
ploring because it helps understand how we may make inductive infer- 
ences. The basic purpose of an experiment is to help our understanding 
of the world in order to make future judgments or actions more wisely 
than otherwise. Thus, in the medical example we wish to know whether 
to apply the treatment to other people who did not take part in the 
trial -- should you receive the treatment? In the agricultural situa- 
tion a farmer needs advice on which variety to plant. As soon as this 
is recognized we see that it is necessary to establish some connection 
between experiment and future judgments: between you and the patients 
in the trial. How is this to be done? Clearly the nature of the 
connection will depend on the allocation of treatments in the experi- 
ment, for whether or not you receive the treatment will depend on 
considerations that are different from those in the experiment: thus, 
you will not receive the treatment at random, or even haphazardly. A 
method for establishing the connection has been suggested by de Finetti 
(1970) under the name of exchangeability and we now study the way 
in which the notion can be used in the interpretation of an experiment. 

5 We are concerned with an infinite sequence of random quantities 

Xi (i = 1, 2, ...) each of which can take the values6 0 or 1. Consider 

any set of n of the quantities and the probability that a designated 
subset of r of them take the value 1, the remaining (n - r) being 0. 
The infinite sequence is said to be exchangeable if this probability 
depends only on r and n; so that it does not depend on which n were 
selected nor on which r of them had the value 1. The probability is 
written p(r, n). The idea is that it does not matter which particular 
X's are being considered, any Xi can be exchanged for any Xj. The 

language may usefully be extended so that we speak of Xn+l being ex- 

changeable with (X1, X2, ..., Xn) if the extended sequence (X1, X2, 

...,X X, Xn+) is exchangeable. To anticipate: are you (Xn+l) ex- 

changeable with the patients in the medical trial? 

One way in which a sequence can be exchangeable is for each X. to 

have the same probability , a say, of being 1, and for all the X's to 
be independent. Such a sequence is termed Bernoulli. Then p(r, n) = 

r(l - e)pn-r. Furthermore, when this happens lim r/n = e, with prob- 
n-3o 

ability one. De Finetti proved a remarkable theorem that every ex- 
changeable sequence is a mixture of such sequences. Precisely, the 
probability structure for any exchangeable sequence can be obtained by 
specifying a probability distribution for e, the limiting frequency, 
and requiring the conditional distribution, given e, to be Bernoulli. 

We sall refer to as the chance that X We shall refer to 6 as the chance that X. = 1. 
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It is easy to see how these ideas can be applied to experiments. 
Consider first an experiment, even simpler than the one discussed 
above, in which n units have been treated similarly with results 
Y1' Y2, ..., Yn. A possible interpretation of "similarly" in the last 

sentence is to make the judgment of exchangeability of the Y's so that 
the probability of these results is simply p(r, n), where exactly r Y's 
equal 1, and p(r, n) has the de Finetti form. Consider now a further 
unit, (n + 1); you may judge that the,as yet unobserved, value for it, 
Yn+l' is exchangeable with the previous Y's. The uncertainty about 

that unit may be described by the probability of Yn+l, given y(n) 

(Y1' Y2 .... Yn). Now 

(Yn+l = 1 Y(n)) = p(r + 1, n + l)/p(r, n) 

and both the numerator and denominator have the de Finetti form. If 
the judgment of exchangeability is appropriate this solves the old 
problem: if an event has been observed to happen r times out of n, 
what is the probability that it will happen on the next, (n + l)st, 
trial? 

It is an aside to our main thrust but notice that the answer to 
this question depends on the probability assigned to the limiting 
frequency, denoted e above. To illustrate, suppose that the 20 births 
last week in a maternity unit had all been male (r = n = 20) then my 
probability that the next birth will be a boy is a little over 0.51. 
In contrast if 20 tosses of a thumb tack had all fallen with the point 
uppermost then my probability that the next toss will have the point 
uppermost is nearly 1. The reason is that the limiting frequency of 
male births is known to be stable around 51% whereas no comparable 
results about thumb tacks are known to me. Previous solutions to this 
problem have failed to differentiate between sex and thumb tacks. 

Now let us return to the original experiment with 2n units, one half 
receiving a treatment T and the other half a placebo T. Let us denote 
the results by y(2n) when the treatment applications were T(2n). Now 
consider T2n+l1 the application to a new unit, which may be either T or 
T. The uncertainty concerns Y2n+l and the relevant probability is 

P(Y2n+l T2n+, y(2n) T(2n)) 

= 
p((2n+l) T(2n+l))/p(y(2n) I T(2n)). (4.1) 

The conditions are ready for an assumption of exchangeability. First 
consider the 2n units that took part in the experiment. These are not 
exchangeable in the response variable Y because some received the 
treatment and some did not, but if we take the treated and untreated 



442 

units separately it is typically satisfactory to suppose each set ex- 
changeable. Thus if units 1 thru n received T and (n + 1) thru 2n T, 

each of those subsets could be exchangeable9 in Y: Y1, Y2, ..., Y 

and Yn+l' Yn+2' ..., Y2n. We then call into play the de Finetti repre- 

sentation using chances 01 for the first, treated set and 02 for the 

remainder receiving the placebo.l1 A joint probability distribution 
for a1 and 02 enables the denominator in (4.1) to be calculated as 

p(rl, n; r2, n) where r1(r2) of the treated (untreated) units had 

Y = 1. 

The numerator of (1) is not nearly so straightforward. For defi- 
niteness let us suppose T2n+l = T; that is, the new unit receives the 

treatment. Then a possibility is to suppose unit (2n + 1) exchangeable 
with the n units that received the treatment. Were it to receive the 
placebo, exchangeability with the other n units might be considered and 
it is the comparison of these two possibilities, for T2n+l = T and 

T2n+l = T, that is vital to you as unit (2n + 1). However the factors 

that govern the choice of T2n+l are clearly rather different from those 

that affected T(2n. You are not taking part in a designed experiment 
but are making a reasoned choice in the light of the results of that 
experiment. To appreciate the difficulties suppose, as above, that 
associated with each unit is a binary variable X which is not observed 
and where the allocation of treatment to the units depends on the 
values of X. Suppose all Xs (1 < s < 2n) are judged exchangeable and 

that the induced chance that X = i is ai. We abbreviate this to say 
X = i has a chance ai. Suppose T = j, given X = i, has chance 3ji; and 

finally Y = k, given X = i and T = j, has chance Ykji' The probability 
for any of the 2n units that Y = k, given T = j, is, for known chances 

p(Y = k T = j) = p(Y = k T = j, X = i)p(X = i | T = j) 
i 

= ykjiP(T = j X = i)p(X = i)/p(T = j) 

= X YkjiBjiai/l %jlal. (4.2) 
i 1 

Next consider the new unit, (2n + 1): 

(4.3) p(Y = k I T = j) = X YkjiP(X 
= i I T = j) 

1 
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but you cannot reasonably infer that p(X = i I T = j) is as before 
since the selection of T2n+l will be based on quite different proce- 
dures from those adopted in the experiment. For example, it might be 
reasonable to suppose T2n+l is independent of X2n+l, then (4.3) becomes 

p(Y = k T = j) = Ykjii (4.4) 

and hence Y2l and (2n) (equation (4.2)) are governed by different 

chances and exchangeability is unavailable. Notice that if the allo- 
cation of treatment does not depend on Xi (that is, sji does not in- 
volve i) then (4.2) and (4.4) are equal and the usual analysis pro- 
ceeds even though Y depends on X. Equally if Y does not depend on X 
(the null case of no treatment effect, Ykji = kj) (4.2) and (4.4) are 

equal. 

We therefore see, in amplification of the point made earlier, that 
if the allocation of treatments in the experiment depends on a hidden 
covariate that affects the response it will not easily be possible to 
infer the effect of the treatment on a further unit; in particular, ex- 
changeability will not be a reasonable option. Inference will be pos- 
sible by placing probability distributions on the sets of chances 

{ai, ji', Ykji}, updating them in the light of the data and hence 

making a probability statement about the chances in (4.4). As we said 
before, this will be difficult because of the complexity of the analy- 
sis and the possible sensitivity of the final result to the assumptions 
made about the chances. 

If the treatment allocation is uninfluenced by the hidden covariate 
X - in the notation %ji does not depend on i - then the assumption of 

exchangeability is reasonable and the analysis is straightforward. As 
we have seen, this can be achieved by a haphazard assignment. Both 
numerator and denominator in (4.1) can be calculated easily. Thus if 
rl(r2) of the n treated (untreated) responded with Y = 1 then the prob- 
ability that the new unit will have Y2n+l = 1 were it to receive the 
treatment is, from (4.1), 

p(r1 + 1, n + 1; r2, n)/p(rl, n; r2, n), 

whereas were it to receive the placebo, the probability is 

p(rl, n; r2 + 1, n + 1)/p(r1, n; r2, n). 

These probabilities may be found from the exchangeability considera- 
tions and de Finetti's theorem. 
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We conclude by noting two points that are so important that they 
must be mentioned, yet have so many ramifications that they cannot be 
discussed adequately at the end of a paper. First, the judgment of 
exchangeability is a personal one, so that the analyses of the ex- 
perimental results by two people may differ. In cases of dispute only 
extended experimentation can bring people into agreement. This is a 
basic principle in science. The second point, related to this, is that 
no notion of cause and effect has been introduced into our analysis. 
The notion that the treatment causes an increase in response is lan- 
guage that is ambiguous and yet totally avoided by the unambiguous 
judgment of exchangeability. The fact that some people still do not 
believe that smoking causes lung cancer is a reflection of the fact 
that they have not felt able to make some exchangeability judgments 
that they might have been able to make with experiments in which the 
relationship between smoking and lung cancer was more clear-cut than 
it is in the presently available data. Causation is therefore a per- 
sonal matter, not an objective fact, and the recognition of this is an 
important aid in understanding the nature of the phenomenon we refer 
to as causation. 

Notes 

For simplicity in presentation it will be supposed that X and o are 
both finite. 

2Birnbaum (1962) used the term "evidence". 

3The word is Fisher's: he spoke of the importance of recognizable 
subsets. 

4This use of randomization as an approximate, simplifying technique 
has been discussed in detail by Rubin (1978). 

5All the definitions below are for finite sequences but of arbitrari- 
ly large size. With a finite upper bound the results would only be 
approximately true. 

6The argument extends to more general cases: we take the case of two 
values only for simplicity in exposition. 

This is immediate from the definition when r = n = 1. 

8Some writers use the term propensity. 

A slightly stronger assumption is actually needed for what follows 
but details are omitted. 
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1Some writers like to concentrate on 01 and e2 to the exclusion of 
the future unit (2n + 1) and, in particular, to discuss whether the 
treatment is effective by considering if o1 = e2. Our approach makes 
better sense. 

1Analogous to a probability for 0 in the discussion of exchange- 
ability above. 
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