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Abstract. In line with the renewed World Health Organization Global Malaria Control Strategy, we have advocated
the use of satellite imagery by control services to provide environmental information for malaria stratification, mon-
itoring, and early warning. To achieve this operationally, appropriate methodologies must be developed for integrating
environmental and epidemiologic data into models that can be used by decision-makers for improved resource allo-
cation. Using methodologies developed for the Famine Early Warning Systems and spatial statistics, we show a
significant association between age related malaria infection in Gambian children and the amount of seasonal envi-
ronmental greenness as measured using the normalized difference vegetation index derived from satellite data. The
resulting model is used to predict changes in malaria prevalence rates in children resulting from different bed net
control scenarios.

Malaria is an environmental disease. Anopheles mosqui-
toes transmit the causative agent, Plasmodium spp., when
the environmental parameters (such as water availability,
temperature, and humidity) permit. For example, in many
parts of the world where temperature is not a limiting factor,
malaria transmission is highly seasonal, with peak transmis-
sion following the period of peak rainfall.

Understanding how malaria varies in the community as a
result of seasonal or year-to-year changes in environmental
factors is important for the planning of national malaria con-
trol programs since it may allow interventions to be adapted
to specific sites or times of year. This is essential for the
effective control of the disease. Traditional methods used to
describe the level of malaria endemicity in a particular area
include calculating the percentage of children with an en-
larged spleen or with parasitemia. Assessing the relationship
between environmental parameters and such malariometric
indices in a quantitative manner is fraught with difficulties
since the prevalence of malaria may vary considerably with-
in a small area,1 and the data collected at a limited number
of points are not necessarily applicable to a broader region.2

Furthermore, prevalence data collected during a limited pe-
riod of time cannot describe the seasonal variations that oc-
cur even in areas of high endemicity.3 There are also im-
portant logistical and financial constraints to the organization
of widespread, often repeated, malaria parasite prevalence
surveys.

Consequently, the assessment of malaria endemicity in a
particularly locality must be extrapolated from a limited
number of surveys that are constrained in space (often to a
few villages) and in time (perhaps once at the end of the
rainy season for one or two years).

Recent developments in the use of geographic information
systems (GISs) for malaria risk mapping have resulted in an
ambitious plan to map malaria endemicity throughout Africa
using age-related prevalence rates. The Mapping Malaria
Risk in Africa/(Atlas du Risk de Malaria) initiative is using
both epidemiologic and entomologic data from all available
sources to determine the different epidemiologic situations
occurring throughout Africa and their respective malaria

risk. For areas where such information is unavailable, en-
vironmental parameters, such as rainfall and temperature,
have been used to predict transmission levels.4 Large inter-
national spatial databases of environmental factors in digital
format are increasingly available and provide information
relevant to predicting the distribution of disease vectors.
Such databases include both archived and near real time en-
vironmental data obtained from meteorologic satellites.

Meteorologic satellites, such as the polar orbiting and geo-
stationary satellites operated by the National Ocean and At-
mospheric Administration of the United States (NOAA se-
ries) and the European Organization for the Exploration of
Meteorological Satellites (Meteosat series), observe large ar-
eas of the earth’s surface (for Meteosat this includes the
entire African continent) with an optimal spatial resolution
of 1.1 km and 5 km, respectively. Their high temporal res-
olution (twice a day and 30 min, respectively), spectral char-
acteristics (which include both visible and thermal channels),
and high contrast capability means that they are ideally suit-
ed to global and repetitive studies of the environment. Con-
sequently, they are used widely for monitoring seasonal and
inter-annual changes in environmental phenomena such as
rainfall, temperature, plant phenology, and biomass. Envi-
ronmental proxies are derived empirically by comparing
land-based phenomena (e.g., meteorologic data or crop
growth characteristics) with post-processed satellite data.
Widely used environmental proxies include rainfall estimates
from cold cloud duration, vegetation indices (such as the
normalized difference vegetation index [NDVI]) and surface
temperatures (including sea surface temperatures [SST] and
land surface temperatures [LST]).5 Recent work has indicat-
ed the potential use of Meteosat thermal infrared data for
estimating ambient air temperatures.6

Numerous studies have been undertaken using NOAA–
advanced very high resolution radiometer (AVHRR) data to
predict the distribution and abundance of a range of veteri-
nary and medical disease vectors.7 Examples include Culi-
coides imicola (African horse sickness virus),8 Phlebotomus
papatasi (cutaneous leishmaniasis),9 Phlebotomus orientalis
(visceral leishmaniasis),10 Ixodes scapularis (Lyme dis-
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ease),11 Aedes spp. (Rift Valley fever),12 tsetse spp. (trypano-
somiasis),13 Rhipicephalus appendiculatus (East Coast fever
virus),14 Biomphalaria spp. (schistosomiasis),15 and Anoph-
eles gambiae Mopti form (malaria).16

The potential for using meteorologic satellite data in the
study of malaria transmission dynamics has been reviewed
in an earlier paper.17 Using epidemiologic and entomologic
data from The Gambia, we have shown that even simple
analysis of proxy ecologic variables derived from satellite
data can indicate variation in environmental factors affecting
malaria transmission indices. In particular, we have high-
lighted the potential for using information on the seasonal
changes in vegetation growth and senescence as indicators
of the length and intensity of the malaria transmission season
since these processes are closely allied to rainfall and hu-
midity.

This has been supported in analysis of temporal changes
in seasonal vegetation status estimated using the NDVI and
seasonal variation in the number of parasitologically diag-
nosed malaria cases in both The Gambia16,18 and Kenya18 and
clinical malaria cases in Niger,16 albeit with a lag period of
one month. Further studies have shown that the NDVI is
associated with the occurrence of different proportions of the
Mopti karyotypes in populations of An. gambiae in Mali,16

which are known to vary according to different ecologic
settings. Based on our preliminary results16,17 and further
work (Thomson MC, Connor SJ, unpublished data), we have
advocated the use of satellite imagery in providing environ-
mental information in near real time for malaria stratifica-
tion, monitoring, and early warning.5,19 For this potential to
be realized, appropriate methodologies must be developed
for integrating environmental and community-based epide-
miologic data into models that can be used by decision-mak-
ers for improved resource allocation.

The study described in this paper has addressed this issue
using methodologies developed by the United Nations Food
and Agricultural Organization Global Information and Early
Warning System. It provides for the first time statistical ev-
idence of the association between age-related prevalence
rates in the community and the seasonal amount of environ-
mental greenness measured using the NDVI.

Statistical modeling of the relationship between disease
prevalence and environmental data is complicated by spatial
relationships, which typically result in positive correlations
between observations from spatially close sampling units.
These correlations in turn negate the basic assumptions un-
derlying standard linear or generalized linear regression
analysis.20 Failure to allow for spatial correlation typically
leads to spuriously small standard errors of regression pa-
rameter estimates, and corresponding over-statement of the
significance of regression effects. However, few studies re-
lating vector distribution to satellite data have addressed the
problem of spatial correlation in the data sets. A rare excep-
tion is a study undertaken by Kitron and others,21 who un-
dertook a spatial analysis of tsetse fly distribution in the
Lambwe Valley of Kenya using Landsat Thematic Mapper
(TM) imagery and a GIS. They found that using multiple
regression analysis, they could explain 87% of the variance
in fly density using several TM bands. However, when they
applied spatial filtering using Moran’s I measure of spatial
correlation, a significant positive link was observed among

all trap data. They therefore concluded that the positive cor-
relation between spectral data and fly abundance was largely
due to determinants not included in the analysis.

In our study, we have used an adaptation of a method of
Liang and Zeger22 to make inferences that account for spatial
correlation. Results from the model developed demonstrate
the relevance of satellite data to studies of malaria transmis-
sion and indicate how remote sensing, GIS, and spatial anal-
ysis can be used to indicate village-based variation in the
effectiveness of an intervention. We have used the model to
predict changes in prevalence rates in children according to
different levels of bed net usage.

MATERIALS AND METHODS

Study area. The Gambia is a small country situated on
the west coast of Africa. It extends eastwards from the At-
lantic Ocean on either side of the Gambia River. The geo-
graphic determinants of malaria transmission in the country
have been described in detail elsewhere.23 Briefly, the coun-
try consists of flat, woodland savannah with swamps bor-
dering the river, which is saline to a distance of approxi-
mately 150 km from the coast. The climate is typical Sa-
helian (Sudano-Sahel) with a short rainy season that lasts
from June–July to October followed by a long dry season
covering the remaining months. Minimum and maximum
mean monthly temperatures range between approximately
268C and 338C with highest temperatures in the eastern part
of the country. Therefore, there are no temperature restric-
tions on malaria transmission in The Gambia, but transmis-
sion is restricted largely to the rainy season (rainfall for 12
meteorologic stations in 1992 ranged from 400 to 850 mm)
when temporary breeding sites and an environment suitable
for adult mosquito survival is created.

Considerable differences in malaria endemicity have been
found within The Gambia (i.e., village-based parasite prev-
alence rates ranging from 1% to 89% in children 1–4 years
of age) and these have been related to ecologic differences
affecting the vector (species and population density) and the
human population (use of bed nets).23

Epidemiologic data. Data were collected during the eval-
uation of the Gambian National Impregnated Bednet Pro-
gram, whose objective was to treat with insecticide (per-
methrin) all bed nets found in all villages covered by the
National Primary Health Care (PHC) Program over a period
of 2–3 years. The results of this evaluation have been re-
ported elsewhere.24,25 Prior to the study, the aim of the pro-
gram was explained to communities involved and verbal
consent was obtained from the mothers of children included
in the survey. This study was reviewed and approved by the
Scientific Coordinating Committee of the Medical Research
Council Laboratories, The Gambia and the Ethical Commit-
tee the Gambian Government.

A cross-sectional malaria morbidity survey of 2,276 chil-
dren (1–4 years of age) from 65 villages from 5 ecologically
different areas23 of The Gambia was carried out at the end
of the 1992 rainy season (Figure 1). Each child was given a
clinical examination and their age and weight/height was
recorded. Details from their health card were taken if a
health card was available. Finally, a blood sample was col-
lected by fingerprick for thick and thin blood films for de-
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FIGURE 1. A, distribution of the 65 study villages (dots) in The Gambia in 5 areas superimposed on the spatial distribution of the 10
seasonal classes of the normalized difference vegetation index (NDVI). The colors correspond to seasonal profiles in Figure 1B. Yellow
predominates as one moves northeastwards towards the Sahel while dark green predominates as one moves southwestwards. B, Seasonal
profiles of the NDVI obtained using ADDAPIX analytical software. Ten classes were chosen. Classes 1 and 2 are blue to indicate the fact
that their low values are associated with the presence of water. Dark green represents the longest seasonal profile while pale yellow indicates
a short vegetation cycle. The NDVI measure (called NDVIpS) used as a proxy for length of the malaria transmission season 5 the area under
the curve for the period first dekad of May until 3 dekads prior to the morbidity survey. A lag of one month between NDVI values and
malaria cases has been shown in an early study on Gambian data.16 This value was extracted for each village coordinate. A second variable,
the quadratic value of NDVIpS (NDVIpS^2), was computed and included in the analysis.

termination of malaria parasitemia. Approximately two-
thirds of the children came from PHC villages, half of which
had their bed nets treated with permethrin in 1992, a few
months before the survey. Entomologic studies were also

undertaken during the same period in three of the five study
areas.26

Satellite data. Data collected from channels 1 and 2 of
the NOAA-AVHRR sensor during 1992, 1993, and 1995
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TABLE 1
Summary information on data set used for analysis

Net usage in
original data* Type of village†

% Children with
health card

% Children with
Plasmodium
falciparum
infection

No. of children
in survey

A
A
B
B
C

Non-PHC
PHC

Non-PHC
PHC
PHC

0.69
0.6
0.77
0.78
0.73

0.47
0.49
0.38
0.29
0.27

218
373
425
461
562

* A 5 no net; B 5 untreated net; C 5 treated net.
† PHC 5 primary health care.

have been processed to produce a global archive of NDVI
images at a temporal resolution of one dekad (10 days) and
a spatial resolution of approximately 1.1 km. These data are
held by the National Aeronautics and Space Administration
(NASA) PATHFINDER 1 km project and can be accessed
over the Internet (http://edcwww.cr.usga.gov/landdaac/1KM/
comp10d.html and Eidenshink J, Faundeen J, 1997. The 1-
km avhrr global land data set: first stages in implementation,
http//edcwww.cr.usga.gov/landdaac/1KM/paper.html).

Thirty-six dekadal images from May 1992 to April 1993
of The Gambia were extracted from the PATHFINDER ac-
tive 1.1 km AVHRR archives. The images, in Goodes Hom-
olosine Projection, were processed using the Image Display
and Analysis Software/Map and Image Display and Analysis
Software (IDA/WINDISP)(http://ag.arizona.edu/repfirman/
windisp3.html). One image was incomplete and was there-
fore recreated using the mean of the previous and subsequent
images. The images were then entered into a spatial statis-
tical analysis program, ADDAPIX, that is designed for mon-
itoring seasonal and interannual vegetation growth using sat-
ellite imagery (Griguolo S, University of Venice, Venice,
Italy). This program uses the IDA image format as the basic
input file and submits the series of images to a principle
component analysis. This is followed by a non-hierarchical
clustering procedure with the aim of grouping pixels (image
squares) that have a similar spatial and temporal pattern.
After a period of experiment, 10 classes were chosen as a
number large enough to indicate the ecologic variation with-
in The Gambia but small enough for a number of classes to
contain sufficient villages for comparison of malaria ende-
micity (Figure 1). The seasonal profiles from the 10 classes
indicate clearly that there is considerable difference in the
length and greenness of the vegetation cycle in The Gambia
despite its relatively small size and uncomplicated topogra-
phy.

We were able to extract the associated NDVI class for
each village by overlaying the distribution of the study vil-
lages as a boundary file in IDA format. The NDVI measure
(called NDVIpS) used as a proxy for length of the malaria
transmission season was the area under the curve for the
period of the first dekad of May until 3 dekads (one month)
prior to the morbidity survey. A lag of one month between
NDVI values and malaria cases has been shown in an early
study on Gambian data.16 A second variable, the quadratic
value of NDVIpS (NDVIpS^2), was computed and included
in the analysis.

A number of children were excluded from the current
analysis because either their age was not known, their net
usage was not known, or no vegetation information was ob-
tained from their village environment due to persistent
clouds. After these exclusions, 2,039 children (89% of the
original sample) from 65 villages were included in the anal-
ysis. Children were classified into three groups: 1) children
who slept without a net (591, 29%); 2) children who slept
under an untreated net (886, 43.5%); and 3) children who
slept under an insecticide-treated net (562, 27.5%). A total
of 728 (35.7%) children where found to be positive for Plas-
modium falciparum parasites during the morbidity survey
(Table 1).

Spatial analysis. Modeling the relationship between en-
vironmental data and malarial indices is complicated by the

spatial correlation between observations, which invalidates
the inferences associated with standard regression calcula-
tions. In particular, while standard regression modeling ap-
plied to spatially correlated data gives satisfactory point es-
timates of regression parameters, the nominal standard errors
associated with these parameter estimates are typically too
small, and this in turn leads to an exaggerated impression of
the significance of regression relationships. We therefore un-
dertook the following analysis.

First, we used a logistic regression model20 to estimate the
probability of the presence of malarial parasites in each child
as a function of NDVIpS, NDVIpS^2, and age (in days), and
adjusted for the effects of nets (treated, untreated, or absent),
PHC (yes or no), (health card) (yes or no), and area (a five-
level factor) identifying the five ecologically different areas.

Second, we computed the variogram27 of the standardized
residuals from the fitted logistic regression model to estimate
the spatial correlation in the data. Based on the appearance
of the variogram, we assumed that the correlation between
a pair of measurements was an exponentially declining func-
tion of distance, i.e., p(d) 5 exp/(-ad) for some positive
value of a.

Third, from the fitted exponential correlation model, we
adjusted the nominal standard errors of the logistic regres-
sion parameter estimates to allow for the effects of spatial
correlation, using the method of generalized estimating
equations.22 This allows us to reassess the nominal signifi-
cance of particular terms in the regression model, and to
simplify the model accordingly.

Having fitted the model, we can use it to compute the
estimated probability of infection for any combination of
values of the explanatory variables, and so predict the prev-
alence rates for children in any particular village with a giv-
en set of characteristics. We can then repeat this process
under any chosen set of circumstances to quantify the effect
on prevalence rates of any change in behavior, e.g., increased
use of mosquito nets.

RESULTS

The results of the non-spatial logistic regression analyses
of the presence/absence of malaria in each child (non-spatial
model) are given in Table 2. Age (in days) and NDVI pS^2
are both positively correlated with the presence of parasites
(nominal P , 0.001), while NDVI pS, the use of nets (treated
or untreated), living in a PHC village, and possessing a
health card are all negatively correlated with the presence of
parasites (nominal P , 0.001). As noted earlier, quoted nom-
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TABLE 2
Logistic regression model of presence or absence of Plasmodium falciparum parasitemia using nonspatial and spatial statistics

Variable* Regression value

Nonspatial model 1

SE t P†

Spatial model 2

SE t P†

(Intercept)
NDVIpS
NDVIpS^2
Age.day
Nets (Untreated)

9.0631
20.401

0.004
0.0005

20.552

2.2279
0.0911
0.0009
0.0001
0.1322

4.068
24.408

4.507
5.003

24.175

,0.001
,0.001
,0.001
,0.001
,0.001

4.5171
0.1878
0.0019
0.0001
0.2012

2.006
22.139

2.169
5.1

22.742

,0.05
,0.05
,0.05
,0.001
,0.001

Nets (Treated)
PHC
Card
Area 2
Area 3

20.676
20.432
20.256
20.823
20.655

0.1480
0.1212
0.1146
0.1868
0.195

24.567
23.566
22.236
24.408
23.348

,0.001
,0.001
,0.05
,0.001
,0.001

0.2454
0.2433
0.1391
0.3827
0.4153

22.755
21.776
21.842
22.152
21.579

,0.05
NS
NS

,0.05
NS

Area 4
Area 5

0.1470
0.6022

0.2471
0.2357

0.598
2.555

NS
,0.05

0.5562
0.5088

0.266
1.183

NS
NS

* NDVI 5 normalized difference vegetation index; PHC 5 primary health center.
† NS 5 not significant.

TABLE 3
Predicted number of children infected with Plasmodium falciparum

infections under different net usage scenarios*

Net usage†

A

(n 5 591)

B

(n 5 886)

C

(n 5 562)

No. of
children
infected
with P.

falciparum

% of children
infected with
P. falciparum

Change
ratio

None
None
None
None
Untreated
Treated

None
Untreated
Untreated
Treated
Untreated
Treated

None
Untreated
Treated
Treated
Untreated
Treated

910.1
740.8
728.0
706
669.6
619.7

44.6
36.3
35.7
34.6
32.8
30.4

1.25
1.02
1.00
0.97
0.92
0.85

* Italicized words and numbers indicate actual data from children classified into three
groups (see Materials and Methods).

† A 5 no net; B 5 untreated net; C 5 treated net.

inal P values are likely to overstate the true significance of
these results.

The results of the logistic regression analyses of the pres-
ence/absence of malaria in each child corrected for the spa-
tial correlation in the data (spatial model) are also presented
in Table 2. The second model has the same estimated re-
gression parameters, but because the standard errors have
been corrected for spatial correlation, the significance of the
covariates has changed accordingly. In the spatial model, the
t-value for age remains approximately the same as in the
non-spatial model, indicating (as we would expect) that there
is no spatial difference in age structure of 1–4-year-old chil-
dren in The Gambia. The t-value for NDVIpS and NDVIpS^2
changed considerably from 24.408 to 22.139 and from
4.507 to 2.169, respectively, but both remained significant
at the 5% level. This indicates that some but not all of the
association observed between presence of parasites and
length of transmission is due to spatial correlation. The t-
values of the variables nets (untreated) and nets (treated) are
also reduced in the spatial model when compared with the
non-spatial model but remain highly significant (P , 0.001).
Neither living in a PHC/non-PHC village or possessing a
health card remain significant (P . 0.05) once spatial effects
are taken into account.

Predicting prevalence rates under different scenarios.
Using the model presented in Table 2, we predicted the num-

ber of children infected with P. falciparum under differing
net scenarios (Table 3). These scenarios included if no chil-
dren slept under a net, if all children slept under a net, if all
children slept under a treated net, and if the current net status
prevailed but none were treated.

According to the model, removing nets from those chil-
dren who currently use them would result in an increase of
parasite prevalence from 36% to 45%. Providing net treat-
ment without increasing net coverage would result in a slight
decrease in parasite prevalence from 36% to 35%. A more
significant decrease from 36% to 33% would result if net
coverage were increased to include all children even when
the nets were not treated. Not surprisingly, the best possible
result would be obtained if all children slept under a treated
net (prevalence rate decrease from 36% to 30%).

DISCUSSION

In our study, when taking into account spatial correlation,
the significance of all associations between malaria preva-
lence and human (age, untreated nets, treated nets, health
card) and village (PHC and area) factors and environmental
satellite data (NDVIpS and NDVIpS^2) are reduced with the
exception of child age. However, the associations with bed
net use (treated or untreated) and with the satellite data
(NDVIpS and NDVIpS^2) are still significant at the 1% and
5% levels, respectively, even when spatial effects are taken
into account. This suggests that these associations have a
more direct link and may be determined by a biological
mechanism. These results confirm the widely published non-
spatial analysis of the effectiveness of insecticide-treated bed
nets in reducing infection with malaria parasites.28 They also
reaffirm the importance of traditional bed nets (not treated
with insecticide) in reducing exposure of children to ma-
laria.24 Indeed, the study indicates that in The Gambia, in-
creasing the use of bed nets might be as effective in reducing
the rate of infection among children as providing insecticide
to treat them. However, insecticide-treated bed nets are
thought to be more effective than untreated nets at prevent-
ing infections characterized by high-density parasitemia,24

and this might partially explain their significant impact on
childhood mortality.29 Further studies are required to estab-
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FIGURE 2. Temporal changes in vector abundance, entomologic
inoculation rate (EIR), and normalized difference vegetation index
(NDVI) in 1992 in Jahally, The Gambia. Dekadal NDVI values from
Addapix class 8 represents the seasonal cycle of vegetation at Ja-
hally, Area 3. Anopheles gambiae s.l. occur in large numbers in early
June, presumably in association with the local irrigated rice fields,
but no mosquitoes infected with sporozoites are found until the last
dekad of June. Both vector populations and the number of infected
mosquitoes decreases rapidly once the NDVI values start to de-
crease.

lish whether a relationship also exists between the outcome
of infection (disease and death) and the environmental sat-
ellite data analyzed in this report.

According to this spatial analysis, living in a PHC or a
non-PHC village has no significant effect on the probability
of malaria infection. This contradicts earlier non-spatial an-
alyses, which have highlighted the differences in infection
rates between children living in PHC and non-PHC villag-
es.24 According to our analyses, such results represent spatial
differences in the siting of PHC and non-PHC villages rather
than intrinsic qualities associated with the delivery of pri-
mary health care.

The model also suggests that environmental satellite data
(NDVI), which indicates the length of the growing season,
may be useful for predicting the levels of malaria endemicity
in children once behavioral factors are taken into account. It
provides empirical support for the use of satellite data to
provide first-level stratification of regions or countries for
malaria control activities.5,19

The association of the NDVI with a suitable environment
for the survival of infective mosquitoes might explain our
finding. The NDVI has been shown to be highly correlated
with saturation deficit in The Gambia,17 and the limited data
available suggest that vegetation senesces at the end of the
rainy season are associated with a rapid decrease in the en-
tomologic inoculation rate and mosquito abundance (Figure
2). Dry season breeding sites for An. arabiensis in irrigated
rice fields in study area 3 have been identified by a higher
than average NDVI.17

In conclusion, this study demonstrates the importance of
spatial effects in the inferences that can be drawn from ep-
idemiologic models created from multiple regression analy-
sis. It confirms the effectiveness of insecticide-treated bed

nets in reducing parasite prevalence but suggests that in the
Gambian situation, the use of traditional untreated nets play
a significant role in reducing malaria exposure in children.
The model indicates that earlier studies suggesting that liv-
ing in a PHC village provides protection from malaria in-
fection is the result of spatial correlation. The model also
suggests that there may be an a priori relationship between
the NDVI and malaria infection. We suggest that this rela-
tionship is likely to be based on the fact that high NDVI
values are indicative of a moist environment supporting both
mosquito breeding and adult survival.
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