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ABSTRACT—Although psychologists frequently use statistical procedures, they 

are often unaware of the statisticians most associated with these procedures. Learning 

more about the people will aid understanding of the techniques. In this article, I present a 

list of 10 prominent statisticians: David Cox, Bradley Efron, Ronald Fisher, Leo 

Goodman, John Nelder, Jerzy Neyman, Karl Pearson, Donald Rubin, Robert Tibshirani, 

and John Tukey. I then discuss their key contributions and impact for psychology, as well 

as some aspects of their nonacademic lives.  
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The disciplines of psychology and statistics have grown up as close companions; 

they are "inextricably bound together" (Stigler, 1992, p. 60). Although each can track 

their intellectual genealogies back millennia, as academic disciplines they are only about 

100 years old. Early on, single individuals like Galton and Spearman could make 

substantive impacts in the core of both fields, but academic specialization and the 

development of both disciplines make this more difficult in modern times. Many 

psychologists like Abelson, Cohen, Cronbach, and Meehl have crossed into statistics, but 

their efforts have been mainly to bring statistical science into psychology. Others like 

Cattell, Coombs, Luce, Shepard, Stevens, Swets, Thurstone, and Tversky have focused 

on measurement and psychometrics. Measurement is fundamental for science 

(Borsboom, 2006), and psychologists have arguably done more for measurement theory 

than any other discipline (Hand, 2004). The people listed above would be on a list of 

psychologists worth knowing. 

 The focus of this article is to compile a list of 10 statisticians who have done 

important work that psychologists should be aware of. The fact that psychologists take 

statistics courses throughout undergraduate and graduate training and that every empirical 

article includes statistics are testament to the importance of statistics within psychology. 

Unfortunately, statistical techniques are often taught as if they were brought down from 

some statistical mount only to magically appear in SPSS. This gives a false impression of 

statistics. Statistics is a rapidly evolving discipline with colorful characters still arguing 

about some of the core aspects of their discipline. 

 The aim of this article is to present a list of the 10 statisticians whom I think 

psychologists should know about. By statistician, I am referring to people who would 
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likely be in a statistics department in the 21st century. I am not listing names prior to 

1900, though interested readers should consult Stigler (1986). Limiting the list to 10 was 

difficult, and I based the list in part on personal preferences. The list is a mix of founding 

fathers and more recent stars, but the statistical advances had to be ones of importance to 

psychologists. The list is all male—however, the gender imbalance has been found in 

other lists of statisticians. For example, there are only four females (Gertrude Cox, F.N. 

David, Florence Nightingale, and Elizabeth Scott) in Johnson and Kotz's (1997) 

compendium of over 100 prominent statisticians. The proportions of females in the 

American Statistical Association and the International Statistical Institute are both 

increasing, so there should be less of a gender imbalance in future lists. One may also 

note that, in comparison with, for example, Johnson and Kotz's list, there are more British 

and American representatives in my list. A longer list would have included statisticians 

from Russia (e.g., Andrei Kolmogorov, Andrei Markov), India (e.g., Prasanta Chandra 

Mahalanobis, Calyampudi Radhakrishna Rao), and elsewhere. Efron (2007) describes 

how the center of mass for statistics is moving towards Asia. 

 This article has three main sections. First, three of the founding fathers of modern 

statistics are listed. Next, I discuss three statisticians who I have found particularly 

influential for my own understanding of statistics. Although this trio is based on my own 

preferences, their impact has, by any measure, been immense. In the third section, I 

describe techniques that are of importance to psychologists and list the statistician 

associated with that technique. It is not always easy to identify a single person to 

associate with each technique, but this was done to simplify the list. 

FOUNDING FATHERS 
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Founding the Discipline: Karl Pearson 

 The assumption during Karl Pearson's upbringing was that he would follow his 

father's path into law, but his interests were more broad and scientific. After finishing a 

mathematics degree at Cambridge, he received his legal credentials and travelled around 

Europe broadening his knowledge in fields as diverse as poetry and physics. During his 

travels, he became more interested in socialism. Although the belief that he changed the 

spelling of his name from Carl to Karl in homage to Karl Marx is probably incorrect (see 

Porter, 2004, p. 78), he did write to Marx to offer to translate Marx's Das Kapital. Marx 

declined the offer. Lenin described Pearson as "this conscientious and honest opponent of 

materialism" (as cited in Plackett, 1983, p. 59).When he returned to London, he formed 

the "Men and Women's Club" to discuss ideas of sexual equality. His politics lead him to 

turn down a knighthood when it was offered in 1935. He also was a great admirer of 

Francis Galton and his eugenics, and Galton reciprocated by backing Pearson financially. 

In contemporary hindsight, it is difficult to reconcile Pearson's socialist and egalitarian 

ideals with Galton's eugenics. 

 Karl Pearson eventually settled at University College London lecturing about 

statistics. His writings were voluminous and, during his early years, included statistical 

works, plays, and political thoughts. His 1892 book The Grammar of Science was his first 

momentous achievement (K.P. Pearson, 1892/2007). The book greatly influenced Albert 

Einstein's theories of relativity and, as discussed later in this article, influenced Jerzy 

Neyman's views toward authority. In 1911, he founded the first statistics department at 

University College London, which became the hub of statistics. He founded and edited 

one of the most influential journals in the discipline (Biometrika; he also founded Annals 
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of Eugenics, now Annals of Human Genetics). He laid some of the groundwork for 

principal component analysis and several measures of variation. He developed two of the 

statistical tests most used by psychologists today: Pearson's correlation and Pearson's χ2. 

It is worth noting that the degrees of freedom he advised for χ2 was in error (nk-1 for an n 

× k contingency table and the null of no association) and was later corrected by Fisher. 

Even the paper including this error has had a large impact on the discipline (Stigler, 

2008). Walker (1958, p. 22) summarizes Pearson's contributions: "Few men in all the 

history of science have stimulated so many other people to cultivate and to enlarge the 

fields they had planted." One of the people most stimulated, even if at times it was to 

show where Pearson was wrong, was Ronald Fisher.  

Mathematical Framework: Ronald Fisher 

 Although Karl Pearson is the founding father of the discipline, Ronald Fisher's 

mathematical rigor produced the scaffolding onto which the discipline was built. 

According to another person on my list, Bradley Efron: "Fisher should be everybody's 

hero because we were incredibly lucky to get a mentality of that level in our field" 

(Holmes, Morris, & Tibshirani, 2003, p. 275). Efron (1998, p. 95) describes how Fisher's 

impact on the field would have been the envy of Caesar and Alexander. In fact, Fisher 

published one of the most important books of science, Statistical Methods for Research 

Workers (Fisher, 1925). Psychologists will know of his work on experimental design, 

analyses of variance, and the test statistic, F, that bears his initial. Many psychologists 

will also be aware that he was instrumental in the development and use of p values as part 

of evaluating evidence. He had arguments about the particular meaning of p with other 

statisticians (in particularly, Neyman), but it is Fisher's use of p that, according to 
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Gigerenzer (1993), is most similar to how psychologists currently do null hypothesis 

significance testing and is similar to how future analytic methods might be (Efron, 1998). 

Consider Fisher's beliefs about p values from his 1925 book as listed in Box 1 (adapted 

from Wright, 2006a). 

Fisher is sometimes blamed for contemporary science's fascination with a single 

value: .05. Although one can point to a few quotes in the 1925 book about .05 (e.g., 

"convenient to take this point as a limit in judging whether a deviation is to be considered 

significant or not .…We shall not often be astray if we draw a conventional line at .05," 

pp. 47, 79), he believed that different p values reflect different amounts of evidence 

against the null hypothesis. The value “.05” only gained prominence when researchers 

needed to make tables based on a few p values before the advent of computers and when 

they used p within a binary decision-making framework.  

 Within mathematical statistics, Fisher developed the notions of sufficiency, Fisher 

information, and most notably maximum likelihood (Stigler, 2007). Like Pearson, he was 

drawn to the great intellectual question of the day: genetics. His impact on genetics was 

also great (some argue as great as his impact on statistics), as noted by his daughter, Joan 

Fisher Box, who wrote a definitive biography of him (J.F. Box, 1978). Efron's (1998) 

look into the future of Fisher's influence on modern statistics is insightful and shows how 

Fisher's ideas have particular relevance to the data explosion in many scientific fields. 

Within psychology, this data explosion is most evident within neuroimaging.  

Proving the Approach Was Right: Jerzy Neyman 

 Jerzy Neyman's life coincided with some of the key moments in European and 

North American history from the last century. From Polish descent, he spent his early 
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years living in different parts of Russia, and in 1912 he went to the University of 

Kharkov. The first World War and the Russian revolutions of 1917 led to the end of 

Tsarist Russia and the beginning of the USSR under Vladimir Lenin. Although many of 

the Bolshevik education reforms were to Neyman's liking and show parallels to the 

educational philosophy he espoused in his later career, the conditions were harsh. For 

example, he was forced to trade matches for food with local farmers and was arrested for 

it. While in prison, he heard the man who had been in the cot next to him being executed 

(C. Reid, 1998). 

 After reading and being enamored with Karl Pearson's The Grammar of Science , 

Neyman went to London. Neyman was not impressed with mathematical rigor of Karl 

Pearson, but he did meet Pearson’s son, Egon, who became a close friend and 

collaborator. They produced the framework of null and alternative hypotheses that 

dominates the hypothesis testing approach in statistics. In his early career, Neyman also 

revolutionized sampling with stratified random sampling and created the notion of 

confidence intervals. In the 1930s, both Fisher and Neyman were on the faculty at 

University College London, and they were both critical of each other's theories. This 

dispute continued throughout their lives. Although there are at least two sides to any 

dispute, most historical accounts paint Neyman as the less mean spirited of the two. With 

the second World War approaching, Neyman moved to University of California at 

Berkeley, a move prophesized by Fisher.1  

 At Berkeley, Neyman continued making statistical advances in different sciences 

like biology, astronomy, and political science (elections), in addition to his research for 

the military. He created the Statistics Laboratory and later the Department of Statistics, 
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which became one of the top statistical departments in the world. He was an "ironhanded 

father-figure" (C. Reid, 1998, p. 216). This ironhanded aspect sometimes went too far, 

like when he forced Erich Lehmann to resign his editorship of Annals of Mathematical 

Statistics. This created a brouhaha in the department and the statistics community, which 

Lehmann said was an overreaction (Lehmann, 2008, p. 86). Usually the father-figure 

aspect reigned and this is evident throughout Lehmann's semi-autobiographical account 

as a student and then colleague of Neyman's. 

 Part of the Bolshevik's education reforms was the education of the working 

classes, who were denied access to much education in Tsarist Russia. Segregation in the 

1960s U.S. also acted to deny educational opportunities to many people, and Neyman 

strived to lessen this. He was influential getting Berkeley to start scholarships for those 

from poor backgrounds. He felt strongly for Martin Luther King's movement and spurned 

many academics to contribute to King's organization. The 1960s were turbulent at 

Berkeley for other reasons as well. The administration were forcing faculty to sign a 

loyalty oath, and police were arresting students for free speech. Although Neyman signed 

the oath, he chaired a group that helped get legal funds for student and faculty when it 

became necessary. The Vietnam War had divided America, and Neyman was part of a 

group of professors who took out antiwar advertisements—the military eventually 

threatened to withdraw his funding. 

 Within psychology Neyman will be best remembered for the framework he and 

Egon Pearson developed for hypothesis testing, confidence intervals, and methods in 

sampling. Within statistics, he will be most remembered for applying a mathematical 
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rigor to the questions and solutions posed by the likes of Fisher and for bringing 

mathematical statistics to the U.S.  

Summary of Founding Fathers 

 Limiting the list to three founding fathers is harsh. I did not chose anyone prior to 

Karl Pearson, but Pearson himself (E.S. Pearson, 1978) made clear how he was 

influenced by earlier writings. Stigler's (1986) description of pre-Pearson statistics shows 

the long past of statistics (with notaries like De Moivre, Gauss, and Laplace), but the 

impact of these people predated the start of both disciplines. I have also not included 

people who I do not consider primarily statisticians, like Gustav Fechner and Francis 

Galton. Although Fechner developed several methods for psychology, as the founder of 

psychophysics his place belongs in a list of physicists who psychologists should know 

about. He may be credited as the first psychologist to make use of statistical techniques 

(Stigler, 1992). Galton's profession is more difficult to pinpoint. He traveled through 

Africa charting areas previously unexplored by Europeans, brought measurement into 

meteorology, was one of the first psychometricians, and developed a theory of heredity, 

but he is probably most known (and disliked) for his views on eugenics (Brookes, 2004).2 

In the field of statistics, he developed correlation, regression, and associated graphical 

methods, and he used these within his anthropometric laboratory; however, his 

nonstatistical work makes him less of a statistician and more of a polymath.  

MY THREE STATISTICAL HEROES 

Exploring Data and Robust Estimation: John Tukey 

 When I mention "John Tukey," many psychologists go "yeah, I’ve heard of him, 

he did some post hoc tests that are even in SPSS," but this does not begin to cover his 



 11

accomplishments (see Wainer, 2005, pp. 117–124). He made numerous advances in 

many nonpsychology areas of statistics (e.g., the fast Fourier transform that is widely 

used in physics), public policy (e.g., as an advisor for Presidents Eisenhower, Kennedy, 

and Johnson and for developing a system for projecting election results with Robert 

Abelson in the 1960s), and was instrumental in the development of the jackknife (Tukey, 

1969, p. 91), but the two areas that psychologists should most associate with him are 

graphing data and robust methods. Prior to Tukey, the science of displaying quantitative 

information was built on two premises: graphs should be used to lie about your data and 

your data are so boring that you have to add chartjunk to interest your audience (Tufte, 

2001). As Tufte pointed out: "it is hard to imagine any doctrine more likely to stifle 

intellectual progress in a field" (2001, p. 53). In 1977, Tukey published Exploratory Data 

Analysis (EDA or the orange book) that legitimated graphing as part of academic science. 

This remains the definitive reference for graphs like boxplots and stem-and-leaf 

diagrams, which are methods for summarizing information about a variable's distribution. 

 In 1960, Tukey wrote a chapter for Contributions to Probability and Statistics in 

which he showed that even small deviations from normality could greatly affect the 

precision of estimates derived assuming the normal distribution (Tukey, 1960). This was 

critical, as it showed that deviations from normality too small to be detected with 

histograms, quantile–quantile plots, and statistical tests could still cause problems for 

methods that assumed normality. This was a catalyst for many statisticians to work on 

robust methods and Tukey, among them, made many significant contributions (Huber, 

2002). These robust estimators often lessen the weight of outliers compared with the 

traditional least-squares approach.. Figure 1 shows the weight function for Huber's 
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estimator and Tukey's bisquare (or biweight) estimator. Huber's function works like least 

squares until the residuals reach some magnitude, and then their influence drops off. The 

influence of residuals for Tukey's estimator drop off immediately, and after a point they 

have no influence (Fox, 2002). 

 Graphical methods and robust statistics are rapidly growing areas of statistics and 

psychology. Although Tukey did not invent good scientific graphs (see Wainer's, 2005, 

description of Playfair, 1876/2005) and robust methods like least absolute value 

estimation actually predate least squares (Stigler, 1986), Tukey made these active areas of 

research. Both sets of methods are emphasized in the APA Task Force on Statistical 

Inference (Wilkinson & The Task Force on Statistical Inference, APA Board of Scientific 

Affairs, 1999). And finally, for Trivial Pursuit enthusiasts, Tukey coined many terms 

including ANOVA for analysis of variance, software, and bit. 

Attributing Causation: Donald Rubin 

 My second hero is Donald Rubin. He arrived in 1965 at Harvard University to 

complete a Ph.D. in psychology only to be told that his undergraduate psychology degree 

at Princeton lacked enough statistics. Rubin had dabbled too much with physics as an 

undergraduate and, rather than take what he called a "baby" statistics course (Rubin, 

2006, p. 2), he opted for a Ph.D. in statistics and has spent most of the last 20 years as 

Chair of the Statistics Department there. Despite this initial treatment as a graduate 

student, he has given back knowledge to psychology in four main ways. I will briefly 

describe the first three and then describe the fourth as an overarching topic. 

 First, many psychologists will already be aware of Rubin’s work on effect sizes 

and meta-analysis with Robert Rosenthal (Rosenthal & Rubin, 1978). Second, Rubin is 
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known for the EM (which stands for expectation-maximization) algorithm (Dempster, 

Laird, & Rubin, 1977). It is an iterative algorithm used within psychology for missing 

data and latent variable models. Third, Rubin proposed methods for matching groups 

from nonexperimental studies (see papers collected in Rubin, 2006). In quasi-

experiments, it is difficult to reach causal conclusions. Analyses of covariance are 

sometimes used, but they can be inflexible in many circumstances and problematic when 

there are many covariates. Rubin and colleagues (most notably Rosenbaum, 2002) 

devised methods for using background variables to predict who will be in which groups 

and then matched people in control and treatment groups accordingly. This method, 

known as propensity matching or propensity scores, is popular in medical and 

educational statistics and is growing in popularity among psychologists. 

 The fourth way in which Rubin contributed to psychology is through his model 

for attributing causation (1974). There are several theories about causality, but Rubin's 

has become particularly popular. The first time I read Rubin's causal model (see Holland, 

1986, for detailed coverage),3 I did not know whether he was saying something obvious 

or insightful. It was like when you first see paintings by Roy Lichtenstein and wonder if 

they are art. After a while, many people came to believe that Lichtenstein was brilliant, 

and that is how I felt after closer examination of this model (see Wright, 2006b, in 

relation to psychology). Rubin's model defines causality closely linked to experiments: 

for something to be causal, you have to be able to think about manipulating it. Then, 

causality can be attributed and you can estimate the causal effect in two ways.  
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1. You can determine how the control group, who received no treatment, would have 

performed if they had received the treatment, and compare this estimate with how the 

control group actually performed. 

2. You can determine how the treatment group would have performed if they had not 

received the treatment, and compare this estimate with how the treatment group actually 

performed. 

The problem is that each of these comparisons involves a hypothetical group: the control 

group receiving the treatment and the treatment group not receiving the treatment. 

Rubin's model makes explicit the need to estimate values for these unobserved groups in 

order to make causal attributions. This makes many of the assumptions explicit and has 

lead to solving many problems of causal inference, for example, Lord's Paradox (Wainer, 

1991). 

Statistics in the Computer Age: Brad Efron 

 Bradley Efron is best known for the bootstrap (Efron, 1979). This is a computer 

intensive technique that allows people to assess the precision of estimates and to make 

confidence intervals in a general way without having to rely on mathematical formulae 

that often either do not exist or make unrealistic assumptions. A simple bootstrap works 

in the following steps. First, a sample is drawn from the original sample with replacement 

and is called the first bootstrap sample. Because the sample is drawn with replacement, 

some people's data may be included several times in this sample and some people’s data 

may not be included at all. Next, you calculate the test statistic of interest—for example, 

the median. You repeat this a few thousand times and find the distribution for the median 

from all the bootstrap samples. To estimate the 95% confidence interval for bootstrap 
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samples, researchers often use the middle 95% of the observed values. Efron and others 

have created other ways to estimate the confidence intervals, and these are included in 

most of the statistics packages that include bootstrapping. The beauty of the bootstrap is 

how it switches the emphasis from mathematical problems that have always been hard 

(but sometimes possible) to those that used to be impossible but are now very practical 

computing problems. The bootstrap and its developments are currently used for 

estimating parameters and constructing confidence intervals for these estimates for 

problems where no mathematical solutions exist, but in the future they may be used for 

estimation in many more problems because they perform better than the traditional 

mathematical solutions when the assumptions of these solutions only approximately fit 

the situation. 

 Efron's web site (http://www-stat.stanford.edu/~brad/) includes several papers 

detailing his vision for the future of science and statistics. He describes how statistics has 

become the language of science. For several decades, he has argued that empirical Bayes 

methods should become more popular. In psychology, some people argue about the 

philosophical differences between frequentist and Bayesian methods of statistics.4 Efron 

is much more pragmatic and problem-focused, arguing that empirical Bayes methods take 

the best bits of both approaches by taking some of the subjective decisions away from the 

classical Bayesian statistician and answering them with data. Efron saw Fisher as his 

statistical hero and in many ways they are similar. Both nestled themselves between the 

Bayesians and classical frequentists. Compare how Efron interprets the observed p value 

(or achieved significance level; Efron & Tibshirani, 1993, p. 204) in Box 2 with Fisher’s 

observations in Box 1. 
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 Since arriving at Stanford in 1960 as a graduate student, Efron has had a 

remarkable career. Stanford now praises the National Medal of Science award winner and 

former Chair of Faculty Senate and Associate Dean of Science, but it was not always that 

way. They expelled him in the 1960s for a parody of Playboy, which in his own words 

went "a little too far" (Holmes et al.,2003, p. 296). 

PARTICULARLY USEFUL TECHNIQUES AND ASSOCIATED 

STATISTICIANS 

 This next set of statisticians was chosen to highlight specific methods that are, or 

should be, important to psychologists. As most methods are developed by several people, 

I will mention more than one person for each but will focus on one person and describe 

some biographical information. The methods described are transformations, categorical 

data analysis, generalized linear models, and data reduction. In addition, the importance 

of statistics computing packages and some of the people associated with specific 

packages are discussed. Several other topics could have been chosen. If a method was 

discussed in relation to one of the previous statisticians it is not repeated here.  

Transforming Data: David Cox 

 Transforming data within psychology should always be considered. For example, 

is it better to analyze reaction time data in seconds or in its reciprocal, speed (Hand, 

2004)? Within statistics transformations are often used to make the data correspond more 

closely with the assumptions of the model and a simple transformation was described 

over 40 years ago which remains useful. George Box and David Cox (1964) proposed the 

following power transformation: 

⎩
⎨
⎧

=+
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=
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This has become known as the Box–Cox transformation. 

 Their approach was to try different values of a and b (they labeled them λ1 and λ2) 

until the model had a simple structure (i.e., no interaction terms), approximately constant 

variance, and residuals that were approximately normal. With modern computers, this 

trial and error procedure is easily automated (for example, Venables & Ripley's, 2002, 

Box–Cox function in S-Plus/R).  

 The decision of whether to choose Box or Cox for the list is difficult because both 

made important contributions to statistics in other areas. George Box contributed to many 

areas, designing experiments (G.E.P. Box, Hunter, & Hunter, 2005), time series methods 

(G.E.P. Box, Jenkins, & Reinsel, 2008), and Bayesian methods (G.E.P. Box & Tiao, 

1992), but for this list David Cox gets the nudge. He is best known for the proportional 

hazards model for analyzing survival data. This breakthrough paper (Cox, 1972) has been 

cited over 25,000 times. He also did much work on binary data beginning in the late 

1950s that is summarized in Cox and Snell (1989). He describes how much of the 

motivation for this was psychology research done by his then colleagues at Birkbeck 

College in London (N. Reid, 1994).  

Categorical Data Analysis: Leo Goodman 

 Psychologists are taught several techniques for working with response variables 

that are assumed to be continuous, but often the data from psychological research are 

categorical. In the typical undergraduate statistics course, psychology students are taught 

only the χ2 test for categorical data (with no mention of Pearson's error described above), 

and they are sometimes told to do a series of χ2 tests for multivariate examples. Although 

there was some work on categorical data analysis (CDA) in the first half of the last 
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century, it was not until the middle of that century that there was a more concentrated 

effort (Agresti, 2002, pp. 619–631). Cox and Snell's book on binary data (1989) has 

already been mentioned, and Rasch's item response model (and further developments) 

have caught on within educational measurement (e.g., Embretson & Reise, 2000). 

However, to represent the strides made in CDA, Leo Goodman makes the top 10 list. In 

one of the best textbooks on categorical data analysis, Agresti (2002) summarizes 

Goodman's contribution: 

/sub/Over the past 50 years, Goodman has been the most prolific contributor to 

the advancement of CDA methodology. The field owes tremendous gratitude to 

his steady and impressive body of work (p. 627). 

Beginning in 1954, Goodman wrote a series of papers with William Kruskal (of the 

Kruskal–Wallis test) looking at bivariate comparisons (reprinted in Goodman & Kruskal, 

1979). An example of their work together is the Goodman and Kruskal γ (gamma), which 

is used to measure the association between two ordinal variables.  

 Throughout the 1970s, Goodman produced a series of papers on log-linear 

models, log-multiplicative models, and latent class modeling that allow researchers to 

consider multiple categorical variables simultaneously (many reprinted in Goodman, 

1978). Log-linear models involve estimating the log of the frequencies of a multiway 

contingency table with a linear model of the categories for that table. It can be viewed as 

a general way to perform χ2 tests when you have more than two variables. Log-

multiplicative models allow the categories to be multiplied together to predict the log of 

the frequencies. This relates to correspondence analysis and other scaling procedures for 

categorical variables. Latent class models are appropriate when you assume that 
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categorical latent variables underlie responses to categorical observed variables. For a 

recent description, see Goodman (2007).  

 Although Goodman is known within psychology, his impact has thus far been 

greater in sociology. This is due in part to his substantive interests in social mobility and 

in part to traditional survey instruments (the bread and butter of sociology) producing 

more categorical data than many psychology research instruments. However, it is also 

due in part to less coverage of CDA methods, other than the χ2 test, in introductory 

psychology statistics.  

Generalized Linear Model: John Nelder 

 The generalized linear model is a method developed by John Nelder and 

colleagues (McCullagh & Nelder, 1989; Nelder & Wedderburn, 1972) for analyzing data 

that do not fit the normal distribution assumptions. In summarizing the value of this 

method, Hoffman (2004) writes "We are most fortunate to be living in a time when the 

statistical tools for analyzing regression models no longer require that dependent 

variables follow a continuous, normal distribution" (p. viii). In psychology, the variable 

of interest is often a frequency, a proportion, or a dichotomy. These often follow Poisson, 

binomial, and Bernoulli distributions, respectively. Nelder and Wedderburn (1972) 

showed that models for a set of common problems (those with distributions from the 

exponential family) can be analyzed efficiently.5 There are three main parts of a 

generalized linear model. First, there is a link function. The link function can take many 

forms, but the natural logarithm and the logit—ln(x) and ln(x/(1 − x), respectively—are 

two of the most common. They are used to map the predicted responses onto the second 

part, the linear model. Finally, the analyst has to choose the distribution assumed for the 
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residuals. This approach is called the generalized linear model (GLM) because it 

involves mapping a linear model onto a response that has been transformed via a link 

function. GLMs are now part and parcel of our arsenal for attacking data—the normal 

regression and the logistic regression are the most commonly used—and McCullagh and 

Nelder's (1989) book on GLMs has become a classic. 

 The most confusing aspect of the phrase generalized linear model for most 

psychologists is that the term is similar to general linear model, which usually refers to 

the standard normal regression that allows interaction terms and dummy variables. Nelder 

wished he came up with a fancier name for his approach to distinguish them better (Senn, 

2003, p. 127). As an aside, in the same interview, he tells how the groundbreaking 1972 

paper was rejected with no opportunity to resubmit from a statistics journal before being 

accepted at another journal. 

 John Nelder has influenced statistics both before and after the advent of GLMs. 

He codeveloped the Nelder–Mead simplex method (Nelder & Mead, 1965), which is a 

method for finding the best solution to complex problems and is very influential outside 

of psychology. He spent much of the first part of his career working on statistics for 

genetics and agriculture research and encountered many studies with confounded designs. 

To help analyze such messy designs, he developed the general balance algorithm in 

which the user describes the design and the algorithm takes into account the design's 

structure. He wrote the computer package GENSTAT 

(http://www.vsni.co.uk/products/genstat/) to encapsulate this approach. The package has 

reached Version 10 and is one of the best comprehensive statistics packages. Nelder was 

also the chairman of the group that designed the package GLIM, which was popular 
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among statisticians but is no longer being produced. This package was based on 

Wedderburn and his 1972 GLM paper. In recent years, Nelder has been working on 

extensions to GLMs using random variables (including multilevel models), which are 

now incorporated into several statistical packages. 

Data and Model Simplification: Robert Tibshirani 

 The next topic is data reduction. This is one of the largest areas of statistics and is 

the most difficult topic for me to single out a corresponding individual. One of the main 

goals of statistics is to reduce masses of complex data into simple and comprehensible 

patterns of information. Data reduction problems can be split into two types, often called 

unsupervised learning and supervised learning (Hastie, Tibshirani, & Friedman, 2001). 

These phrases deserve further explanation. 

 Unsupervised learning occurs when there is no "right" answer. The data are 

reduced from a high dimensionality (e.g., 20 variables) to a lower dimensionality (e.g.,  

two components) and the value of the reduction is assessed by how much important 

information is maintained from the original data (often the covariance matrix or some 

other similarity matrix). Examples include principal component analysis, 

multidimensional scaling, and some latent variables models. Each of these topics is 

important, but they do not place an additional person onto my list. Principal component 

analysis is the most widely used of these techniques in statistics and would have been 

chosen, except that one of its originators, Karl Pearson (1901), has already been covered. 

After Pearson, several people including Hotelling (1933) and Eckart and Young (1936) 

made important advances. Multidimensional scaling was not chosen because many of the 

important developments were by psychologists (e.g., Shepard and Young) and the 
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sociologist Guttman. This is not meant to downplay either the importance of the 

technique or of the individuals. One statistician worth noting is Joseph Kruskal, brother 

of the statistician who worked with Goodman (there was a third brother, Martin, who 

made several breakthroughs in mathematics and physics). Latent variable techniques 

(including factor analysis, item response modeling, and structural equation modeling) are 

common in psychology. The first use of this technique was in Spearman's g (1904) paper 

and massive developments were made by Thurstone (1947). Although many statisticians 

and psychologists have made great strides in these methods, Thurstone had the greatest 

impact on psychologists. So although unsupervised learning, in all of its guises, is 

important for psychology, it does not add a new statistician to the list. 

 In introductory psych-stats terminology, supervised learning occurs when there is 

a dependent variable on the left side of the equals sign. The data reduction can be 

assessed by comparing the predicted values from the model on right side of the equals 

sign with the dependent variable. For simple problems, this can be done with a 

correlation. A common way to assess the fit of more complex models is to "supervise" 

the model while it is learning part of the data and then see how well the estimated model 

performs with the rest of the data. This is why the second branch of data reduction is 

called supervised learning. The typical problem involves making the model as simple as 

possible, and there are many advances that are particularly useful in sciences with 

massive amounts of data, like bioinformatics. In psychology, the common situation 

involves a multiple regression in which the researcher wants to eliminate variables that 

have little predictive value. This can be done with the stepwise methods available in 

popular statistics programs, but these are disliked by methodologists. Hastie et al. (2001; 
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see Wright & London, 2009, for an introduction designed for psychologists) describe new 

state-of-the-art methods in this area. Each of these authors—Hastie, Tibshirani, and 

Friedman—has made significant advances to the field to warrant being considered for the 

list, but with only 10 places I limited the choice to one person. 

 The choice is for the lasso and Robert Tibshirani (1996). The lasso is a 

conceptually simple technique that is now also quickly solved thanks to Efron, Hastie, 

Johnstone, and Tibshirani (2004). The lasso constrains the sum of the absolute values of 

the standardized coefficients (the βs in a standard regression) to some value until the 

solution looks fairly good, as assessed by cross-validation or adjusted R2 (for example). 

As the value decreases, some βs become 0 and therefore drop out, creating a more 

parsimonious model. Other βs become smaller. Because estimated coefficients for 

correlated predictor variables are often too large in magnitude, this lessens the variability 

of the estimates. In recent years, there have been several extensions to the basic lasso. 

Many of these are designed for situations in which there are many more variables than 

subjects (a common situation in bioinformatics). 

 Tibshirani has made impacts in other areas. With Trevor Hastie, he developed 

generalized additive models (Hastie & Tibshirani, 1990). Rather than having individual 

predictors included in the model in a linear fashion, a series of polynomial curves 

(splines) can be pieced together smoothly to allow more flexible relationships between 

predictor variables and the response variable (see Wright & London, 2009, for 

introduction). In addition, Tibshirani wrote the definitive monograph on the bootstrap 

with Bradley Efron (Efron & Tibshirani, 1993). Tibshirani is the youngest person on this 
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list. His inclusion will be controversial and is in part due to my prediction for his future 

impact. 

Summary and Statistical Computing Packages 

 There are many other topics I could have listed. One topic that deserves special 

mention is statistical computing packages. The computer has been integral to statistics 

over the past 50 years. For example, it allows computer intensive estimation, like the 

jackknife and bootstrap, that was not available before computers were available to make 

rapid calculations. Another advance is the creation of statistical packages that have 

allowed nonstatisticians, sometimes with minimal training, to manage statistics. This has 

advantages and disadvantages, but clearly the automation of techniques in statistical 

packages has had the largest impact on psychologists of all statistical advances in recent 

decades.  

 It would not be wise to single out any individual for statistical computing 

packages, but it is worth mentioning a few of the main packages and what they are best 

known for. I will discuss four packages (SPSS, SAS, MATLAB, and R) in chronological 

order.  

 One of the most used packages within academic psychology is SPSS (now called 

PASW). It began in the late 1960s (http://www.spss.com/corpinfo/history.htm) when 

Stanford University graduate students Norman Nie and Dale Bent and recent graduate 

student Hadlai Hull began writing statistical functions aimed at allowing social scientists 

to conduct their own statistics. Initially, this was just for researchers at Stanford, but 

when Nie and Hull moved to University of Chicago operations were scaled up and they 

began distributing the package. They initially distributed the package for free and made 



 25

money by selling the manual. Since then, SPSS has continued to grow, being one of the 

first to release DOS and Windows versions.  

 The SAS package was developed soon after SPSS by Jim Goodnight and 

colleagues to analyze agricultural data. It has become a large company, and SAS is used 

across the academic and business community. Their corporate history shows numerous 

awards related to statistical and computing advances, but what stands out is a corporate 

philosophy and employee-friendly perks, such as Wednesdays being declared M&M 

days. They have won awards in several countries for being a good place to work 

(www.sas.com).  

 Another package that is popular in some areas of psychology is MATLAB. This 

was originally produced by Cleve Moler in the late 1970s to help his students perform 

matrix operations, but Jack Little and Steve Bangert saw its potential as commercial 

software for engineers (Moler, 2006). It has an advantage that people can create add-on 

toolboxes for particular types of analysis. For example, neuroimaging is very popular in 

psychology and there is a toolbox called SPM 5 (Statistical Parametric Mapping, Version 

5) for MATLAB (http://www.fil.ion.ucl.ac.uk/spm/).  

 The final package to discuss is called R. It is recent, but its popularity is rapidly 

increasing. It grew out of the S-Plus system, which grew from the S language of AT&T 

Bell Laboratories (now Lucent Technology). S/S-Plus was written by John Chambers and 

colleagues (Becker, Chambers, & Wilks, 1988; Chambers, 2008; Chambers & Hastie, 

1992). This is an object-oriented language for statistical programming and data analysis 

that won the 1998 Software System Award from the Association of Computing 

Machinery. This is the only statistics software to win this prestigious award (other 
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winners include Java, Unix, and the World-Wide Web). Object orientation and the 

development of powerful classes of objects create a powerful statistics environment 

(Chambers, 2008). 

 R (R Development Core Team, 2009) works in a very similar way to S/S-Plus, 

and many of the same functions run in both packages. R was originally written by Robert 

Gentleman and Ross Ihaka (who both thanked John Chambers). One important difference 

is that R is can be freely downloaded and you can download updates whenever 

convenient (www.r-project.org). Further, when statisticians develop new procedures, they 

will often produce packages in R and store them on CRAN, the Comprehensive R 

Archive Network (cran.r-projects.org; a similar site exists for S-Plus, 

http://csan.insightful.com/). Most of the papers over the last few years in the Journal of 

Statistical Software are about R packages, including a special issue on psychometrics (de 

Leeuw & Mair, 2007). These all can be downloaded freely. 

SUMMARY 

 Table 1 shows the statisticians on the list; some of the techniques associated with 

them; and their doctoral year, location, and advisor. Any list like this will have many near 

misses. For example, should Kolmogorov be included for his work on probability? 

Should any of the Kruskal brothers be listed? Should Bruno de Finetti or someone else be 

included for the Bayesian approach? Should Jöreskog be included for structural equation 

modeling? Should multilevel modeling and meta-analysis be listed as topics? Why were 

ranking procedures not included? It seems unfair to George Box, Trevor Hastie, and 

others not to include them when including their collaborators. Many statisticians have 

had profound impact on groups of psychologists through lectures, and many have written 
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textbooks. Should these people be included? Not including quantitative psychologists 

will also seem a mistake too many, but given the numbers of quantitative psychologists, 

this group could be the focus of another article (see the lists given at the start of this 

article). Many issues were considered and there remains much space for heated 

discussion about the most important statisticians for psychologists. It is likely that any 

two psychologists reading through these sources and considering their own personal 

experiences would construct their own lists. 

 Another question is why a midcareer psychologist like myself should compose a 

list of 10 statisticians rather than, for example, a statistician or a quantitative psychologist 

with much more experience. There have been lists composed by statisticians (e.g., 

Johnson & Kotz, 1997; Lehmann, 2008), and the historian of statistics, Stephen Stigler, 

has provided many lucid descriptions of statisticians. There are also interviews of 

contemporary statisticians in the journals Statistical Science and Journal of Educational 

and Behavioral Statistics. These sources of were valuable for providing information 

about statisticians. I believe the perspective of a psychologist who is still learning about 

statistical procedures is probably most similar to the perspective of typical readers of 

Perspectives on Psychological Science. 

 Finally, the central assumption of this paper is that learning about a small group 

of statisticians will improve understanding of statistics. The list is meant to introduce 

some of the main statistical pioneers and their important achievements in psychology. 

Readers are encouraged to learn more about these people and others. It is hoped learning 

about the people behind the statistical procedures will make the procedures seem more 

humane than many psychologists perceive them to be. 
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Fig 1. The weight function for Huber's robust estimator and Tukey's bisquare (or 

biweight) compared with least squares estimation. 

 

/fn/1When Neyman taught statistics at University College London, he  questioned 

Fisher’s approach and chose not to use Fisher’s book as a textbook in his classes. Fisher 

told Neyman that this was not appropriate and suggested that he would be better suited 

somewhere far away—flippantly suggesting California (C. Reid, 1998, p. 126).  

/fn/2Albert Gifi, Galton's loyal servant for over 40 years, had an indirect effect on 

statistics. Galton left his fortune to the Eugenics Society. Members of the Department of 

Data Theory, University of Leiden, were doing quite a bit of work on scaling and 

categorical data. They opted to use his name to publish as a group "as a far too late 

recompense for his loyalty and devotion” (Gifi, 1990, p. x) and to show the feelings of 

equality among the authors (van der Heijden & Sijtsma, 1996).  

/fn/3This is sometimes called the Rubin–Holland model for Holland's excellent exposition 

of the theory (see Holland, 1986). If Paul Holland had been on my list, his achievements 

would have included work on educational testing and learning the banjo from Jerry 

Garcia (Wainer, 2005, p. 160). 

/fn/4Several people have asked whether Thomas Bayes should be included for the 

theorem that bears his name. The problem is that it is not clear whether Bayes came up 

with Bayes' theorem. The theorem was published from Bayes' papers 3 years after his 

death. However, Stigler (1983) notes that this theorem appears in print 12 years before 

Bayes' death. Through meticulous detective work and applications of Bayes' theorem, 

Stigler concludes that the more likely developer of the theorem was Nicholas 
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Saunderson, a blind professor of mathematics at Cambridge. Other prominent Bayesians, 

like economist John Maynard Keynes and the philosopher Richard Jeffrey were excluded 

for the list because they are nonstatisticians. Others like Bruno de Finetti, Dennis 

Lindley, and Leonard Savage were considered and would have been included if the list 

was slightly longer. 

/fn/5Robert Wedderburn passed away when he was 28 years old, so his potential impact 

was never realized. Before his death, he extended generalized linear models so that they 

could encompass a much wider range of problems using quasi-likelihood (Wedderburn, 

1974). 

 
 


